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Lecture 3:

Kernel Regression,


Distance Metrics,

Curse of Dimensionality

AIN311

Fundamentals of   
Machine Learning



Recall from last time… Nearest Neighbors
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• Very simple method 


• Retain all training data 

− It can be slow in testing 

− Finding NN in high 

dimensions is slow 


• Metrics are very important 


• Good baseline

adopted from
 Fei-Fei Li & Andrej Karpathy & Justin Johnson 



Classification
• Input: X


- Real valued, vectors over real.

- Discrete values (0,1,2,…)

- Other structures (e.g., strings, graphs, etc.) 

• Output: Y

- Discrete (0,1,2,...)
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What should I watch tonight?
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Problems for Today

What should I watch this Friday?

Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 2 / 22
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What should I watch tonight?
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Problems for Today

Goal: Predict movie rating automatically!

Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 2 / 22



Today
• Kernel regression

− nonparametric 

• Distance metrics


• Linear regression (more on our next lecture) 

− parametric

− simple model
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Simple 1-D regression

Circles are data points (i.e., training examples) that are given to us

The data points are uniform in x , but may be displaced in y

t(x) = f (x) + ✏

with ✏ some noise

In green is the ”true” curve that we don’t know

Goal: We want to fit a curve to these points

Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 5 / 22

Simple 1-D Regression

• Circles are data points (i.e., training examples) that are 
given to us 


• The data points are uniform in x, but may be displaced in y  
 

                                          t(x) = f(x) + ε  
 

with ε some noise

• In green is the “true” curve that we don’t know 9
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Kernel Regression
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K-NN for Regression
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• Given: Training data {(𝑥1,𝑦1),…, (𝑥n,𝑦n )}  
– Attribute vectors: 𝑥𝑖 ∈ 𝑋 
– Target attribute     𝑦𝑖 ∈


• Parameter: 
– Similarity function: 𝐾 ∶ 𝑋 × 𝑋 → 
– Number of nearest neighbors to consider: k


• Prediction rule 
– New example 𝑥′  
– K-nearest neighbors: k train examples with largest 𝐾(𝑥𝑖,𝑥′)

R

R

h(~x0) = 1
k

P
i2knn(~x0) yi



1-NN for Regression

12

x
y

Her
e, 

thi
s i

s t
he

 

clo
se

st 
da

tap
oin

t

Here, this is 
the closest 
datapoint

He
re

, t
hi

s 
is 

th
e 

clo
se

st
 

da
ta

po
in

t

Here
, th

is 
is 

the
 cl

os
es

t 

da
tap

oin
t

Figure Credit: Carlos Guestrin
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1-NN for Regression

13Figure Credit: Andrew Moore
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• Often bumpy (overfits)



9-NN for Regression
• Often bumpy (overfits)

14Figure Credit: Andrew Moore
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Multivariate distance metrics
• Suppose the input vectors x1, x2, …xN are two dimensional:

x1 = ( x11 , x12 ) , x2 = ( x21 , x22 ) , …xN = ( xN1 , xN2 ). 

• One can draw the nearest-neighbor regions in input space.
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The relative scalings in the distance metric affect region shapes

Slide Credit: Carlos Guestrin
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Dist(xi, xj) = (xi1 – xj1)2 + (xi2 – xj2)2 Dist(xi, xj) = (xi1 – xj1)2 + (3xi2 – 3xj2)2



Example: Choosing a restaurant
• In everyday life we need to make 

decisions by taking into account 
lots of factors


• The question is what weight we  
put on each of these factors  
(how important are they with 
respect to the others).

16

Choosing a restaurant 
Reviews 
(out of 5 
stars) 

$ Distance Cuisine 
(out of 10) 

 4 30 21 7 

2 15 12 8 

5 27 53 9 

3 20 5 6 

• In everyday life we need to make decisions 
by taking into account lots of factors 

• The question is what weight we put on each 
of these factors (how important are they with 
respect to the others). 

• Assume we would like to build a 
recommender system based on an 
individuals’  preferences 

• If we have many observations we may be 
able to recover the weights 

? 
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• In everyday life we need to make decisions 
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• The question is what weight we put on each 
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respect to the others). 

• Assume we would like to build a 
recommender system based on an 
individuals’  preferences 

• If we have many observations we may be 
able to recover the weights 
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Euclidean distance metric

17

where

Or equivalently,

A

Slide Credit: Carlos Guestrin
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Scaled Euclidian (L2)
Mahalanobis 

(non-diagonal A)

Notable distance metrics  
(and their level sets)

18Slide Credit: Carlos Guestrin
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Minkowski distance

19
Image Credit: By Waldir (Based on File:MinkowskiCircles.svg)  

[CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
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D =

 
nX

i=1

|xi � yi|p
!1/p



L1 norm (absolute) Linf (max) norm

20Slide Credit: Carlos Guestrin
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Scaled Euclidian (L2)

Notable distance metrics  
(and their level sets)



Weighted K-NN for Regression

21
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Weighted K-NN for Regression 
• Given: Training datadata 𝑥 1, 𝑦1 , … , 𝑥 𝑛, 𝑦𝑛   

– Attribute vectors:  𝑥 𝑖 ∈ 𝑋                      
– Target attribute:  𝑦𝑖 ∈ ℜ 

• Parameter: 
– Similarity function: 𝐾 ∶ 𝑋 × 𝑋 →  ℜ 
– Number of nearest neighbors to consider: k 

• Prediction rule 
– New example x’ 
– K-nearest neighbors: k train examples with largest 𝐾 𝑥 𝑖, 𝑥 ′  

 
 

• Given: Training data {(𝑥1,𝑦1),…, (𝑥n,𝑦n )}  
– Attribute vectors: 𝑥𝑖 ∈ 𝑋 
– Target attribute     𝑦𝑖 ∈


• Parameter: 
– Similarity function: 𝐾 ∶ 𝑋 × 𝑋 → 
– Number of nearest neighbors to consider: k


• Prediction rule 
– New example 𝑥′  
– K-nearest neighbors: k train examples with largest 𝐾(𝑥𝑖,𝑥′)

R

R



Kernel Regression/Classification
Four things make a memory based learner:

• A distance metric 

− Euclidean (and others)


• How many nearby neighbors to look at? 
− All of them


• A weighting function (optional) 
− wi = exp(-d(xi, query)2 / σ2)
− Nearby points to the query are weighted strongly, far points weakly.  

The σ parameter is the Kernel Width. Very important. 

• How to fit with the local points? 
− Predict the weighted average of the outputs

    predict = Σwiyi / Σwi

22Slide Credit: Carlos Guestrin
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Weighting/Kernel functions
wi = exp(-d(xi, query)2 / σ2)

(Our examples use Gaussian)
23Slide Credit: Carlos Guestrin
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Effect of Kernel Width
• What happens 

as σ → inf ?


• What happens 
as σ → 0?

24Image Credit: Ben Taskar
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Problems with Instance-
Based Learning 

• Expensive 

− No Learning: most real work done during testing 

− For every test sample, must search through all dataset 

– very slow! 

− Must use tricks like approximate nearest neighbour 

search

• Doesn’t work well when large number of irrelevant 

features

• Distances overwhelmed by noisy features


• Curse of Dimensionality

• Distances become meaningless in high dimensions 25
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Curse of Dimensionality
• Consider applying a KNN classifier/regressor to 

data where the inputs are uniformly distributed 
in the D-dimensional unit cube. 


• Suppose we estimate the density of class labels 
around a test point x by “growing” a hyper-cube 
around x until it contains a desired fraction f of 
the data points. 


• The expected edge length of this cube will be 
eD( f ) = f       .


• If D = 10, and we want to base our estimate on 
10%  of the data, we have e10(0.1) = 0.8, so we 
need to extend the cube 80% along each 
dimension around x. 


• Even if we only use 1% of the data, we find 
e10(0.01) = 0.63.

28
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Figure 1.16 Illustration of the curse of dimensionality. (a) We embed a small cube of side s inside a larger
unit cube. (b) We plot the edge length of a cube needed to cover a given volume of the unit cube as a
function of the number of dimensions. Based on Figure 2.6 from (Hastie et al. 2009). Figure generated by
curseDimensionality.

distance metric to use is Euclidean distance (which limits the applicability of the technique to
data which is real-valued), although other metrics can be used.
Figure 1.15 gives an example of the method in action, where the input is two dimensional, we

have three classes, and K = 10. (We discuss the effect of K below.) Panel (a) plots the training
data. Panel (b) plots p(y = 1|x,D) where x is evaluated on a grid of points. Panel (c) plots
p(y = 2|x,D). We do not need to plot p(y = 3|x,D), since probabilities sum to one. Panel (d)
plots the MAP estimate ŷ(x) = argmaxc(y = c|x,D).
A KNN classifier with K = 1 induces a Voronoi tessellation of the points (see Figure 1.14(b)).

This is a partition of space which associates a region V (xi) with each point xi in such a way
that all points in V (xi) are closer to xi than to any other point. Within each cell, the predicted
label is the label of the corresponding training point.

1.4.3 The curse of dimensionality

The KNN classifier is simple and can work quite well, provided it is given a good distance metric
and has enough labeled training data. In fact, it can be shown that the KNN classifier can come
within a factor of 2 of the best possible performance if N → ∞ (Cover and Hart 1967).
However, the main problem with KNN classifiers is that they do not work well with high

dimensional inputs. The poor performance in high dimensional settings is due to the curse of
dimensionality.
To explain the curse, we give some examples from (Hastie et al. 2009, p22). Consider applying

a KNN classifier to data where the inputs are uniformly distributed in the D-dimensional unit
cube. Suppose we estimate the density of class labels around a test point x by “growing” a
hyper-cube around x until it contains a desired fraction f of the data points. The expected edge
length of this cube will be eD(f) = f1/D . If D = 10, and we want to base our estimate on 10%
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distance metric to use is Euclidean distance (which limits the applicability of the technique to
data which is real-valued), although other metrics can be used.
Figure 1.15 gives an example of the method in action, where the input is two dimensional, we

have three classes, and K = 10. (We discuss the effect of K below.) Panel (a) plots the training
data. Panel (b) plots p(y = 1|x,D) where x is evaluated on a grid of points. Panel (c) plots
p(y = 2|x,D). We do not need to plot p(y = 3|x,D), since probabilities sum to one. Panel (d)
plots the MAP estimate ŷ(x) = argmaxc(y = c|x,D).
A KNN classifier with K = 1 induces a Voronoi tessellation of the points (see Figure 1.14(b)).

This is a partition of space which associates a region V (xi) with each point xi in such a way
that all points in V (xi) are closer to xi than to any other point. Within each cell, the predicted
label is the label of the corresponding training point.

1.4.3 The curse of dimensionality

The KNN classifier is simple and can work quite well, provided it is given a good distance metric
and has enough labeled training data. In fact, it can be shown that the KNN classifier can come
within a factor of 2 of the best possible performance if N → ∞ (Cover and Hart 1967).
However, the main problem with KNN classifiers is that they do not work well with high

dimensional inputs. The poor performance in high dimensional settings is due to the curse of
dimensionality.
To explain the curse, we give some examples from (Hastie et al. 2009, p22). Consider applying

a KNN classifier to data where the inputs are uniformly distributed in the D-dimensional unit
cube. Suppose we estimate the density of class labels around a test point x by “growing” a
hyper-cube around x until it contains a desired fraction f of the data points. The expected edge
length of this cube will be eD(f) = f1/D . If D = 10, and we want to base our estimate on 10%
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— no longer very local

1/D



High dimensional spaces are empty
The volume of an hypercube with an edge length of r = 0.1 is 0.1p ! when

p grows, it quickly becomes so small that the probability to capture points

from your database becomes very very small...

Points in high dimensional spaces are isolated

To overcome this limitation, you need a number of sample which grows

exponentially with p...

10

High dimensional spaces are empty
• Assume your data lives in [0, 1]p. The volume of an hypercube 

with an edge length of r = 0.1 is 0.1p  
→ when p grows, it quickly becomes so small that the 
probability to capture points from your database becomes 
very very small… 

• To overcome this limitation, you need a number of sample 
which grows exponentially with p...

29
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Points in high dimensional spaces are isolated



High dimensional spaces are empty
• X, Y  two independent variables, with uniform distribution on  

[0, 1]p. The mean square distance ||X − Y||2 satisfies 
 
                                          and                                 .

30
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The notion of nearest neighbors vanishes.

Nearest neighbors
X,Y two independent variables, with uniform distribution on [0, 1]p. The

mean square distance kX � Y k2 satisfies

E[kX � Y k2] = p/6 and Std[kX � Y k2] ' 0.2
p
p.

p = 2 p = 100 p = 1000

Figure: Histograms of pairwise-distances between n = 100 points sampled

uniformly in the hypercube [0, 1]p

The notion of nearest neighbors vanishes.
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Figure: Histograms of pairwise-distances between n = 100 points 
sampled uniformly in the hypercube [0, 1]p



Parametric vs Non-parametric Models

• Does the capacity (size of hypothesis class) grow with 
size of training data?

–Yes = Non-parametric Models

–No = Parametric Models

31



Poll Time!
• In k-NN, the curse of dimensionality will likely result in 

the overfitting problem. 
 
Which of the following option(s) would you consider to 
handle this problem?  
(a) Dimensionality reduction  
(b) Feature selection


• a

• b

• a and b

• None of these

32



• Dimension reduction:

• the problem comes from that p is too large,

• therefore, reduce the data dimension to d ≪ p,

• such that the curse of dimensionality vanishes! 

• Regularization:

• The problem comes from that parameter estimates are unstable,

• therefore, regularize these estimates,

• such that the parameter are correctly estimated! 

• Parsimonious models:

• the problem comes from that the number of parameters to 

estimate is too large,

• therefore, make restrictive assumptions on the model,

• such that the number of parameters to estimate becomes more 

“decent”!

33

Ways to avoid the curse of dimensionality



Next Lecture: 
Linear Regression,  

Least Squares Optimization, 
Model complexity, Regularization
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