
Erkut Erdem // Hacettepe University // Fall 2024

Lecture 20:

AdaBoost

AIN311

Fundamentals of  

Machine
Learning

Illustration adapted from Alex Rogozhnikov

Last time… Bias/Variance Tradeof

2http://scott.fortmann-roe.com/docs/BiasVariance.html

Graphical illustration of bias and variance.

slide by David Sontag

http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

Last time… Bagging
• Leo Breiman (1994)

• Take repeated bootstrap samples from training set D.

• Bootstrap sampling: Given set D containing N

training examples, create D’ by drawing N examples
at random with replacement from D.

• Bagging:

- Create k bootstrap samples D1 ... Dk.

- Train distinct classifier on each Di.

- Classify new instance by majority vote / average.

3

slide by David Sontag

Last time… Random Forests

4

slide by N
ando de Freitas

Random Forests for classification or regression

[From the book of Hastie, Friedman and Tibshirani]

Tree t=1 t=2 t=3

Boosting

5

Boosting Ideas
• Main idea: use weak learner to create

strong learner.

• Ensemble method: combine base

classifiers returned by weak learner.

• Finding simple relatively accurate base

classifiers often not hard.

• But, how should base classifiers be

combined?
6

slide by M
ehryar M

ohri

Example: “How May I Help You?”
• Goal: automatically categorize type of call requested by

phone customer (Collect, CallingCard, PersonToPerson, etc.)

- yes I’d like to place a collect call long distance
please (Collect)

- operator I need to make a call but I need to bill it to
my office (ThirdNumber)

- yes I’d like to place a call on my master card please
(CallingCard)

- I just called a number in sioux city and I musta rang
the wrong number because I got the wrong party and I
would like to have that taken off of my bill
(BillingCredit)

• Observation:

- easy to find “rules of thumb” that are “often” correct

• e.g.: “IF ‘card’ occurs in utterance THEN predict ‘CallingCard’ ”

- hard to find single highly accurate prediction rule

7[Gorin et al.]

slide by Rob Schapire

Boosting: Intuition
• Instead of learning a single (weak) classifier, learn many

weak classifiers that are good at different parts of the
input space

• Output class: (Weighted) vote of each classifier

- Classifiers that are most “sure” will vote with more

conviction

- Classifiers will be most “sure” about a particular part of the

space

- On average, do better than single classifier!

• But how do you???
- force classifiers to learn about different parts of the input

space?

- weigh the votes of different classifiers?

8

slide by Aarti Singh & Barnabas Poczos

Boosting [Schapire, 1989]
• Idea: given a weak learner, run it multiple times on (reweighted)

training data, then let the learned classifiers vote

• On each iteration t:

- weight each training example by how incorrectly it was classified

- Learn a hypothesis – ht
- A strength for this hypothesis – at

• Final classifier:

- A linear combination of the votes of the different classifiers

weighted by their strength

• Practically useful
• Theoretically interesting

9

slide by Aarti Singh & Barnabas Poczos

Boosting: Intuition
• Want to pick weak classifiers that contribute something

to the ensemble

10

Boosting

Boost ing: intuit ion

Want to pick weak classifiers that contribute something to the ensemble.

Greedy algorithm: for m = 1, .. . ,M
Pick a weak classifier hm
Adjust weights: misclassified
examples get “heavier”
↵m set according to weighted
error of hm

Greg Shakhnarovich (TTIC) Lecture 5: Boosting, decision t rees January 14, 2013 10 / 34

Greedy algorithm: for m=1,...,M
• Pick a weak classifier hm

• Adjust weights: misclassified
examples get “heavier”

• αm set according to weighted
error of hm

slide by Raquel U
rtasun

[Source: G. Shakhnarovich]

Boosting

Boost ing: intuit ion

Want to pick weak classifiers that contribute something to the ensemble.

Greedy algorithm: for m = 1, .. . ,M
Pick a weak classifier hm
Adjust weights: misclassified
examples get “heavier”
↵m set according to weighted
error of hm

Greg Shakhnarovich (TTIC) Lecture 5: Boosting, decision t rees January 14, 2013 10 / 34

Boosting: Intuition
• Want to pick weak classifiers that contribute something

to the ensemble

11

Greedy algorithm: for m=1,...,M
• Pick a weak classifier hm

• Adjust weights: misclassified
examples get “heavier”

• αm set according to weighted
error of hm

slide by Raquel U
rtasun

[Source: G. Shakhnarovich]

Boosting: Intuition
• Want to pick weak classifiers that contribute something

to the ensemble

12

Boosting

Boost ing: intuit ion

Want to pick weak classifiers that contribute something to the ensemble.

Greedy algorithm: for m = 1, .. . ,M
Pick a weak classifier hm
Adjust weights: misclassified
examples get “heavier”
↵m set according to weighted
error of hm

Greg Shakhnarovich (TTIC) Lecture 5: Boosting, decision trees January 14, 2013 10 / 34

Greedy algorithm: for m=1,...,M
• Pick a weak classifier hm

• Adjust weights: misclassified
examples get “heavier”

• αm set according to weighted
error of hm

slide by Raquel U
rtasun

[Source: G. Shakhnarovich]

Boosting: Intuition
• Want to pick weak classifiers that contribute something

to the ensemble

13

Boosting

Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

Greedy algorithm: for m = 1, . . . ,M

Pick a weak classifier hm

Adjust weights: misclassified
examples get “heavier”

↵m set according to weighted
error of hm

Greg Shakhnarovich (TTIC) Lecture 5: Boosting, decision trees January 14, 2013 10 / 34

Greedy algorithm: for m=1,...,M
• Pick a weak classifier hm

• Adjust weights: misclassified
examples get “heavier”

• αm set according to weighted
error of hm

slide by Raquel U
rtasun

[Source: G. Shakhnarovich]

Boosting: Intuition
• Want to pick weak classifiers that contribute something

to the ensemble

14

Boosting

Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

Greedy algorithm: for m = 1, . . . ,M

Pick a weak classifier hm

Adjust weights: misclassified
examples get “heavier”

↵m set according to weighted
error of hm

Greg Shakhnarovich (TTIC) Lecture 5: Boosting, decision trees January 14, 2013 10 / 34

Greedy algorithm: for m=1,...,M
• Pick a weak classifier hm

• Adjust weights: misclassified
examples get “heavier”

• αm set according to weighted
error of hm

slide by Raquel U
rtasun

[Source: G. Shakhnarovich]

Boosting: Intuition
• Want to pick weak classifiers that contribute something

to the ensemble

15

Boosting

Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

Greedy algorithm: for m = 1, . . . ,M

Pick a weak classifier hm

Adjust weights: misclassified
examples get “heavier”

↵m set according to weighted
error of hm

Greg Shakhnarovich (TTIC) Lecture 5: Boosting, decision trees January 14, 2013 10 / 34

Greedy algorithm: for m=1,...,M
• Pick a weak classifier hm

• Adjust weights: misclassified
examples get “heavier”

• αm set according to weighted
error of hm

slide by Raquel U
rtasun

[Source: G. Shakhnarovich]

Boosting: Intuition
• Want to pick weak classifiers that contribute something

to the ensemble

16

Greedy algorithm: for m=1,...,M
• Pick a weak classifier hm

• Adjust weights: misclassified
examples get “heavier”

• αm set according to weighted
error of hm

Boosting

Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

Greedy algorithm: for m = 1, . . . ,M

Pick a weak classifier hm

Adjust weights: misclassified
examples get “heavier”

↵m set according to weighted
error of hm

Greg Shakhnarovich (TTIC) Lecture 5: Boosting, decision trees January 14, 2013 10 / 34

slide by Raquel U
rtasun

[Source: G. Shakhnarovich]

First Boosting Algorithms
• [Schapire ’89]:

- first provable boosting algorithm

• [Freund ’90]:

- “optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]:

- first experiments using boosting

- limited by practical drawbacks

• [Freund & Schapire ’95]:

- introduced “AdaBoost” algorithm

- strong practical advantages over previous boosting

algorithms
17

slide by Rob Schapire

The AdaBoost Algorithm

18

AdaBoost

95

Given: where ,
Initialize .
For :

Train weak learner using distribution .
Get weak hypothesis with error

Choose .
Update:

if
if

where is a normalization factor (chosen so that will be a distribution).

Output the final hypothesis:

Figure 1: The boosting algorithm AdaBoost.

and the labels give the outcomes (i.e., the winners) of each race. The weak hypotheses are
the rules of thumb provided by the expert gambler where the subcollections that he examines are
chosen according to the distribution .

Once the weak hypothesis has been received, AdaBoost chooses a parameter as in the
figure. Intuitively, measures the importance that is assigned to . Note that if
(which we can assume without loss of generality), and that gets larger as gets smaller.

The distribution is next updated using the rule shown in the figure. The effect of this rule
is to increase the weight of examples misclassified by , and to decrease the weight of correctly
classified examples. Thus, the weight tends to concentrate on “hard” examples.

The final hypothesis is a weighted majority vote of the weak hypotheses where is the
weight assigned to .

Schapire and Singer [42] show how AdaBoost and its analysis can be extended to handle weak
hypotheses which output real-valued or confidence-rated predictions. That is, for each instance ,
the weak hypothesis outputs a prediction whose sign is the predicted label (or
) and whose magnitude gives a measure of “confidence” in the prediction. In this paper,

however, we focus only on the case of binary () valued weak-hypothesis predictions.

3

Algorithm from (Freund & Schapire, 1999)

Toy Example

weak hypotheses = vertical or horizontal half-planes 19

Minimize the error

of rounds . One of the main ideas of the algorithm is to maintain a
distribution or set of weights over the training set. The weight of this distribution on
training example on round is denoted . Initially, all weights are set equally,
but on each round, the weights of incorrectly classified examples are increased so
that the base learner is forced to focus on the hard examples in the training set.

The base learner’s job is to find a base classifier appropriate
for the distribution . (Base classifiers were also called rules of thumb or weak
prediction rules in Section 1.) In the simplest case, the range of each is binary,
i.e., restricted to ; the base learner’s job then is to minimize the error

Once the base classifier has been received, AdaBoost chooses a parameter
that intuitively measures the importance that it assigns to . In the figure,

we have deliberately left the choice of unspecified. For binary , we typically
set

(1)

as in the original description of AdaBoost given by Freund and Schapire [32]. More
on choosing follows in Section 3. The distribution is then updated using the
rule shown in the figure. The final or combined classifier is a weighted majority
vote of the base classifiers where is the weight assigned to .

3 Analyzing the training error

The most basic theoretical property of AdaBoost concerns its ability to reduce
the training error, i.e., the fraction of mistakes on the training set. Specifically,
Schapire and Singer [70], in generalizing a theorem of Freund and Schapire [32],
show that the training error of the final classifier is bounded as follows:

(2)

where henceforth we define

(3)

so that . (For simplicity of notation, we write and as
shorthand for and , respectively.) The inequality follows from the fact
that if . The equality can be proved straightforwardly by
unraveling the recursive definition of .

4

For binary ht , typically use

slide by Rob Schapire

Round 1

20

Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D

slide by Rob Schapire

Round 1

21

Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D

slide by Rob Schapire

Round 1

22

Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D

slide by Rob Schapire

Round 2

23

Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D

slide by Rob Schapire

Round 2

24

Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D

slide by Rob Schapire

Round 2

25

Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D

slide by Rob Schapire

Round 3

26

Round 3Round 3Round 3Round 3Round 3

h3

α

ε3
3=0.92
=0.14

slide by Rob Schapire

Round 3

27

Round 3Round 3Round 3Round 3Round 3

h3

α

ε3
3=0.92
=0.14

slide by Rob Schapire

Final HypothesisFinal HypothesisFinal HypothesisFinal HypothesisFinal Hypothesis

H
final

+ 0.92+ 0.650.42sign=

=

Final Hypothesis

28

slide by Rob Schapire

Voted combination of classifiers
• The general problem here is to try to combine many

simple “weak” classifiers into a single “strong” classifier

• We consider voted combinations of simple binary ±1

component classifiers

	 where the (non-negative) votes αi can be used to 	  
 emphasize component classifiers that are more  
 reliable than others

29

slide by Tom
m

i S. Jaakkola

Components: Decision stumps
• Consider the following simple family of component

classifiers generating ±1 labels:

	 where These are called decision  
 stumps.

• Each decision stump pays attention to only a single

component of the input vector

30

slide by Tom
m

i S. Jaakkola

Voted combinations (cont’d.)
• We need to define a loss function for the combination

so we can determine which new component h(x; θ) to
add and how many votes it should receive 

• While there are many options for the loss function we
consider here only a simple exponential loss

31

slide by Tom
m

i S. Jaakkola

Modularity, errors, and loss
• Consider adding the mth component:

32

slide by Tom
m

i S. Jaakkola

Modularity, errors, and loss
• Consider adding the mth component:

33

slide by Tom
m

i S. Jaakkola

Modularity, errors, and loss
• Consider adding the mth component: 

• So at the mth iteration the new component (and the votes)
should optimize a weighted loss (weighted towards
mistakes).

34

slide by Tom
m

i S. Jaakkola

Empirical exponential loss (cont’d.)
• To increase modularity we’d like to further decouple the

optimization of h(x; θm) from the associated votes αm

• To this end we select h(x; θm) that optimizes the rate at

which the loss would decrease as a function of αm

35

slide by Tom
m

i S. Jaakkola

Empirical exponential loss (cont’d.)
• We find that minimizes

• We can also normalize the weights: 
 

	 so that
36

slide by Tom
m

i S. Jaakkola

Empirical exponential loss (cont’d.)
• We find that minimizes 

	 where

• is subsequently chosen to minimize

37

slide by Tom
m

i S. Jaakkola

The AdaBoost Algorithm

38

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

39

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

40

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

41

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

For t = 1, ..., T :

⌅ Find ht = arg min
hj2H

✏j =
mP

i=1
Dt(i)Jyi 6= hj(xi)K

⌅ If ✏t � 1/2 then stop

t = 1

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

42

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

For t = 1, ..., T :

⌅ Find ht = arg min
hj2H

✏j =
mP

i=1
Dt(i)Jyi 6= hj(xi)K

⌅ If ✏t � 1/2 then stop

⌅ Set ↵t = 1
2 log(1�✏t

✏t
)

t = 1

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

43

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

For t = 1, ..., T :

⌅ Find ht = arg min
hj2H

✏j =
mP

i=1
Dt(i)Jyi 6= hj(xi)K

⌅ If ✏t � 1/2 then stop

⌅ Set ↵t = 1
2 log(1�✏t

✏t
)

⌅ Update

Dt+1(i) =
Dt(i)exp(�↵tyiht(xi))

Zt

where Zt is normalisation factor

t = 1

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

44

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

For t = 1, ..., T :

⌅ Find ht = arg min
hj2H

✏j =
mP

i=1
Dt(i)Jyi 6= hj(xi)K

⌅ If ✏t � 1/2 then stop

⌅ Set ↵t = 1
2 log(1�✏t

✏t
)

⌅ Update

Dt+1(i) =
Dt(i)exp(�↵tyiht(xi))

Zt

where Zt is normalisation factor

Output the final classifier:

H(x) = sign

TX

t=1

↵tht(x)

!

step

tr
ai

ni
ng

er
ro

r

t = 1

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

45

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

For t = 1, ..., T :

⌅ Find ht = arg min
hj2H

✏j =
mP

i=1
Dt(i)Jyi 6= hj(xi)K

⌅ If ✏t � 1/2 then stop

⌅ Set ↵t = 1
2 log(1�✏t

✏t
)

⌅ Update

Dt+1(i) =
Dt(i)exp(�↵tyiht(xi))

Zt

where Zt is normalisation factor

Output the final classifier:

H(x) = sign

TX

t=1

↵tht(x)

!

step

tr
ai

ni
ng

er
ro

r

t = 2

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

46

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

For t = 1, ..., T :

⌅ Find ht = arg min
hj2H

✏j =
mP

i=1
Dt(i)Jyi 6= hj(xi)K

⌅ If ✏t � 1/2 then stop

⌅ Set ↵t = 1
2 log(1�✏t

✏t
)

⌅ Update

Dt+1(i) =
Dt(i)exp(�↵tyiht(xi))

Zt

where Zt is normalisation factor

Output the final classifier:

H(x) = sign

TX

t=1

↵tht(x)

!

step

tr
ai

ni
ng

er
ro

r

t = 3

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

47

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

For t = 1, ..., T :

⌅ Find ht = arg min
hj2H

✏j =
mP

i=1
Dt(i)Jyi 6= hj(xi)K

⌅ If ✏t � 1/2 then stop

⌅ Set ↵t = 1
2 log(1�✏t

✏t
)

⌅ Update

Dt+1(i) =
Dt(i)exp(�↵tyiht(xi))

Zt

where Zt is normalisation factor

Output the final classifier:

H(x) = sign

TX

t=1

↵tht(x)

!

step

tr
ai

ni
ng

er
ro

r

t = 4

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

48

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

For t = 1, ..., T :

⌅ Find ht = arg min
hj2H

✏j =
mP

i=1
Dt(i)Jyi 6= hj(xi)K

⌅ If ✏t � 1/2 then stop

⌅ Set ↵t = 1
2 log(1�✏t

✏t
)

⌅ Update

Dt+1(i) =
Dt(i)exp(�↵tyiht(xi))

Zt

where Zt is normalisation factor

Output the final classifier:

H(x) = sign

TX

t=1

↵tht(x)

!

step

tr
ai

ni
ng

er
ro

r

t = 5

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

49

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

For t = 1, ..., T :

⌅ Find ht = arg min
hj2H

✏j =
mP

i=1
Dt(i)Jyi 6= hj(xi)K

⌅ If ✏t � 1/2 then stop

⌅ Set ↵t = 1
2 log(1�✏t

✏t
)

⌅ Update

Dt+1(i) =
Dt(i)exp(�↵tyiht(xi))

Zt

where Zt is normalisation factor

Output the final classifier:

H(x) = sign

TX

t=1

↵tht(x)

!

step

tr
ai

ni
ng

er
ro

r

t = 6

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

50

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

For t = 1, ..., T :

⌅ Find ht = arg min
hj2H

✏j =
mP

i=1
Dt(i)Jyi 6= hj(xi)K

⌅ If ✏t � 1/2 then stop

⌅ Set ↵t = 1
2 log(1�✏t

✏t
)

⌅ Update

Dt+1(i) =
Dt(i)exp(�↵tyiht(xi))

Zt

where Zt is normalisation factor

Output the final classifier:

H(x) = sign

TX

t=1

↵tht(x)

!

step

tr
ai

ni
ng

er
ro

r

t = 7

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

slide by Jiri M
atas and Jan Šochm

an

The AdaBoost Algorithm

51

4/17

The AdaBoost Algorithm

Given: (x1, y1), . . . , (xm, ym);xi 2 X , yi 2 {�1,+1}
Initialise weights D1(i) = 1/m

For t = 1, ..., T :

⌅ Find ht = arg min
hj2H

✏j =
mP

i=1
Dt(i)Jyi 6= hj(xi)K

⌅ If ✏t � 1/2 then stop

⌅ Set ↵t = 1
2 log(1�✏t

✏t
)

⌅ Update

Dt+1(i) =
Dt(i)exp(�↵tyiht(xi))

Zt

where Zt is normalisation factor

Output the final classifier:

H(x) = sign

TX

t=1

↵tht(x)

!

step

tr
ai

ni
ng

er
ro

r

t = 40

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

slide by Jiri M
atas and Jan Šochm

an

Reweighting

52

slide by Jiri M
atas and Jan Šochm

an

53

Reweighting

slide by Jiri M
atas and Jan Šochm

an

54

Reweighting

slide by Jiri M
atas and Jan Šochm

an

Boosting results – Digit recognition

• Boosting often (but not always)

- Robust to overfitting

- Test set error decreases even after training error is zero

55[Schapire, 1989]

pageMehryar Mohri - Foundations of Machine Learning 20

Several empirical observations (not all): AdaBoost
does not seem to overfit, furthermore:

Empirical Observations

10 100 1000
0

5

10

15

20

er
ro

r

rounds
-1 -0.5 0.5 1

0.5

1.0

cu
m

u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on

the letter dataset as reported by Schapire et al. [69]. Left: the training and test

error curves (lower and upper curves, respectively) of the combined classifier as

a function of the number of rounds of boosting. The horizontal lines indicate the

test error rate of the base classifier as well as the test error of the final combined

classifier. Right: The cumulative distribution of margins of the training examples

after 5, 100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly

hidden) and solid curves, respectively.

It is a number in and is positive if and only if correctly classifies the

example. Moreover, as before, the magnitude of the margin can be interpreted as a

measure of confidence in the prediction. Schapire et al. proved that larger margins

on the training set translate into a superior upper bound on the generalization error.

Specifically, the generalization error is at most

for any with high probability. Note that this bound is entirely independent

of , the number of rounds of boosting. In addition, Schapire et al. proved that

boosting is particularly aggressive at reducing the margin (in a quantifiable sense)

since it concentrates on the examples with the smallest margins (whether positive

or negative). Boosting’s effect on the margins can be seen empirically, for instance,

on the right side of Fig. 2 which shows the cumulative distribution of margins of the

training examples on the “letter” dataset. In this case, even after the training error

reaches zero, boosting continues to increase the margins of the training examples

effecting a corresponding drop in the test error.

Although the margins theory gives a qualitative explanation of the effectiveness

of boosting, quantitatively, the bounds are rather weak. Breiman [9], for instance,

7

training error

test error

C4.5 decision trees (Schapire et al., 1998).

slide by C
arlos G

uestrin

Application: Detecting Faces
• Training Data

- 5000 faces

• All frontal

- 300 million non-faces

• 9500 non-face images

56

Application to face detection

[Viola and Jones, 2001]

[Viola & Jones]

slide by Rob Schapire

Application: Detecting Faces
• Problem: find faces in photograph or movie

• Weak classifiers: detect light/dark rectangle in image 
 

• Many clever tricks to make extremely fast and accurate
57

[Viola & Jones]

slide by Rob Schapire

Boosting vs. Logistic Regression

58

Boos+ng$vs.$Logis+c$Regression$
Logis+c$regression:$
•  Minimizelogloss$

•  Define$$
$
$
wherexjpredefined$
features$(linear$classifier)$

•  Jointly$op+mize$overall
weights$w0,w1,w2,… $
$

Boos+ng:$
•  Minimizeexploss$

•  Define$
$
$
where$ht(x)$defined$
dynamicallytofit$data$$
(not$a$$linear$classifier)$

•  Weights$αt$learnedper
itera+ontincrementally$

$
61$

Logis'c+regression:+
•  Minimize+log+loss+

•  Define++

++++
+where+xj+predefined+
features+

+++++(linear+classifier)+
+

•  Jointly+op'mize+over+all+
weights+w0,#w1,#w2…#

Boos'ng:+
•  Minimize+exp+loss+

•  Define++

++++++
where+ht(x)+defined+dynamically++
to+fit+data+
(not+a+linear+classifier)+
+

•  Weights+αt+learned+per+
itera'on+t+incrementally+

30

Boos$ng'and'Logis$c'Regression'
Logis'c+regression:+
•  Minimize+log+loss+

•  Define++

++++
+where+xj+predefined+
features+

+++++(linear+classifier)+
+

•  Jointly+op'mize+over+all+
weights+w0,#w1,#w2…#

Boos'ng:+
•  Minimize+exp+loss+

•  Define++

++++++
where+ht(x)+defined+dynamically++
to+fit+data+
(not+a+linear+classifier)+
+

•  Weights+αt+learned+per+
itera'on+t+incrementally+

30

Boos$ng'and'Logis$c'Regression'
Logis'c+regression:+
•  Minimize+log+loss+

•  Define++

++++
+where+xj+predefined+
features+

+++++(linear+classifier)+
+

•  Jointly+op'mize+over+all+
weights+w0,#w1,#w2…#

Boos'ng:+
•  Minimize+exp+loss+

•  Define++

++++++
where+ht(x)+defined+dynamically++
to+fit+data+
(not+a+linear+classifier)+
+

•  Weights+αt+learned+per+
itera'on+t+incrementally+

30

Boos$ng'and'Logis$c'Regression'

Logis'c+regression:+
•  Minimize+log+loss+

•  Define++

++++
+where+xj+predefined+
features+

+++++(linear+classifier)+
+

•  Jointly+op'mize+over+all+
weights+w0,#w1,#w2…#

Boos'ng:+
•  Minimize+exp+loss+

•  Define++

++++++
where+ht(x)+defined+dynamically++
to+fit+data+
(not+a+linear+classifier)+
+

•  Weights+αt+learned+per+
itera'on+t+incrementally+

30

Boos$ng'and'Logis$c'Regression'

slide by Aarti Singh

Boosting vs. Bagging
Bagging:

• Resample data points

• Weight of each classifier

is the same

• Only variance reduction

59

Boosting:

• Reweights data points

(modifies their distribution)

• Weight is dependent on

classifier’s accuracy

• Both bias and variance

reduced – learning rule
becomes more complex
with iterations

slide by Aarti Singh

Next Lecture:
K-Means Clustering

60

