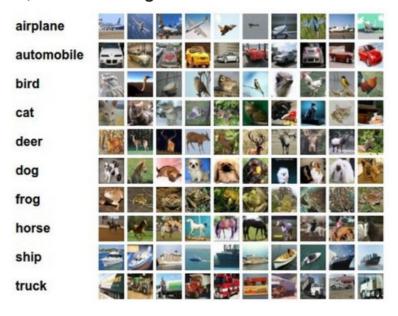


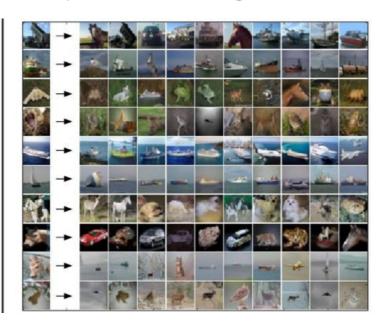
adopted from Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recall from last time... Nearest Neighbors

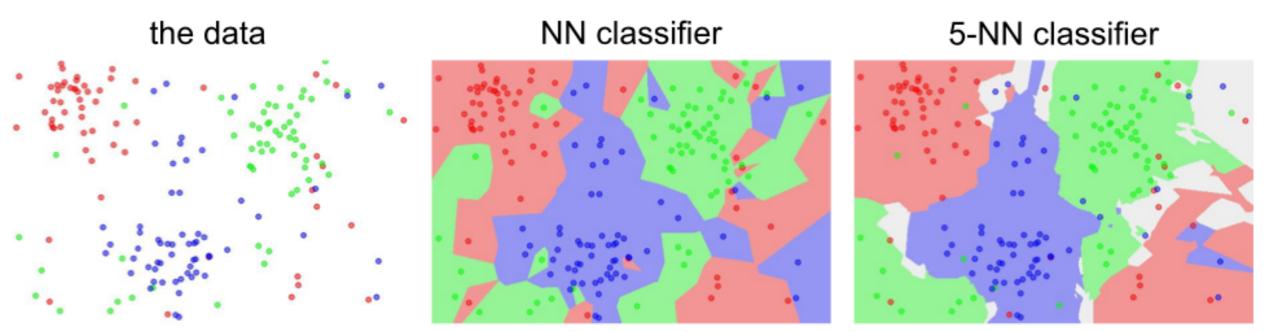
Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.



For every test image (first column), examples of nearest neighbors in rows



- Very simple method
- Retain all training data
 - It can be slow in testing
 - Finding NN in high dimensions is slow
- Metrics are very important
- Good baseline



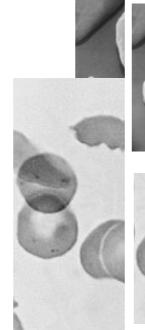
Classification

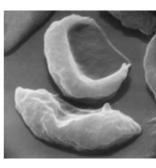
- Input: X
 - Real valued, vectors over real.
 - Discrete values (0,1,2,...)
 - Other structures (e.g., strings, graphs, etc.)
- Output: Y

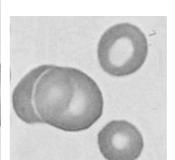
slide by Aarti Singh and Barnabas Poczos

- Discrete (0,1,2,...)

Sports Science **News**







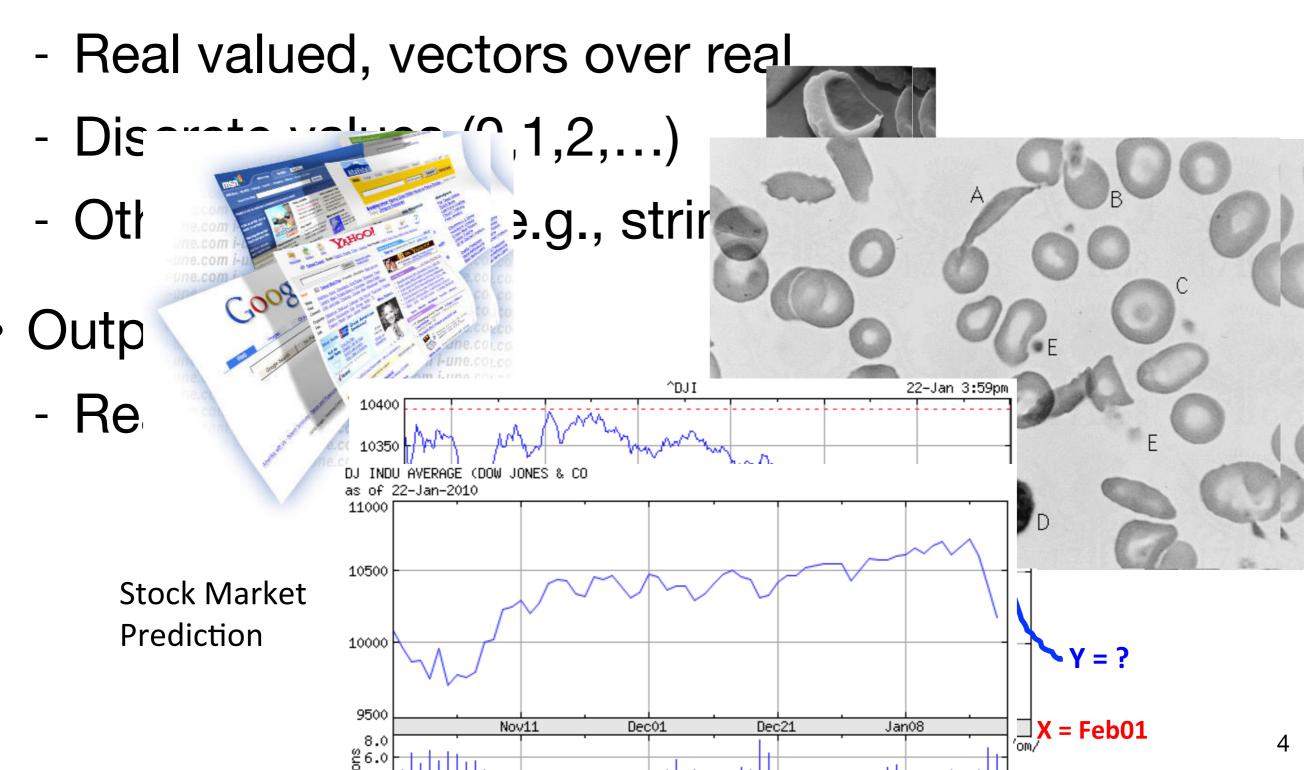
Anemic cell Healthy cell

X = Cell Image Jan 3:59pm Y = Diagnosis

Regression

• Input: X

slide by Aarti Singh and Barnabas Poczos



slide by Sanja Fidler

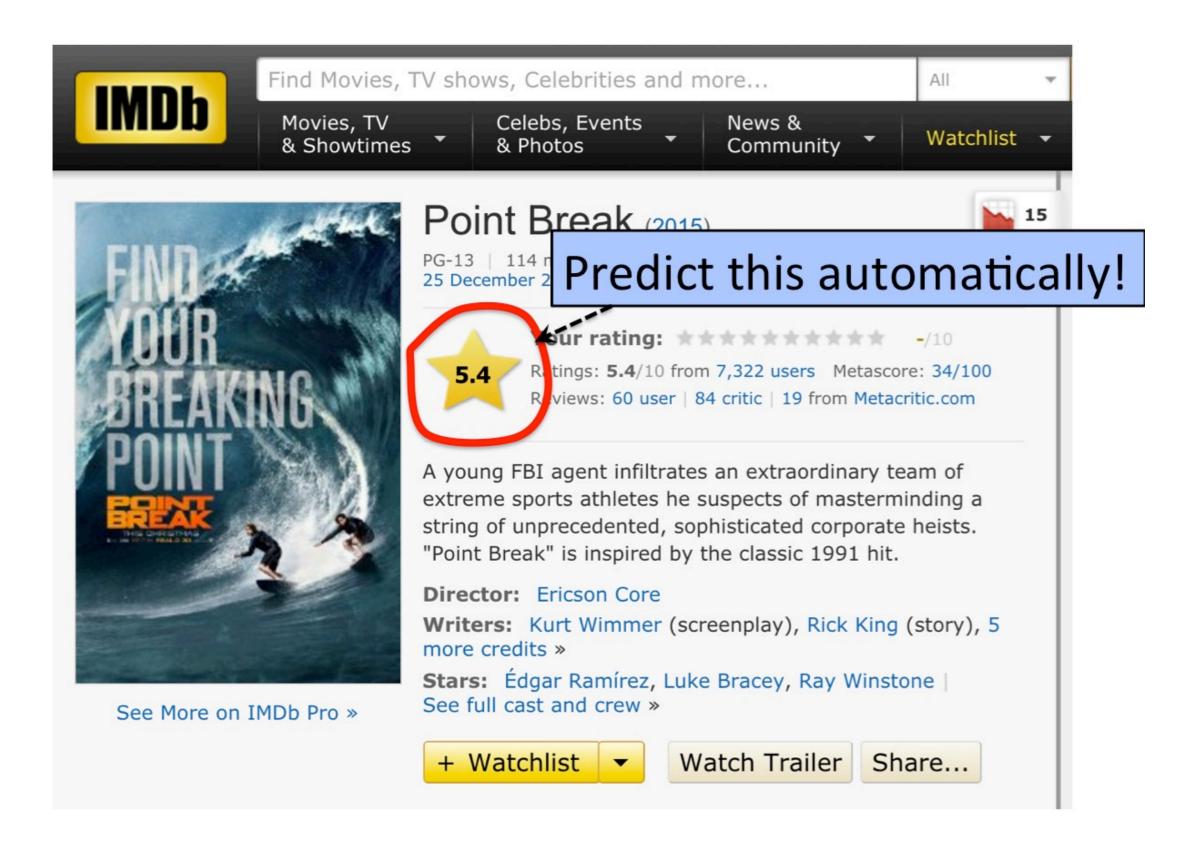
What should I watch tonight?

slide by Sanja Fidler

What should I watch tonight?

slide by Sanja Fidler

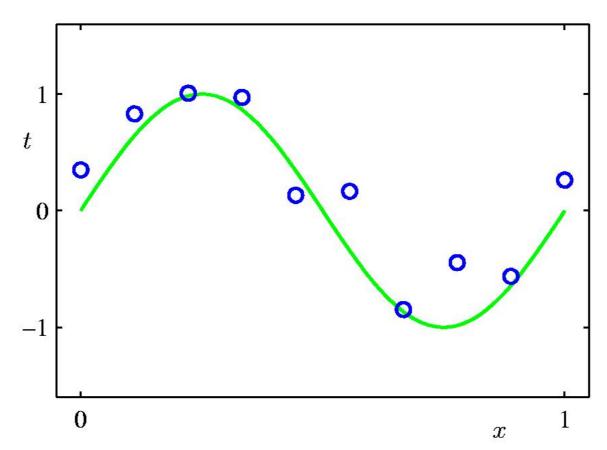
What should I watch tonight?



Today

- Kernel regression
 - nonparametric
- Distance metrics
- Linear regression (more on our next lecture)
 - parametric
 - simple model

Simple 1-D Regression



- Circles are data points (i.e., training examples) that are given to us
- The data points are uniform in x, but may be displaced in y

$$t(x) = f(x) + \varepsilon$$

with ε some noise

In green is the "true" curve that we don't know

Kernel Regression

slide by Thorsten Joachims

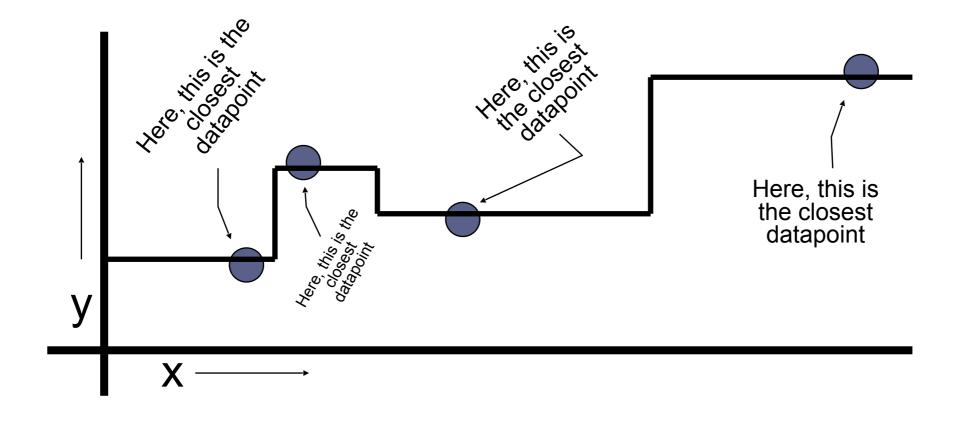
K-NN for Regression

- Given: Training data $\{(x_1,y_1),...,(x_n,y_n)\}$
 - Attribute vectors: $x_i \in X$
 - Target attribute $y_i \in \mathcal{R}$
- Parameter:
 - Similarity function: $K: X \times X \rightarrow \mathcal{R}$
 - Number of nearest neighbors to consider: k
- Prediction rule
 - New example x'
 - K-nearest neighbors: k train examples with largest $K(x_i,x')$

$$h(\vec{x}') = \frac{1}{k} \sum_{i \in knn(\vec{x}')} y_i$$

slide by Dhruv Batra

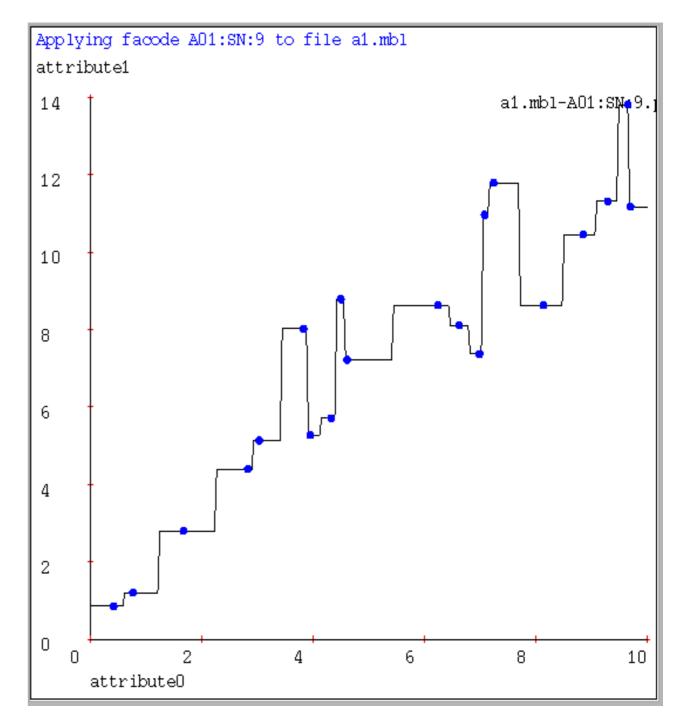
1-NN for Regression



1-NN for Regression

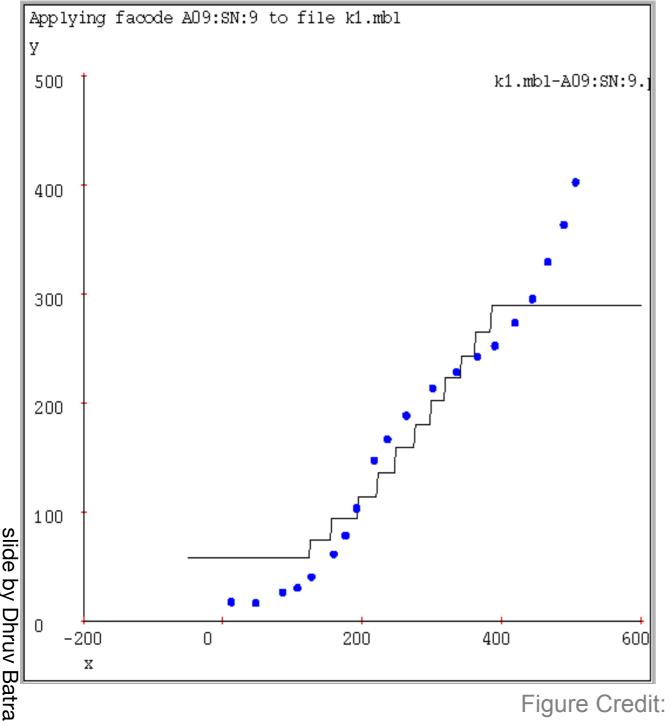
Often bumpy (overfits)





9-NN for Regression

Often bumpy (overfits)



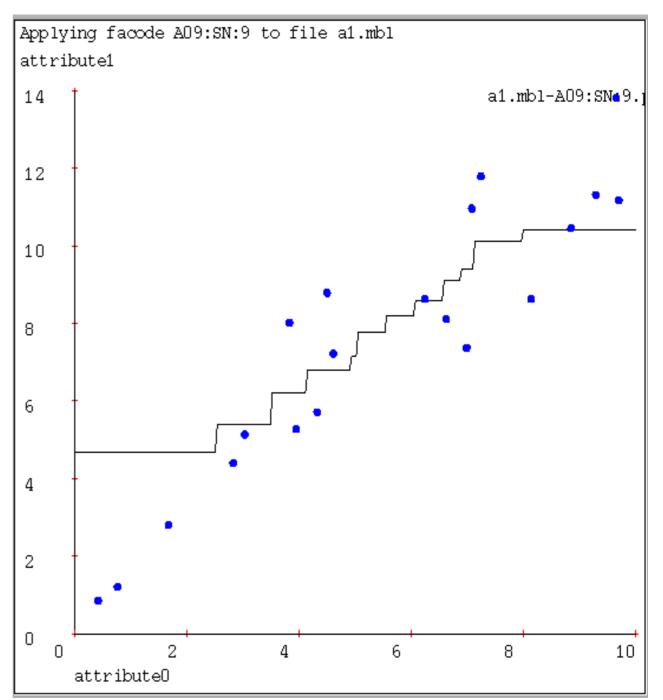


Figure Credit: Andrew Moore

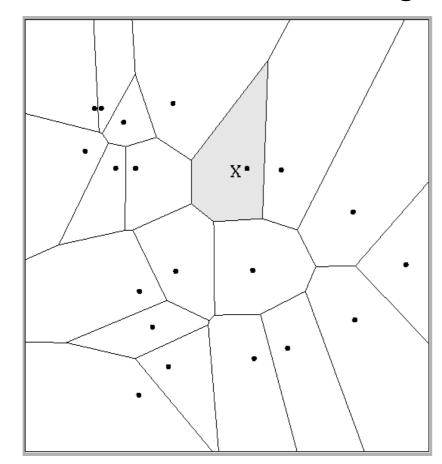
slide by Dhruv Batra

Multivariate distance metrics

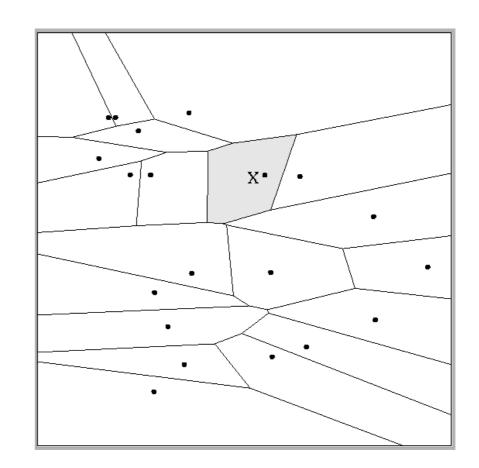
• Suppose the input vectors $\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_N$ are two dimensional:

$$\mathbf{x}_1 = (x_{11}, x_{12}), \mathbf{x}_2 = (x_{21}, x_{22}), \dots \mathbf{x}_N = (x_{N1}, x_{N2}).$$

One can draw the nearest-neighbor regions in input space.



Dist(
$$\mathbf{x}_i, \mathbf{x}_i$$
) = $(x_{i1} - x_{i1})^2 + (x_{i2} - x_{i2})^2$



Dist(
$$\mathbf{x}_i, \mathbf{x}_j$$
) = $(x_{i1} - x_{j1})^2 + (3x_{i2} - 3x_{j2})^2$

The relative scalings in the distance metric affect region shapes

Example: Choosing a restaurant

- In everyday life we need to make decisions by taking into account lots of factors
- The question is what weight we put on each of these factors (how important are they with respect to the others).

Reviews (out of 5 stars)	\$	Distance	Cuisine (out of 10)
4	30	21	7
2	15	12	8
5	27	53	9
3	20	5	6

Euclidean distance metric

$$D(x, x') = \sqrt{\sum_{i} \sigma_i^2 (x_i - x_i')^2}$$

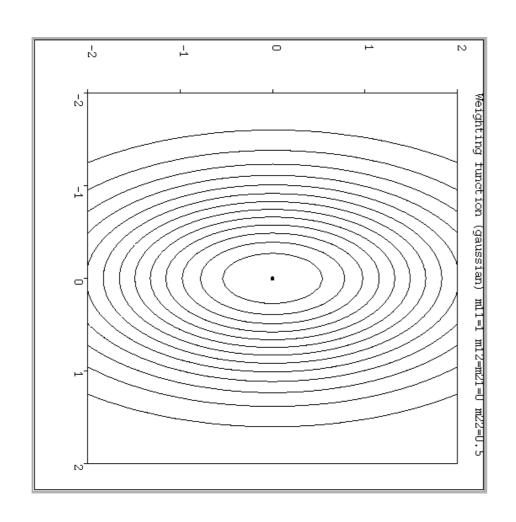
Or equivalently,

$$D(x, x') = \sqrt{(x_i - x_i')^T A(x_i - x_i')}$$

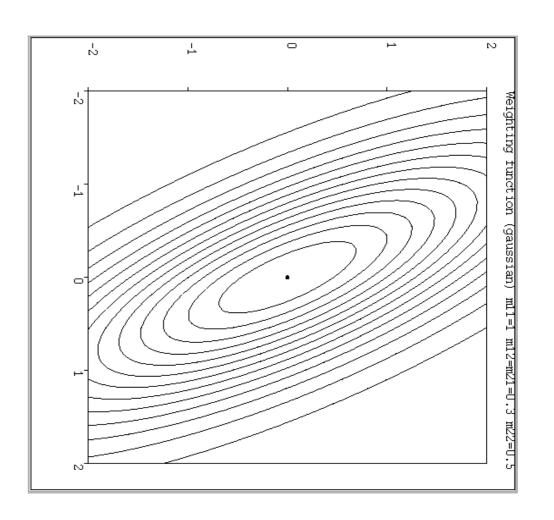
where
$$A=\begin{bmatrix}\sigma_1^2&0&\cdots&0\\0&\sigma_2^2&\cdots&0\\ \vdots&\vdots&\cdots&\vdots\\0&0&\cdots&\sigma_N^2\end{bmatrix}$$

slide by Dhruv Batra

Notable distance metrics (and their level sets)



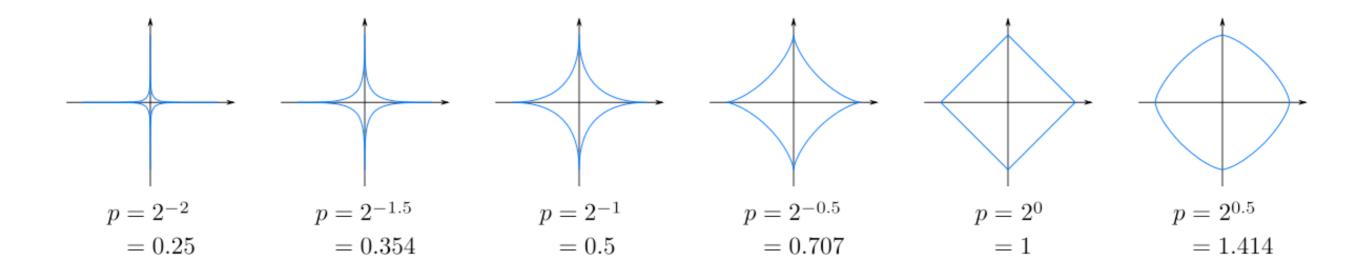
Scaled Euclidian (L₂)

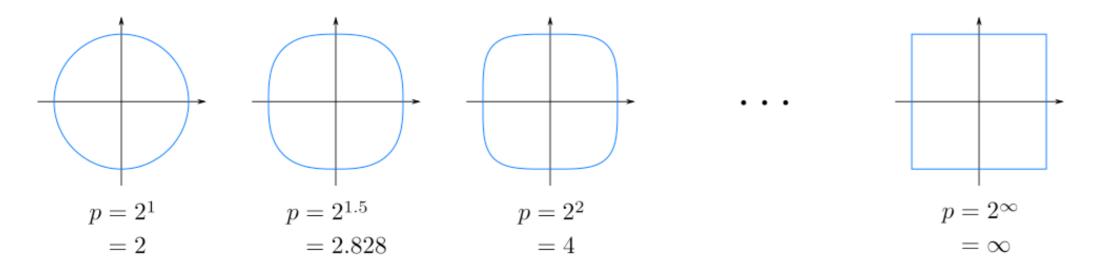


Mahalanobis (non-diagonal A)

slide by Dhruv Batra

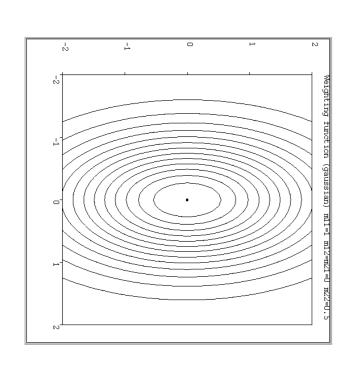
Minkowski distance

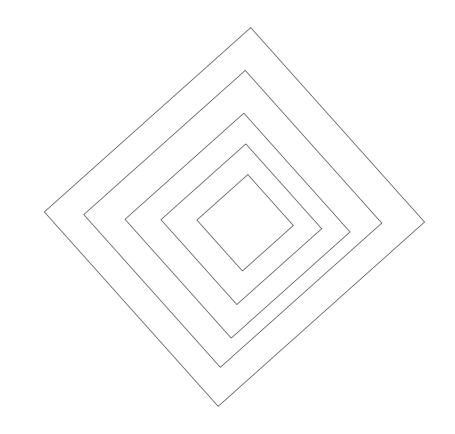


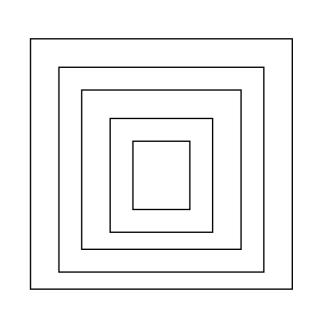


$$D = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{1/p}$$

Notable distance metrics (and their level sets)







Scaled Euclidian (L₂)

L₁ norm (absolute)

L_{inf} (max) norm

slide by Thorsten Joachims

Weighted K-NN for Regression

- Given: Training data $\{(x_1,y_1),...,(x_n,y_n)\}$
 - Attribute vectors: $x_i \in X$
 - Target attribute $y_i \in \mathcal{R}$
- Parameter:
 - Similarity function: $K: X \times X \rightarrow \mathcal{R}$
 - Number of nearest neighbors to consider: k
- Prediction rule
 - New example x'
 - K-nearest neighbors: k train examples with largest $K(x_i,x')$

$$h(\vec{x}') = \frac{\sum_{i \in knn(\vec{x}')} y_i K(\vec{x}_i, \vec{x}')}{\sum_{i \in knn(\vec{x}')} K(\vec{x}_i, \vec{x}')}$$

Kernel Regression/Classification

Four things make a memory based learner:

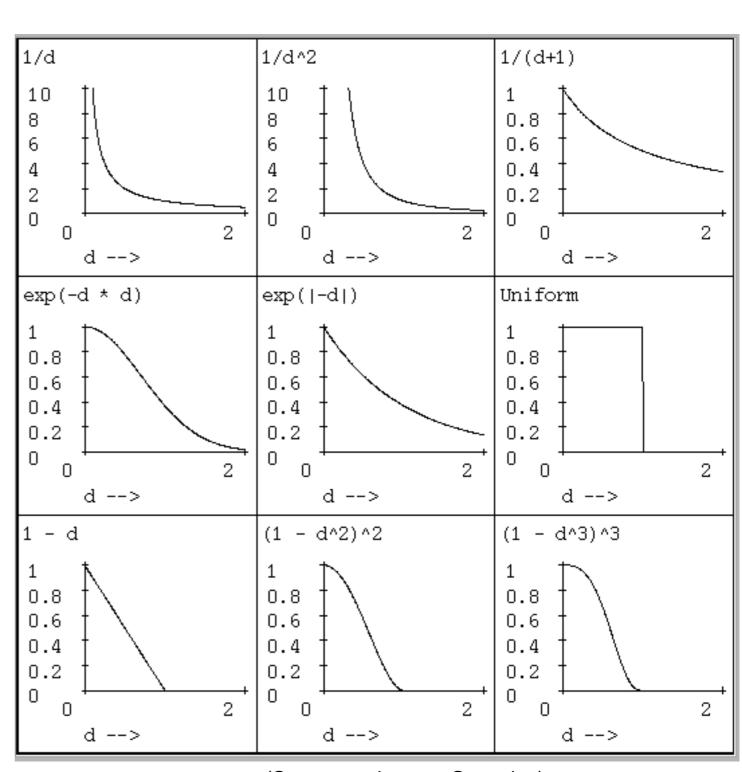
- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 - All of them
- A weighting function (optional)
 - $w_i = \exp(-d(x_i, query)^2 / \sigma^2)$
 - Nearby points to the query are weighted strongly, far points weakly. The σ parameter is the Kernel Width. Very important.
- How to fit with the local points?
 - Predict the weighted average of the outputs predict = $\sum w_i y_i / \sum w_i$

slide by Dhruv Batra

slide by Dhruv Batra

Weighting/Kernel functions

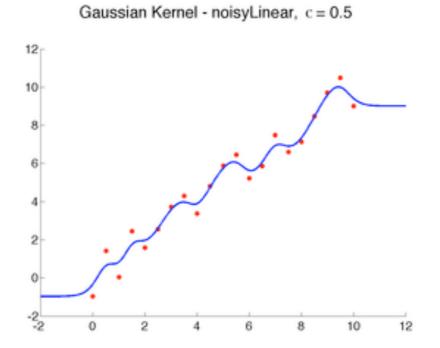
 $w_i = exp(-d(x_i, query)^2 / \sigma^2)$

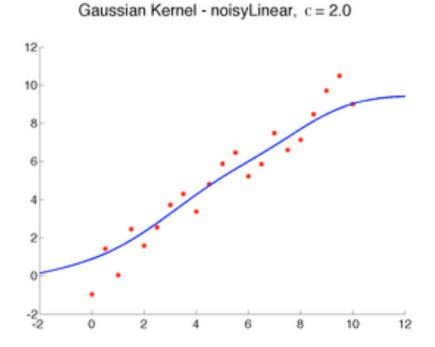


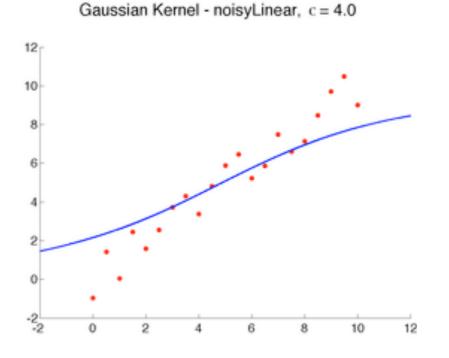
(Our examples use Gaussian)

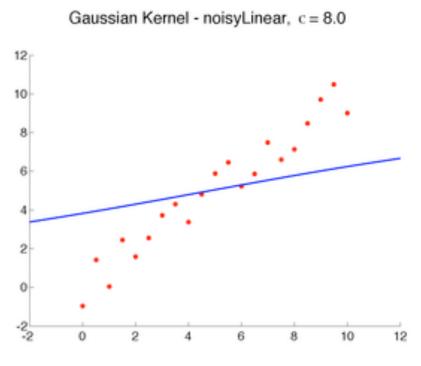
Effect of Kernel Width

- What happens as $\sigma \rightarrow inf$?
- What happens as $\sigma \rightarrow 0$?









Problems with Instance-Based Learning

- Expensive
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset
 very slow!
 - Must use tricks like approximate nearest neighbour search

Problems with Instance-Based Learning

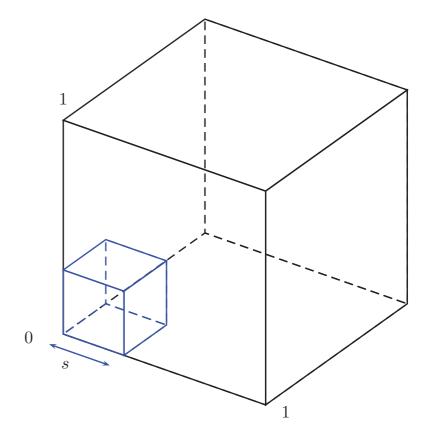
- Expensive
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset
 very slow!
 - Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant features
 - Distances overwhelmed by noisy features

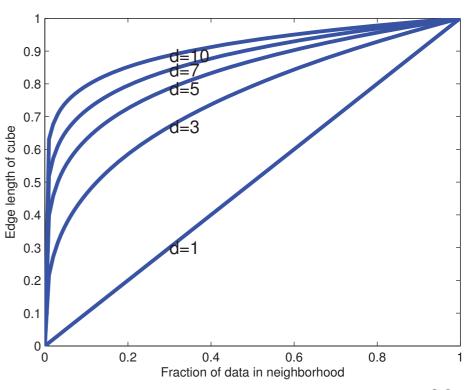
Problems with Instance-Based Learning

- Expensive
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset
 very slow!
 - Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant features
 - Distances overwhelmed by noisy features
- Curse of Dimensionality
 - · Distances become meaningless in high dimensions

Curse of Dimensionality

- Consider applying a KNN classifier/regressor to data where the inputs are uniformly distributed in the *D*-dimensional unit cube.
- Suppose we estimate the density of class labels around a test point x by "growing" a hyper-cube around x until it contains a desired fraction f of the data points.
- The expected edge length of this cube will be $e_D(f) = f^{1/D}$.
- If D = 10, and we want to base our estimate on 10% of the data, we have $e_{10}(0.1) = 0.8$, so we need to extend the cube 80% along each dimension around x.
- Even if we only use 1% of the data, we find $e_{10}(0.01) = 0.63$. no longer very local



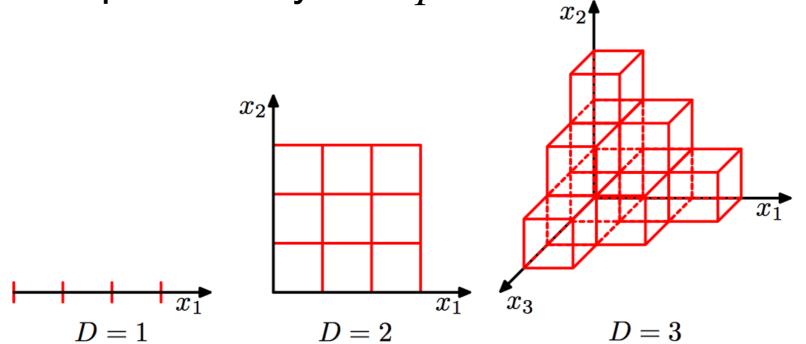


High dimensional spaces are empty

- Assume your data lives in $[0, 1]^p$. The volume of an hypercube with an edge length of r = 0.1 is 0.1^p
 - \rightarrow when p grows, it quickly becomes so small that the probability to capture points from your database becomes very very small...

Points in high dimensional spaces are isolated

• To overcome this limitation, you need a number of sample which grows exponentially with p...



High dimensional spaces are empty

• X, Y two independent variables, with uniform distribution on $[0, 1]^p$. The mean square distance $||X - Y||^2$ satisfies

$$\mathbb{E}[\|X - Y\|^2] = p/6$$
 and $Std[\|X - Y\|^2] \simeq 0.2\sqrt{p}$

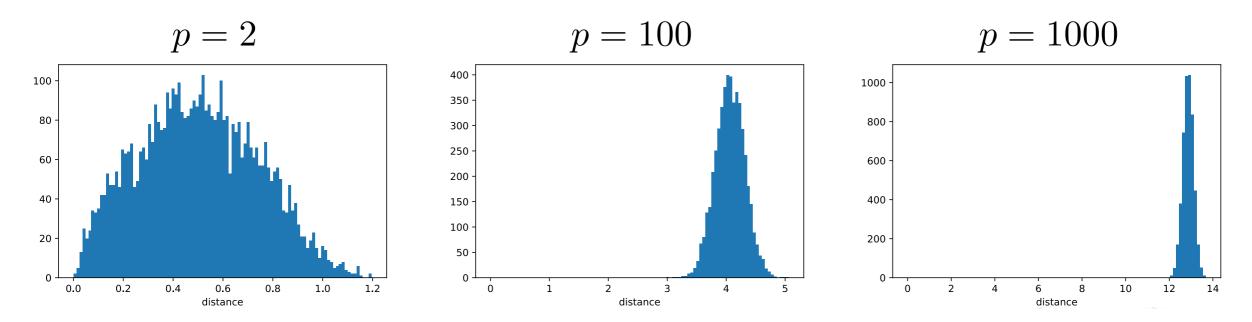


Figure: Histograms of pairwise-distances between n=100 points sampled uniformly in the hypercube $[0,1]^p$

The notion of nearest neighbors vanishes.

Parametric vs Non-parametric Models

- Does the capacity (size of hypothesis class) grow with size of training data?
 - -Yes = Non-parametric Models
 - -No = Parametric Models

Poll Time!

 In k-NN, the curse of dimensionality will likely result in the overfitting problem.

Which of the following option(s) would you consider to handle this problem?

- (a) Dimensionality reduction
- (b) Feature selection
- a
- b
- a and b
- None of these

Ways to avoid the curse of dimensionality

Dimension reduction:

- the problem comes from that p is too large,
- therefore, reduce the data dimension to $d \ll p$,
- such that the curse of dimensionality vanishes!

Regularization:

- The problem comes from that parameter estimates are unstable,
- therefore, regularize these estimates,
- such that the parameter are correctly estimated!

Parsimonious models:

- the problem comes from that the number of parameters to estimate is too large,
- therefore, make restrictive assumptions on the model,
- such that the number of parameters to estimate becomes more "decent"!

Next Lecture:

Linear Regression, Least Squares Optimization, Model complexity, Regularization