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Recall from last time... Kernel Regression

h(Z) =

Here, this is
the closest

ZiEknn(f’) K(f’lﬁ '/f,)

Weighted K-NN for Regression

1-NN for Regression

A A A A

I\ _
T T
Gaussian Kernel - noisyLinear, c¢=0.5 Gaussian Kemel - noisyLinear, c=2.0
p=2" p=2 p=271 p=2 p=2° p =209
=0.25 =0.354 =0.5 =0.707 =1 =1.414
S R e n
[ . ' |
| | T 177
. l/ \,;Jr,_/ | ]
p =21 p =215 p=2 p=2%
=2 = 2.828 =4 =0
n 1/p
D = (E :|~’Uz'yz'|p>
i=1 w; = exp(-d(x;, query)? / 02)

Distance metrics Kernel width



Linear Regression



Simple 1-D Regression

0 .
- Circles are data points (i.e., training examples) that are given to us
- The data points are uniform in x, but may be displaced in y

H(x)=fx) te
with € some noise
* |In IS the “true” curve that we don’t know

* Goal: We want to fit a curve to these points
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Simple 1-D Regression

- Key Questions:
- How do we parametrize the model (the curve)?
- What loss (objective) function should we use to judge fit?

- How do we optimize fit to unseen test data
(generalization)?
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Example: Boston House Prizes

« Estimate median house price in a neighborhood based on neighborhood
statistics

« Look at first (of 13) attributes: per capita crime rate

SOE0 DD
B

Median House Price ($1000)

| 1 | 1 J
0 10 20 30 40 a0 60 70 60 30
Per Capita Crime Rate

Use this to predict house prices in other neighborhoods

Is this a good input (attribute) to predict house prices?
https://archive.ics.uci.edu/ml/datasets/Housing 6



https://archive.ics.uci.edu/ml/datasets/Housing
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Represent the data

- Data described as pairs D= {(X(l),t(l)), (X(z),t(z)),..., (X(N),I(N))}
- x is the input feature (per capita crime rate)

- tis the target output (median house price)
- » Simply indicates the training examples (we have N in this case)

* Here t is continuous, so this is a regression problem

- Model outputs y, an estimate of ¢
y(x) =wo + wix

* What type of model did we choose?

» Divide the dataset into training and testing examples

- Use the training examples to construct hypothesis, or function
approximator, that maps x to predicted y

- Evaluate hypothesis on test set
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Noise

* A simple model typically does not exactly fit the data — lack of
fit can be considered noise

* Sources of noise:

- Imprecision in data attributes (input noise, e€.g. noise in per-capita
crime)

- Errors in data targets (mislabeling, e.g. noise in house prices)

- Additional attributes not taken into account by data attributes, affect
target values (latent variables). In the example, what else could affect
house prices?

- Model may be too simple to account for data targets



Least-Squares Regression

y(x) = function(x, w)



Least-Squares Regression

* Define a model
Linear: y(x) = function(x, w)

J8|pl4 elueg Aq epi|s
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Least-Squares Regression

Linear Regression
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* Define a model
Linear:  y(x) = wo + w1z

J8|pl4 elueg Aq epi|s
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Least-Squares Regression

* Define a model

Linear:  y(x) = wo + w1z

- Standard loss/cost/objective function measures the squared error

between y and the true value t

Z {tm) — y(z™) }

12
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Least-Squares Regression

* Define a model

Linear:  y(x) = wo + w1z

- Standard loss/cost/objective function measures the squared error

between y and the true value t

2
Linear model: Z [ () — (wy + wlx(”))}

13
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Least-Squares Regression

t

* Define a model

Linear:  y(x) = wo + w1z

&

i

- Standard loss/cost/objective function measures the squared error

between y and the true value t
N

2
Linear model: E(w) — Z [t(n) _ (wo i wlw(n))}

n=1

 For a particular hypothesis (y(x) defined by a choice of w, drawn
in red), what does the loss represent geometrically? 14
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Least-Squares Regression

/ oty

« Define a model

Linear:  y(x) = wg + wyx

- Standard loss/cost/objective function measures the squared error

between y and the true value t

2
Linear model: Z {t(”) wo + w133(n))}

* The loss for the red hypothesis is the sum of the squared vertical

errors (squared lengths of green vertical lines) 15



Least-Squares Regression

A
/ oty
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* Define a model
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Linear:  y(x) = wo + w1z

- Standard loss/cost/objective function measures the squared error
between y and the true value t

2
Linear model: Z {t(”) (wo + w1$(n))}

- How do we obtain weights w = (wq, w1 )?
16
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Least-Squares Regression

(7

* Define a model

4

~

-l

oln

o

/ Y(zn, W)

Linear:  y(x) = wo + w1z

between y and the true value t

Linear model:

loss /(w)

- Standard loss/cost/objective function measures the squared error

2
Z {t(”) (wo + wlx(”))}

- How do we obtain weights w = (wq, w1)? Find w that minimizes

17
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Optimizing the Objective

* One straightforward method: gradient descent

e ) )
- repeatedly update w based on the gradient =~ .
W4 W — \A\— 7

A is the learning rate
 For a single training case, this gives the LMS update rule:

W — W + 2 (t(”) — y(x("))) (™)
—

error

* Note: As error approaches zero, so does the update

(w stops changing) .
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Effect of learning rate A

t(w) t(w)

- Large A => Fast convergence but larger residual error
Also possible oscillations

- Small A => Slow convergence but small residual error

yueppns Y13 Aq aplis
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Optimizing Across Training Set

- Two ways to generalize this for all examples in training set:

1. Batch updates: sum or average updates across every example n,
then change the parameter values

W — W+ 2 (t(”) — y(x(”))) (™)

2. Stochastic/online updates: update the parameters for each
training case in turn, according to its own gradients

Algorithm 1 Stochastic gradient descent

1: Randomly shuffle examples in the training set
2: fori =1to N do
3: Update:

w — w + 22 () — y(x))x) (update for a linear model)

4: end for

J8|pl4 elueg Aq epi|s
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Optimizing Across Training Set

- Two ways to generalize this for all examples in training set:

1. Batch updates: sum or average updates across every example n,
then change the parameter values

W — W+ 2 (t(”) — y(x(”))) (™)

2. Stochastic/online updates: update the parameters for each
training case in turn, according to its own gradients

» Underlying assumption: sample is independent and identically
distributed (i.i.d.)

23
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Analytical Solution

» For some objectives we can also find the optimal solution
analytically

* This is the case for linear least-squares regression
* How?

24



Vectorization

« Consider our model:
y(x) = wo + wrx

> Let
W — Wo XT — [1 aj]
_wl_

« Can write the model in vectorized form as

y(x) =w'x

25
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« Consider our model with N instances:

* Then:

Vectorization

£ — [tu),t(?),...,t(N)}T/'

-1vx(1)_ N X2
| @ R
X = ’
1, z(V)
_ RQXl
Wo —
W —
_wl

RNXl

26



Analytical Solution

» Instead of using GD, solve for optimal w analytically

- Notice the solution is when 8%6( ) =0

* Derivation:

((w) = (Xw —t)! (Xw —
= wTXTXw — [ Xw wTXT} ¢7t

—wiXTXw—2w!iXTt +tlt

- Take derivative and set equal to 0, then solve for

0 if X' X is not invertible (i.e.,
- (WTXTXW —owl X't —|—%) =0 singular), may need to:
e Use pseudo-inverse instead of
(XTX) W — XTt — () the inverse
- In Python,
(XTX) W — XTt numpy.linalg.pinv (a)

 Remove redundant (not
linearly independent) features
* Remove extra features to

ensure that d £ N

Closed Form Solution: w = (XTX)_1 X1t

27
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Multi-dimensional Inputs

« One method of extending the model is to consider other input dimensions

y(X) — Wy + W1T1 + WaXo

* In the Boston housing example, we can look at the number of rooms

50 r O o O & O O @O W O
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Average Number of Rooms
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Linear Regression with
Multi-dimensional Inputs

* Imagine now we want to predict the median house price from
these multi-dimensional observations

- Each house is a data point n, with observations indexed by ;:
X — (2o, o)

* We can incorporate the bias wo into w, by using xo = 1, then

d
T
y(x) = wo + E WiT; =W X
=1
« We can then solve for w = (wo,w1,...,ws). HOw?

» We can use gradient descent to solve for each coefficient, or
compute w analytically (how does the solution change?)

recall: w = (XTX)_1 X't

29
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More Powerful Models?

- What if our linear model is not good? How can we create a more
complicated model?

30



Fitting a Polynomial

- What if our linear model is not good? How can we create a more
complicated model?

- We can create a more complicated model by defining input variables
that are combinations of components of x

- Example: an M-th order polynomial function of one dimensional
feature x:

M
y(x, W) = wy + ijxj
j=1

where x; is the j-th power of x

-+ We can use the same approach to optimize for the weights w

~» How do we do that?

19|p14 elueg Aq api|s
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Some types of basis functions in 1-D

f |
/
f
/
O 5 § ':‘;
7 ]
- |
f
J
!
{
{
y
g
[
0 5 ;
-

0.25¢

|
\
L]\
- '\
|
[
\
\

0.5 |

025} /\

Gaussians Polynomials

32



yueppns Y13 Aq aplis

Two types of linear model that are
equivalent with respect to learning

bias
! T
Y(X, W) =Wy + WX + WoXy +...=W X
T
Y(X,W) =Wy + W@ (X) + Wrh (X) +... =W D(X)

» The first model has the same number of adaptive coefficients as the
dimensionality of the data +1.

» The second model has the same number of adaptive coefficients as
the number of basis functions +1.

* Once we have replaced the data by the outputs of the basis
functions, fitting the second model is exactly the same problem as
fitting the first model (unless we use the kernel trick)



General linear regression problem

» Using our new notations for the basis function linear
regression can be written as

y=2.w,8,(x)
j=0
where ¢(x) can be either x; for multivariate regression
or one of the nonlinear basis we defined

» Once again we can use “least squares” to find the
optimal solution.

Burx d '3 Aq eplIs
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LMS for the general linear
regression problem ,

Our goal is to minimize the following Y= ij¢j (x)
loss function: j=0
JwW)=> "= w ¢ (x) tor of dimension k+1
= y D, w — vector of dimension
i j ¢(x') — vector of dimension k+1
y'— a scaler

Moving to vector notations we get:
] T I\ 2
JwW)=2 (v —w' p(x"))
We take the derivative w.r.t w

%Z(y" —wg(x))? =22 (0 =W BN

Equating to 0 we get 2Z(yi —w dxNH(x)' =0 =

2.V PN =W 2L p(x g’

Burx d '3 Aq eplIs
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LMS for the general linear
regression problem

Jw) =2, =W P(x"))’

We take the derivative w.r.t w
30 W) =20 - w D)

Equating to O we get 22()/" —wTd(xNP(xH)" =0 =

27PN =w| 2 pxHp(x)’

Define: ($y(x)  F(x) @ (x))
h(x) BT ()

\B(x")  (x") - B, (x"))

Then deriving w

we get: W = (CI)TCI))_lq)Ty

Burx d '3 Aq eplIs



LMS for the general linear
regression problem

Jw) =2, =W p(x"))’
Deriving w we get W = (CDTCD) CDT

n entrles vector
k+1 entrles vector

n by k+1 matrix

This solution Is
also known as
‘psuedo inverse’

Burx d '3 Aq eplIs
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Oth order polynomial

38



1st order polynomial

39



39 order polynomial

40
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9th order polynomial

41
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Which Fit

from Bishop

M =0

42
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Root Mean Square (RMS) Error

Z{y Ln, W _tn}

ERMS —— \/QE(W*)/N

The division by N allows us to
compare different sizes of data
sets on an equal footing, and
the square root ensures that
ERMS Is measured on the same
scale (and in the same units) as
the target variable t

M=3 1

O -

[

43
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Root Mean Square (RMS) Error

Training
Test

(ON O

O 1 N
0 3 M 6 9
Root-Mean-Square (RMS) Error: Erus = /2E(w*)/N
] — 1
E(w) = 5 Z(tn — ¢(xn) w)* = §Ht — Quw|?
n=1

44



(Generalization

- Generalization = model’s ability to predict the held out data
» What is happening?
« Our model with M = 9 overfits the data (it models also noise)

Training
Test

(ON O

J8|pl4 elueg Aq epi|s
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(Generalization

- Generalization = model’s ability to predict the held out data
» What is happening?

« Our model with M = 9 overfits the data (it models also noise)
* Not a problem if we have lots of training examples

46
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(Generalization

- Generalization = model’s ability to predict the held out data
» What is happening?
« Our model with M = 9 overfits the data (it models also noise)

 Let’s look at the estimated weights for various M in the case of
fewer examples

M=0 M=1 M=6 M =9
wi | 0.9 082 031 0.35
M 127 799 232.37
wi -25.43 -5321.83
wi 1737 4856831
wr -231639.30
wk 640042.26
wi -1061800.52
wX 1042400.18
wi -557682.99
we 125201.43
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1-D regression illustrates key concepts

- Data fits — is linear model best (model selection)? |

t

— Simplest models do not capture all the important |
variations (signal) in the data: underfit

—1F

— More complex model may overfit the training data
(fit not only the signal but also the noise in the data),
especially if not enough data to constrain model

* One method of assessing fit:

— test generalization = model’s ability to predict
the held out data

- Optimization is essential: stochastic and batch
iterative approaches; analytic when available
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(Generalization

* Generalization = model’s abillity to predict the held out data
- What is happening?

* Our model with M = 9 overfits the data (it models also noise)
» Let’s look at the estimated weights for various M in the case

of fewer examples

» The weights are becoming huge to compensate for the noise
» One way of dealing with this is to encourage the weights to be

small (this way no input dimension will have too much
influence on prediction). This is called regularization.

49
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Regularized Least Squares

» A technique to control the overfitting phenomenon

» Add a penalty term to the error function in order to

discourage the coefficients from reaching large
values

Ridge ~ 2
regression Z {ylan, w) = tn} _HWH

T

[wl|? =w'w = wj +wi +...+wi,

which is minimized by
W — ()\I + <I>T<I>) T a7t

50



The effect of regularization

51
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The effect of regularization

ERrwms

1 InA=-00 InA=-18 InA=0
Training w; 0.35 0.35 0.13
Test wk 232.37 474  -0.05
wi -5321.83 077  -0.06
wi | 48568.31 3197 -0.05
wr | -231639.30 389 -0.03
0.57 ' wE | 640042.26 55.28 -0.02
wg | -1061800.52 4132 -0.01
w® | 1042400.18 -45.95 -0.00
wi | -557682.99 -91.53 0.00
wi | 125201.43 72.68 0.01
-35 -30 -25 ~20

The corresponding coefficients from the fitted polynomials, showing
that regularization has the desired effect of reducing the magnitude
of the coefficients.

52



A more general regularizer

N \ M
5215 —w p(x,)}° QZ\ij

| | | |

53



|owez pseyory Ag opls

1-D regression illustrates key concepts

- Data fits — is linear model best (model selection)? |

t

— Simplest models do not capture all the important |
variations (signal) in the data: underfit

—1F

— More complex model may overfit the training data
(fit not only the signal but also the noise in the data),
especially if not enough data to constrain model

* One method of assessing fit:

— test generalization = model’s ability to predict
the held out data

- Optimization is essential: stochastic and batch
iterative approaches; analytic when available




Next Lecture:
Machine Learning Methodology



