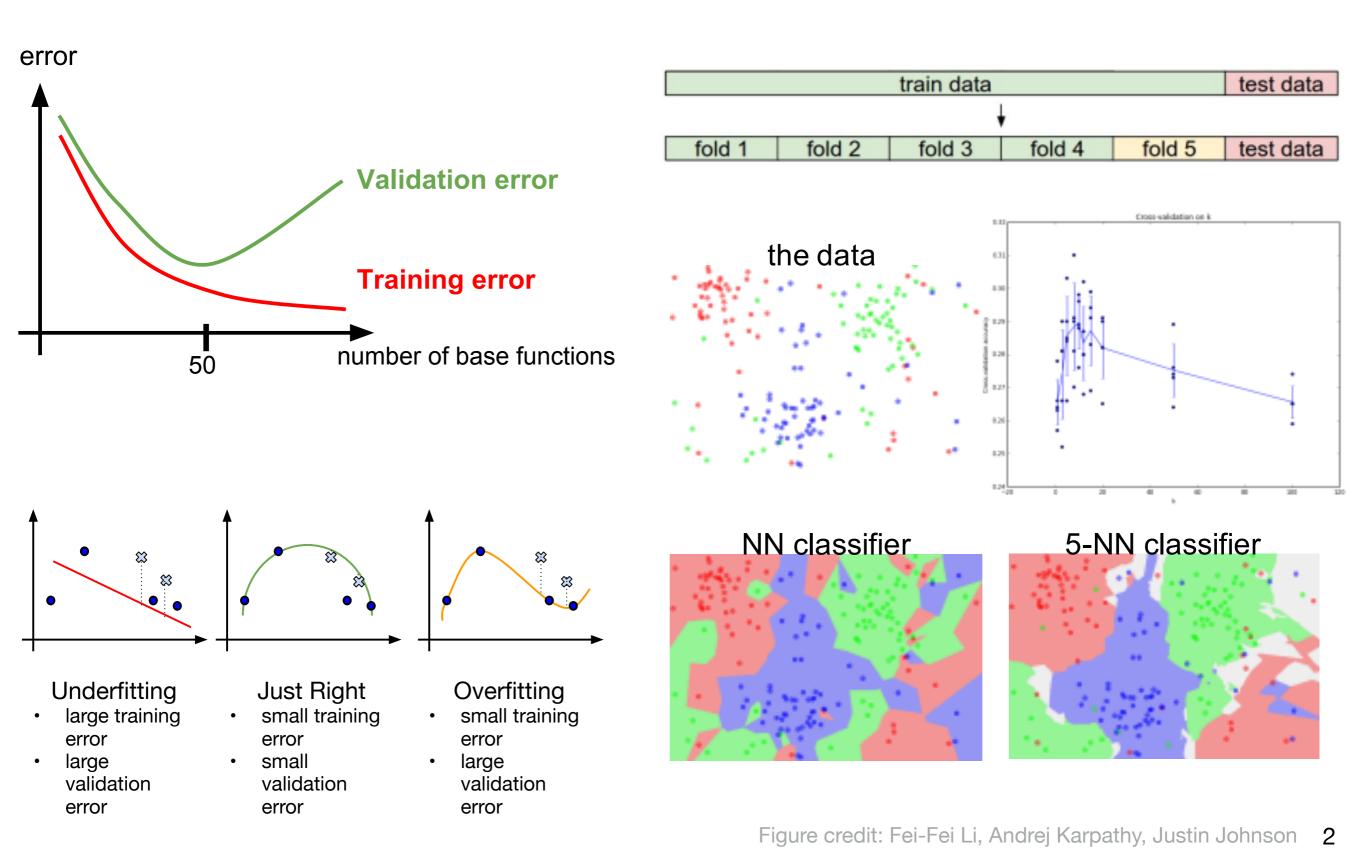
AND THE AND TH

Learning theory Probability Review

Erkut Erdem // Hacettepe University // Fall 2023

Last time... Regularization, Cross-Validation



Today

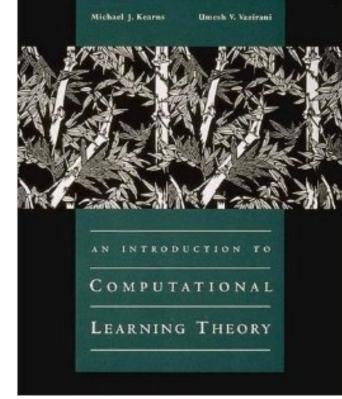
- Learning Theory
- Probability Review

Learning Theory: Why ML Works

Computational Learning Theory

- Entire subfield devoted to the mathematical analysis of machine learning algorithms
- Has led to several practical methods:
 - PAC (probably approximately correct) learning
 → boosting
 - VC (Vapnik–Chervonenkis) theory
 - → support vector machines

Annual conference: Conference on Learning Theory (COLT)



The Role of Theory

- Theory can serve two roles:
 - It can justify and help understand why common practice works.
 theory after theory
 - It can also serve to suggest new algorithms and approaches that turn out to work well in practice.

Often, it turns out to be a mix!

The Role of Theory

- Practitioners discover something that works surprisingly well.
- Theorists figure out why it works and prove something about it.
 - In the process, they make it better or find new algorithms.
- Theory can also help you understand what's possible and what's not possible.

Learning and Inference

The inductive inference process:

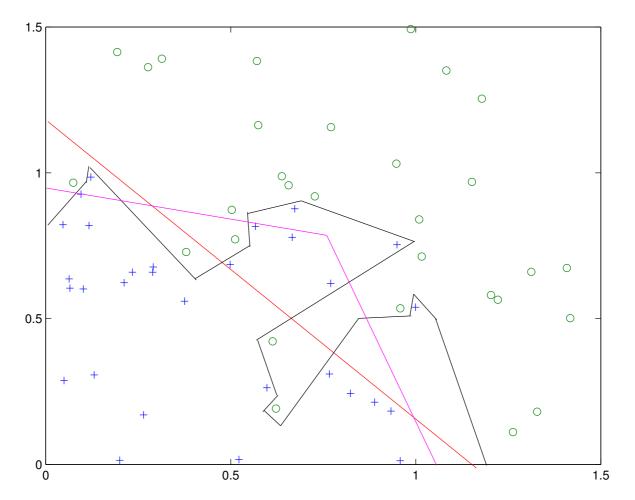
- 1. Observe a phenomenon
- 2. Construct a model of the phenomenon
- 3. Make predictions
- This is more or less the definition of natural sciences !
- The goal of Machine Learning is to automate this process
- The goal of Learning Theory is to formalize it.

Pattern recognition

- We consider here the supervised learning framework for pattern recognition:
 - Data consists of pairs (instance, label)
 - Label is +1 or -1
 - Algorithm constructs a function (instance \rightarrow label)
 - Goal: make few mistakes on future unseen instances

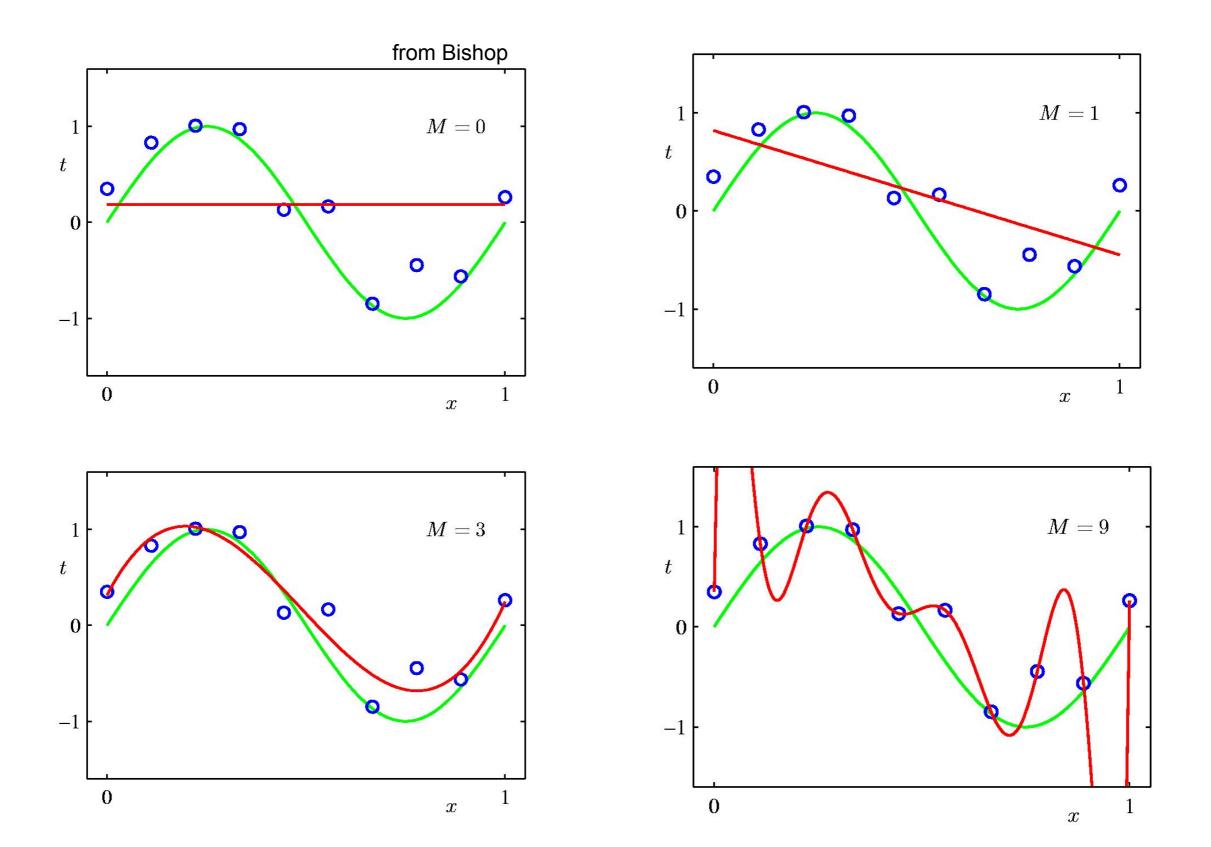
Approximation/Interpolation

 It is always possible to build a function that fits exactly the data.



• But is it reasonable?

Which Fit is Best?



11

Occam's Razor

 Idea: look for regularities in the observed phenomenon

These can be **generalized** from the observed past to the future

⇒ choose the simplest consistent model

- How to measure simplicity ?
 - Physics: number of constants
 - Description length
 - Number of parameters

William of Occam (c. 1288 – c. 1348)

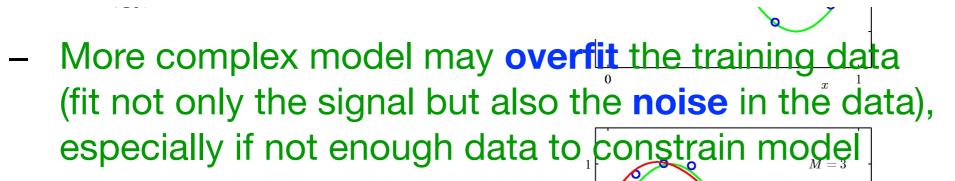
No Free Lunch

• No Free Lunch

- if there is no assumption on how the **past** is related to the future, prediction is impossible
- if there is no restriction on the possible phenomena, generalization is impossible
- We need to make assumptions
- Simplicity is not absolute
- Data will never replace knowledge
- Generalization = data + knowledge

concepts

M = 1



 w_0^\star

 $w_1^\star w_2^\star$

 $w_3^\star w_4^\star$

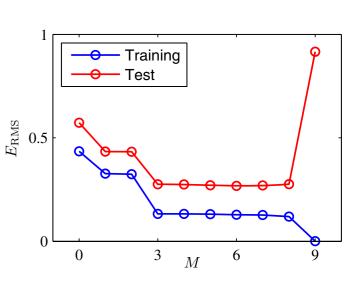
 $w_{6}^{\star} w_{7}^{\star} w_{8}^{\star}$

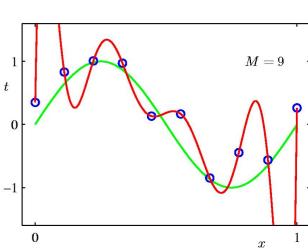
 w_{q}^{\star}

- One method of assessing fit:
 - test generalization = model's ability to predict the held out data $\frac{1}{0}$
- Regularization

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

$$\|\mathbf{w}\|^2 \equiv \mathbf{w}^{\mathrm{T}}\mathbf{w} = w_0^2 + w_1^2 + \ldots + w_M^2$$





Probably Approximately Correct (PAC) Learning

- A formalism based on the realization that the best we can hope of an algorithm is that
 - It does a good job most of the time (probably approximately correct)

Probably Approximately Correct (PAC) Learning

- Consider a hypothetical learning algorithm
 - We have 10 different binary classification data sets.
 - For each one, it comes back with functions f_1, f_2, \ldots, f_{10} .
 - For some reason, whenever you run *f*₄ on a test point, it crashes your computer. For the other learned functions, their performance on test data is always at most 5% error.
 - If this situtation is guaranteed to happen, then this hypothetical learning algorithm is a PAC learning algorithm.
 - It satisfies probably because it only failed in one out of ten cases, and it's approximate because it achieved low, but non-zero, error on the remainder of the cases.

PAC Learning

Definitions 1. An algorithm A is an (ϵ, δ) -PAC learning algorithm if, for all distributions D: given samples from D, the probability that it returns a "bad function" is at most δ ; where a "bad" function is one with test error rate more than ϵ on D.

PAC Learning

- Two notions of efficiency
 - Computational complexity: Prefer an algorithm that runs quickly to one that takes forever
 - Sample complexity: The number of examples required for your algorithm to achieve its goals

Definition: An algorithm \mathcal{A} is an efficient (ϵ, δ) -PAC learning algorithm if it is an (ϵ, δ) -PAC learning algorithm whose runtime is polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$.

In other words, to let your algorithm to achieve 4% error rather than 5%, the runtime required to do so should not go up by an exponential factor!

Example: PAC Learning of Conjunctions

- Data points are binary vectors, for instance $\mathbf{x} = \langle 0, 1, 1, 0, 1 \rangle$
- Some Boolean conjunction defines the true labeling of this data (e.g. $x_1 \wedge x_2 \wedge x_5$)
- There is some distribution \mathcal{D}_X over binary data points (vectors) $\mathbf{x} = \langle x_1, x_2, \dots, x_D \rangle$.
- There is a fixed concept conjunction c that we are trying to learn.
- There is no noise, so for any example *x*, its true label is simply $y = c(\mathbf{x})$

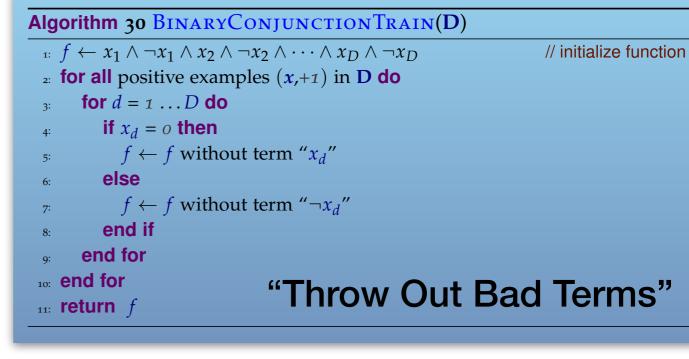
• Example:

- Clearly, the true formula cannot include the terms $x_1, x_2, \neg x_3, \neg x_4$

y	$ x_1 $	x_2	<i>x</i> ₃	x_4
+1 +1	0			1
+1	0	1	1	1
-1	1	1	0	1

Example: PAC Learning of Conjunctions

y	x_1	x_2	<i>x</i> ₃	x_4	
+1	0	0	1	1	
+1	0	1	1	1	
-1	1	1	0	1	

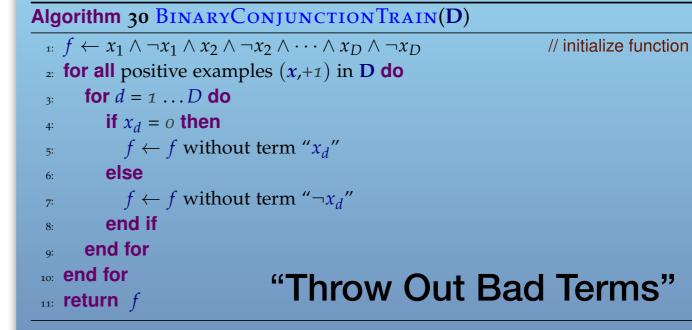


$$f^{0}(\mathbf{x}) = x_{1} \wedge \neg x_{1} \wedge x_{2} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x_{3} \wedge x_{4} \wedge \neg x_{4}$$
$$f^{1}(\mathbf{x}) = \neg x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge x_{4}$$
$$f^{2}(\mathbf{x}) = \neg x_{1} \wedge x_{3} \wedge x_{4}$$
$$f^{3}(\mathbf{x}) = \neg x_{1} \wedge x_{3} \wedge x_{4}$$

- After processing an example, it is guaranteed to classify that example correctly (provided that there is no noise)
 - Computationally very efficient
 - Given a data set of N examples in D dimensions, it takes O (ND) time to process the data. This is linear in the size of the data set.

Example: PAC Learning of Conjunctions

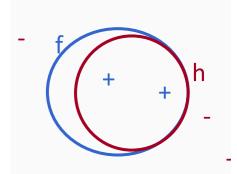
y	x_1	x_2	x_3	x_4	
+1	0	0	1	1	
+1	0	1	1	1	
-1	1	1	0	1	



• Is this an efficient (ε, δ) -PAC learning algorithm?

 $f = x_2 \land x_3 \land x_4 \land x_5 \land x_{100} \qquad \qquad h = x_1 \land x_2 \land x_3 \land x_4 \land x_5 \land x_{100}$

- Claim 1: Any hypothesis c_{0} sistent with the training training data will only make mistakes on positive future examples. Why?
- A mistake will occur only if some literal z (in our example x₁) is present in h but not in f



- This mistake can cause a positive example to be predicted as negative by h. Specifically: x₁ = 0, x₂ =1, x₃=1, x₄=1, x₅=1, x₁₀₀=1
- The reverse situation can never happen
 - For an example to be predicted as positive in the training set, every relevant literal must have been present

• **Theorem:** Suppose we are learning a conjunctive concept with n dimensional Boolean features using m training examples. If

$$m > \frac{n}{\epsilon} \left(\log(n) + \log\left(\frac{1}{\delta}\right) \right)$$

Poly in n, 1/ δ , 1/ ϵ

then, with probability > 1 - δ , the error of the learned hypothesis err_D(h) will be less than ϵ .

If we see these many training examples, then the algorithm will produce a conjunction that, with high probability, will make few errors

• Theorem: Suppose we are learning a conjunctive concept with n dimensional Boolean features using m training examples. If n((1))

$$m > \frac{n}{\epsilon} \left(\log(n) + \log\left(\frac{1}{\delta}\right) \right)$$

then, with probability > 1 - δ , the error of the learned hypothesis err_D(h) will be less than ϵ .

Let's prove this assertion

Proof Intuition

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100} \qquad \qquad h = x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

- What kinds of examples would drive a hypothesis to make a mistake?
- Positive examples, where x_1 is absent
 - f would say true and h would say false
- None of these examples appeared during training
 - Otherwise x₁ would have been eliminated
- If they never appeared during training, maybe their appearance in the future would also be rare!
 - Let's quantify our surprise at seeing such examples

- Let p(z) be the probability that, in an example drawn from D, the feature z is absent but the example has a positive label
 - That is, after training is done, p(z) is the probability that in a randomly drawn example, the literal z causes a mistake
 - For any z in the target function, p(z) = 0

- Let p(z) be the probability that, in an example drawn from D, the feature z is absent but the example has a positive label
 - That is, after training is done, p(z) is the probability that in a randomly drawn example, the literal z causes a mistake
 - For any z in the target function, p(z) = 0

Remember that there will only be mistakes on positive examples for this toy problem

- Let p(z) be the probability that, in an example drawn from D, the feature z is absent but the example has a positive label
 - That is, after training is done, p(z) is the probability that in a randomly drawn example, the literal z causes a mistake
 - For any z in the target function, p(z) = 0

Remember that there will only be mistakes on positive examples for this toy problem

$$f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$$
$$h = x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$$

- Let p(z) be the probability that, in an example drawn from D, the feature z is absent but the example has a positive label
 - That is, after training is done, p(z) is the probability that in a randomly drawn example, the literal z causes a mistake
 - For any z in the target function, p(z) = 0

Remember that there will only be mistakes on positive examples for this toy problem

$$f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$$
$$h = x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$$

<(0,1,1,1,1,0,...0,1,1), 1>

- Let p(z) be the probability that, in an example drawn from D, the feature z is absent but the example has a positive label
 - That is, after training is done, p(z) is the probability that in a randomly drawn example, the literal z causes a mistake
 - For any z in the target function, p(z) = 0

Remember that there will only be mistakes on positive examples for this toy problem

$$f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$$
$$h = x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$$

<(0,1,1,1,1,0,...0,1,1), 1 > $p(x_1)$: Probability that this situation occurs

- Let p(z) be the probability that, in an example drawn from D, the feature z is absent but the example has a positive label
 - That is, after training is done, p(z) is the probability that in a randomly drawn example, the literal z causes a mistake
 - For any z in the target function, p(z) = 0

We know that
$$err_D(h) \leq \sum_{z \in h} p(z)$$

via direct application of the union bound

Union bound

For a set of events, probability that at least one of them happens < the sum of the probabilities of the individual events

• Call a literal z bad if $p(z) > \frac{\epsilon}{n}$

n = dimensionality

- Intuitively, a bad literal is one that has a significant probability of not appearing with a positive example
 - (And, if it appears in all positive training examples, it can cause errors)

If there are no bad literals, then $err_D(h) < \epsilon$

$$err_D(h) \le \sum_{z \in h} p(z)$$

• Call a literal z bad if $p(z) > \frac{\epsilon}{n}$

- n = dimensionality
- Intuitively, a bad literal is one that has a significant probability of not appearing with a positive example
 - (And, if it appears in all positive training examples, it can cause errors)
 - If there are no bad literals, then $err_D(h) < \epsilon$
 - Why? Because

$$err_{D}(h) \leq \sum_{z \in \mathcal{D}} p(z) \\ p(z)$$

• Call a literal z bad if $p(z) > \frac{\epsilon}{n}$

- n = dimensionality
- Intuitively, a bad literal is one that has a significant probability of not appearing with a positive example

 $z \in h$

- (And, if it appears in all positive training examples, it can cause errors)
- If there are no bad literals, then $err_D(h) < \epsilon$
- Why? Because $err_D(h) \leq \sum_{z \in \mathcal{V}} p(z)$ $err_D(h) \leq \sum_{z \in \mathcal{V}} p(z)$

Let us try to see when this will not happen

• Call a literal z bad if $p(z) > \frac{\epsilon}{n}$

n = dimensionality

- Intuitively, a bad literal is one that has a significant probability of not appearing with a positive example
 - (And, if it appears in all positive training examples, it can cause errors)

What if there are bad literals?

$$err_D(h) \le \sum_{z \in h} p(z)$$

• Call a literal z bad if $p(z) > \frac{\epsilon}{n}$

n = dimensionality

- Intuitively, a bad literal is one that has a significant probability of not appearing with a positive example
 - (And, if it appears in all positive training examples, it can cause errors)

What if there are bad literals?

- Let z be a bad literal
- What is the probability that for will not (see eliminated by one training example? $z \in h$

•

• Call a literal z bad if $p(z)_{p(z)} \ge \frac{\epsilon}{\pi}$

n = dimensionality

- Intuitively, a bad literal is one that has a significant probability of not appearing with a positive example
 - (And, if it appears in all positive training examples, it can cause errors)

What if there are bad literals?

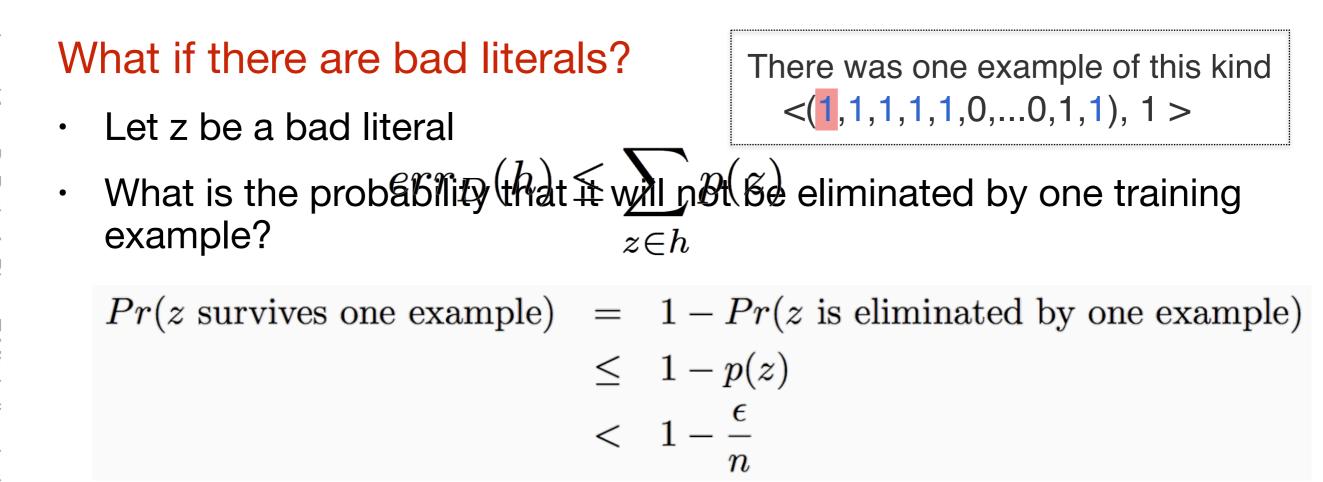
- Let z be a bad literal
- What is the probability that for will not (see eliminated by one training example? $z \in h$

Pr(z survives one example) = 1 - Pr(z is eliminated by one example)

$$\leq 1 - p(z) \ < 1 - rac{\epsilon}{n}$$

• Call a literal z bad if $p(z) > \frac{\epsilon}{\pi}$

- n = dimensionality
- Intuitively, a bad literal is one that has a significant probability of not appearing with a positive example
 - (And, if it appears in all positive training examples, it can cause errors)



• What we know so far:

n = dimensionality

 $Pr(A \text{ bad literal is not eliminated by one example}) < 1 - \frac{\epsilon}{n}$

 $Pr(A \text{ bad literal survives } m \text{ examples}) < \left(1 - \frac{\epsilon}{n}\right)^m$

 $Pr(\text{Any bad literal survives } m \text{ examples}) < n\left(1 - \frac{\epsilon}{n}\right)^m$

• What we know so far:

n = dimensionality

 $P_r(A_{bad}, i_{eral}, i_{snot}, f_{efiminated}) > (A_{bad}, i_{eral}, i_{snot}, f_{eral}, f_{eral}, i_{snot}, f_{eral}, f_{eral},$

But say we have m training examples. Then

 $Pr(A \text{ bad literal survives } m \text{ examples}) < \left(1 - \frac{\epsilon}{n}\right)^m$

$$P_{n}(A_{ny}bad literal survives mexamples}) < n((1 - \frac{\epsilon}{n}))^{n}$$

What we know so far:

n = dimensionality

 $Pr(A \text{bad}|\text{iteral}; \text{is not eliminated by one example}) \leq 1 - \frac{\epsilon}{n} \frac{1}{n} \frac{1}{\epsilon}$ $Pr(A \text{ bad literal}; \text{is not eliminated by one example}) < 1 - \frac{\epsilon}{n} \frac{1}{n} \frac{1}{\epsilon}$

But say we have m training examples. Then

 $Pr(A \text{ bad literal survives } m \text{ examples}) < \left(1 - \frac{\epsilon}{n}\right)^m$ $Pr(A \text{ bad literal survives } m \text{ examples}) < \left(1 - \frac{\epsilon}{n}\right)^m$

There are at most n bad literals. So $P_{r}(Any bad literal survives mexamples) < n((1-\frac{\epsilon}{n})^{m} P_{r}(Any bad literal survives m examples) < n((1-\frac{\epsilon}{n})^{m})^{m}$

$Pr(A \text{ bad literal survives } m \text{ examples}) < (1 - \frac{c}{n})^m$ Learning Conjunctions: Analysis

 $Pr(\text{Any bad literal survives } m \text{ examples}) < n\left(1 - \frac{\epsilon}{m}\right)^m$

- We want this probability to be small
- Why? So that we can choose enough training examples so that the probability that any z survives all of them is less than some δ .

 $Pr(A \text{ bad literal survives } m \text{ examples}) < \left(1 - \frac{\epsilon}{n}\right)^{m}$ Learning Conjunctions: Analysis $Pr(Any \text{ bad literal survives } m \text{ examples}) < n \left(1 - \frac{\epsilon}{n}\right)^{m}$ $Pr(Any \text{ bad literal survives } m \text{ examples}) < n \left(1 - \frac{\epsilon}{n}\right)^{m}$

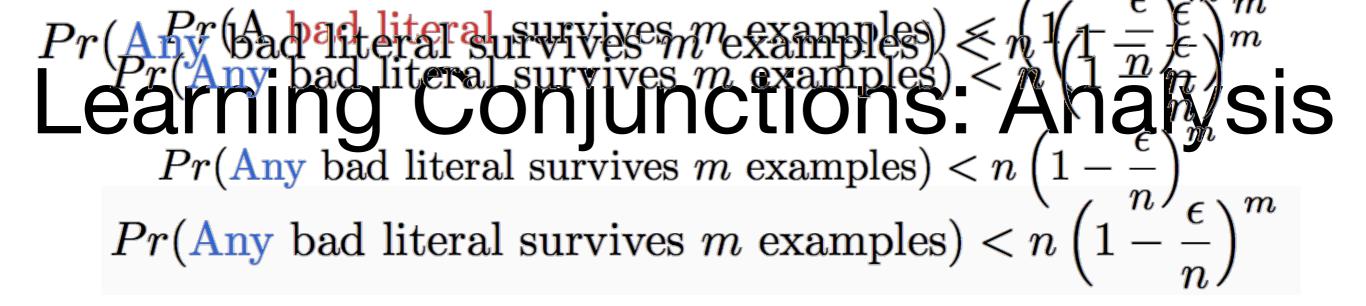
- We want this probability to be small
- Why? So that we can choose enough training examples so that the probability that any z survives all of them is less than some δ .

That is, we want
$$n\left(1-\frac{\epsilon}{n}\right)^m < \delta$$

$$ne^{-\frac{m\epsilon}{n}} < \delta$$

$$\begin{array}{l} Pr(\operatorname{Any} (\operatorname{Any} \operatorname{bad} \operatorname{diteral survives} m \operatorname{examples}) \leqslant n \left(1 + \frac{\epsilon}{n}\right)^{m} \\ \begin{array}{l} \mathsf{Learning} & \mathsf{Conjunctions:} & \mathsf{Analysis} \\ Pr(\operatorname{Any} \operatorname{bad} \operatorname{literal survives} m \operatorname{examples}) < n \left(1 - \frac{\epsilon}{n}\right)^{m} \\ \end{array} \\ \begin{array}{l} Pr(\operatorname{Any} \operatorname{bad} \operatorname{literal survives} m \operatorname{examples}) < n \left(1 - \frac{\epsilon}{n}\right)^{m} \end{array} \end{array}$$

- We want this probability to be small
- Why? So that we can choose enough training examples so that the probability that any *ε* survives all of them is less than some δ.
 That is, we want n (1 n)
 - We know that $1 x < e^{-x}$. So it is sufficient to require $\frac{ne^{-\frac{m\epsilon}{n}} < \delta}{ne^{-\frac{n}{n}} < \delta}$



- We want this probability to be small
- Why? So that we can choose enough training examples so that the probability that any *z* survives all of them is less than some δ.
 n n1(1--+) < δ
 That is, we want n(1--+) < δ
 - We know that $1 x < e^{-x}$. So it is sufficient to require $ne^{-\frac{me}{n}} < \delta$

Or equivalently,

$$m > \frac{n}{\epsilon} \left(\log(n) + \log\left(\frac{1}{\delta}\right) \right)$$

• To guarantee a probability of failure (i.e, error > ϵ) that is the set of that the set of the the set of the set of the number of examples we need is

$$m > \frac{n}{\epsilon} \left(\log(n) + \log\left(\frac{1}{\delta}\right) \right)$$
 [Pole

Poly in n, 1/
$$\delta$$
, 1/ ϵ

- That is, if m has this property, then
 - With probability 1 δ , there will be no bad literals,
 - Or equivalently, with probability 1 δ , we will have err_D(h) < ϵ

• To guarantee a probability of failure (i.e, error > ϵ) that is the set of that the set of the the set of the set of the number of examples we need is

$$m > rac{n}{\epsilon} \left(\log(n) + \log\left(rac{1}{\delta}
ight)
ight)$$
 Poly in n, 1/ δ , 1/ ϵ

- With probability 1 δ , there will be no bad literals,
- Or equivalently, with probability 1 δ , we will have err_D(h) < ϵ

What does this mean:

If $\epsilon = 0.1$ and $\delta = 0.1$, then for n = 100, we need 6908 training examples

• To guarantee a probability of failure (i.e, error > ϵ) that is the set of that the set of the the set of the set of the number of examples we need is

$$m > \frac{n}{\epsilon} \left(\log(n) + \log\left(\frac{1}{\delta}\right) \right)$$
 Poly in

- With probability 1 δ , there will be no bad literals,
- Or equivalently, with probability 1 δ , we will have err_D(h) < ϵ

What does this mean:

- If $\epsilon = 0.1$ and $\delta = 0.1$, then for n = 100, we need 6908 training examples
- If $\epsilon = 0.1$ and $\delta = 0.1$, then for n = 10, we need only 461 examples

•

n, 1/ δ , 1/ ϵ

• To guarantee a probability of failure (i.e, error > ϵ) that is the set of that the set of the the set of the set of the number of examples we need is

$$m > rac{n}{\epsilon} \left(\log(n) + \log\left(rac{1}{\delta}
ight)
ight)$$
 Poly in

Poly in n, 1/
$$\delta$$
, 1/ ϵ

- That is, if m has this property, then
 - With probability 1 δ , there will be no bad literals,
 - Or equivalently, with probability 1 δ , we will have err_D(h) < ϵ

What does this mean:

- If $\epsilon = 0.1$ and $\delta = 0.1$, then for n = 100, we need 6908 training examples
- If $\epsilon = 0.1$ and $\delta = 0.1$, then for n = 10, we need only 461 examples
- If $\epsilon = 0.1$ and $\delta = 0.01$, then for n = 10, we need 691 examples

٠

• To guarantee a probability of failure (i.e, error > ϵ) that is the set of that the set of the the set of the set of the number of examples we need is

$$m > \frac{n}{\epsilon} \left(\log(n) + \log\left(\frac{1}{\delta}\right) \right)$$

Poly in n, 1/
$$\delta$$
, 1/ ϵ

- That is, if m has this property, then
 - With probability 1 δ , there will be no bad literals,
 - Or equivalently, with probability 1 δ , we will have err_D(h) < ϵ

What we have here is a PAC guarantee

Our algorithm is **Probably Approximately Correct.**

Vapnik-Chervonenkis (VC) Dimension

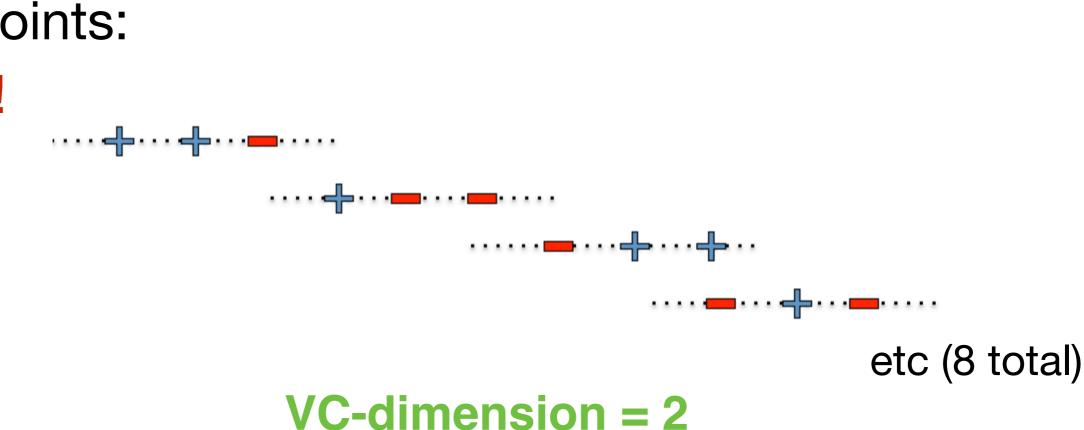
- A classic measure of complexity of infinite hypothesis classes based on this intuition.
- The VC dimension is a very classification-oriented notion of complexity
 - The idea is to look at a finite set of unlabeled examples
 - no matter how these points were labeled, would we be able to find a hypothesis that correctly classifies them
- The idea is that as you add more points, being able to represent an arbitrary labeling becomes harder and harder.

Definitions 2. For data drawn from some space X, the VC dimension of a hypothesis space H over X is the maximal K such that: there exists a set $X \subseteq X$ of size |X| = K, such that for all binary labelings of X, there exists a function $f \in H$ that matches this labeling.

How many points can a linear boundary classify exactly? (1-D)

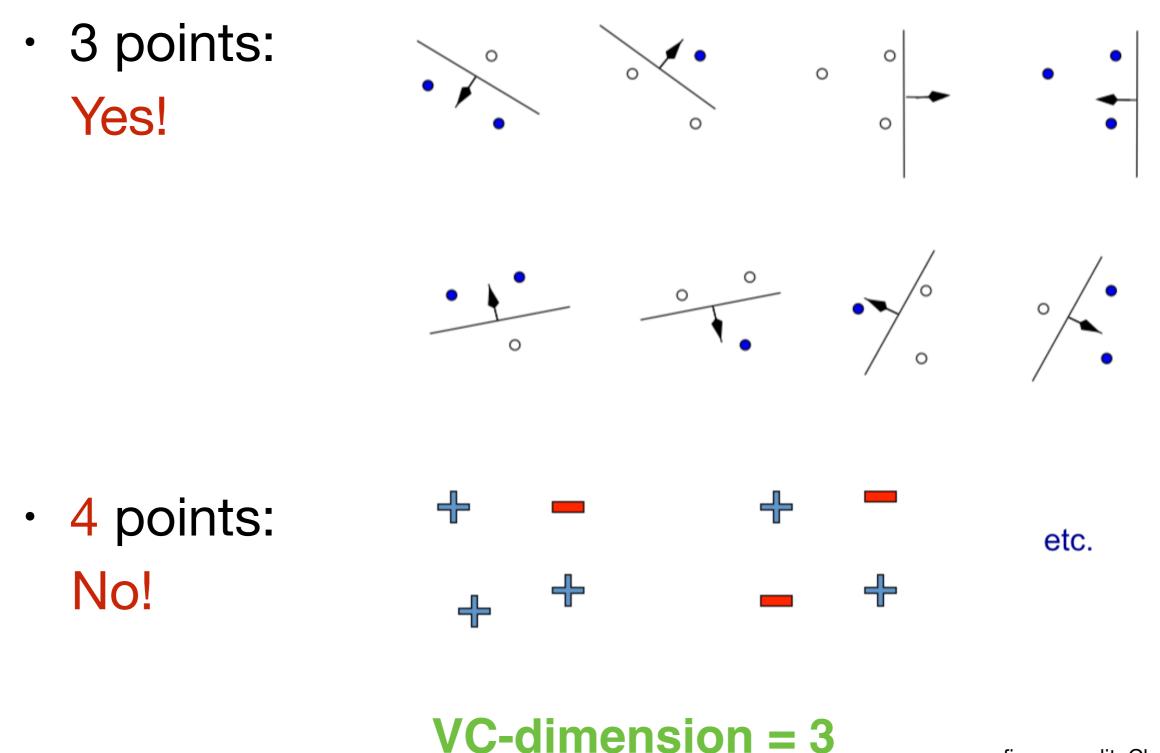
• 2 points:

Yes!



.....

How many points can a linear boundary classify exactly? (2-D)



Basic Probability Review

Probability

- A is non-deterministic event
 Can think of A as a boolean-valued variable
- Examples
 - A = your next patient has cancer
 - A = Max Verstappen wins United States
 Grand Prix 2023

Interpreting Probabilities

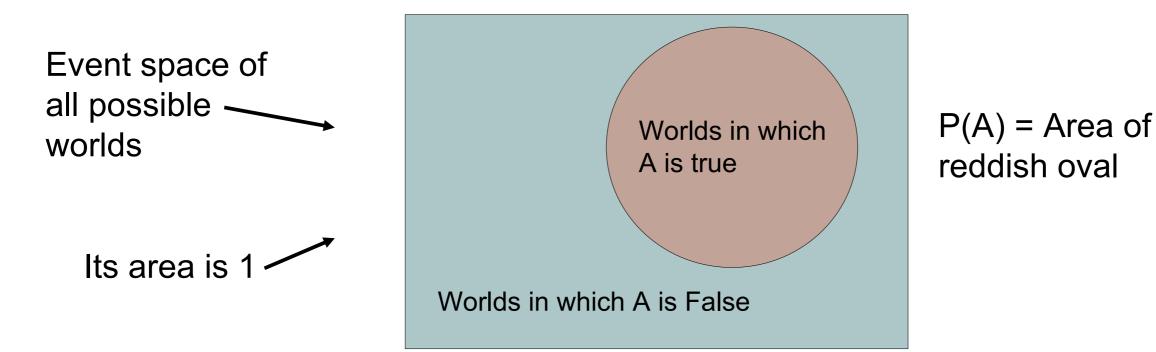
If I flip this coin, the probability that it will come up heads is 0.5

- Frequentist Interpretation: If we flip this coin many times, it will come up heads about half the time. Probabilities are the expected frequencies of events over repeated trials.
- Bayesian Interpretation: I believe that my next toss of this coin is equally likely to come up heads or tails. Probabilities quantify subjective beliefs about single events.
- Viewpoints play complementary roles in machine learning:
 - Bayesian view used to build models based on domain knowledge, and automatically derive learning algorithms
 - Frequentist view used to analyze worst case behavior of learning algorithms, in limit of large datasets
 - From either view, basic mathematics is the same!

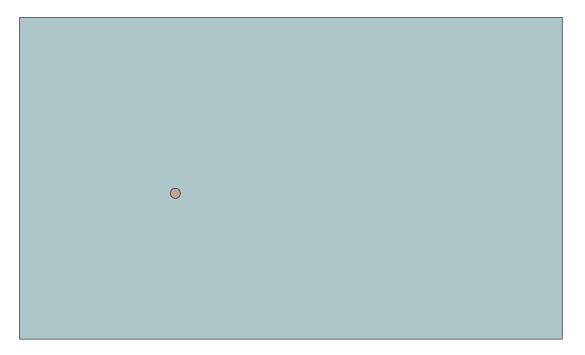
Axioms of Probability

- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)

- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)



- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)



The area of A can t get any smaller than 0

And a zero area would mean no world could ever have A true

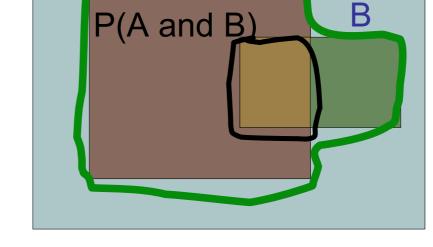
- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)

The area of A can t get any bigger than 1

And an area of 1 would mean all worlds will have A true

- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)





P(A or B)

Simple addition and subtraction

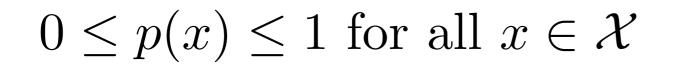
Discrete Random Variables

discrete random variable

sample space of possible outcomes,

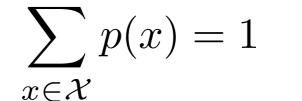
which may be finite or countably infinite

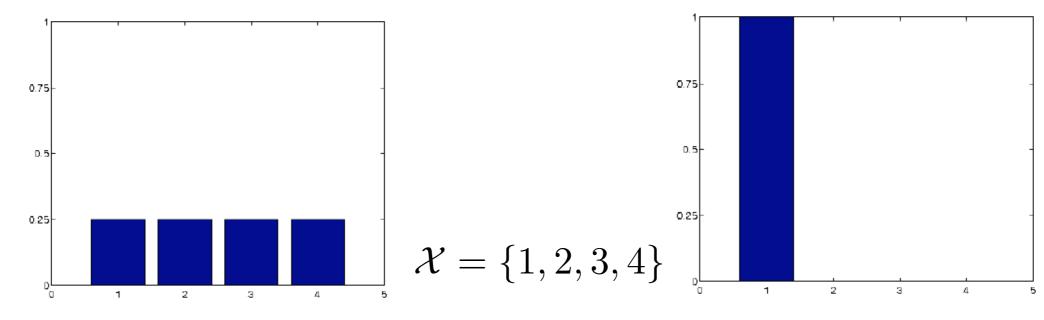
 $x \in \mathcal{X} \longrightarrow$ outcome of sample of discrete random variable



p(X = x)

p(x)



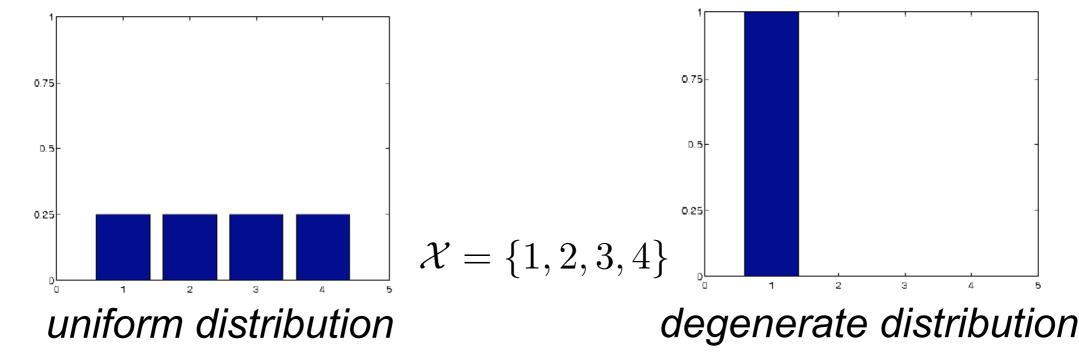


Discrete Random Variables

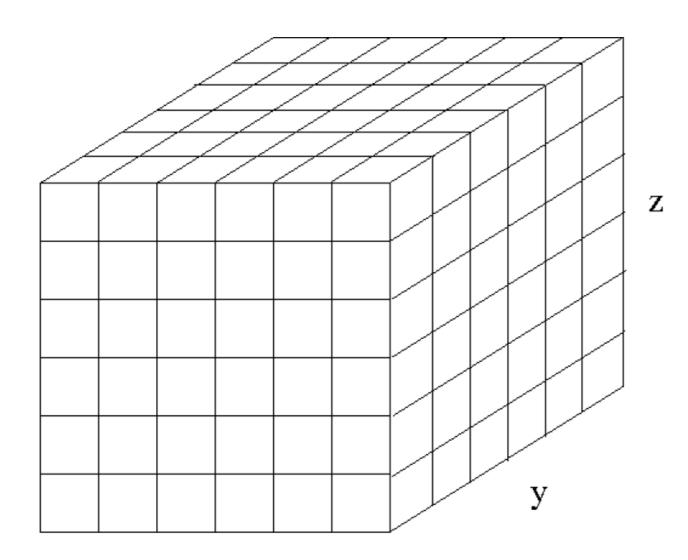
- discrete random variable
 - sample space of possible outcomes,
 - which may be finite or countably infinite
- $x \in \mathcal{X} \longrightarrow$ outcome of sample of discrete random variable $p(X = x) \longrightarrow$ probability distribution (probability mass function)
 - $p(x) \longrightarrow$ shorthand used when no ambiguity

$$0 \le p(x) \le 1$$
 for all $x \in \mathcal{X}$

$$\sum_{x \in \mathcal{X}} p(x) = 1$$



Joint Distribution

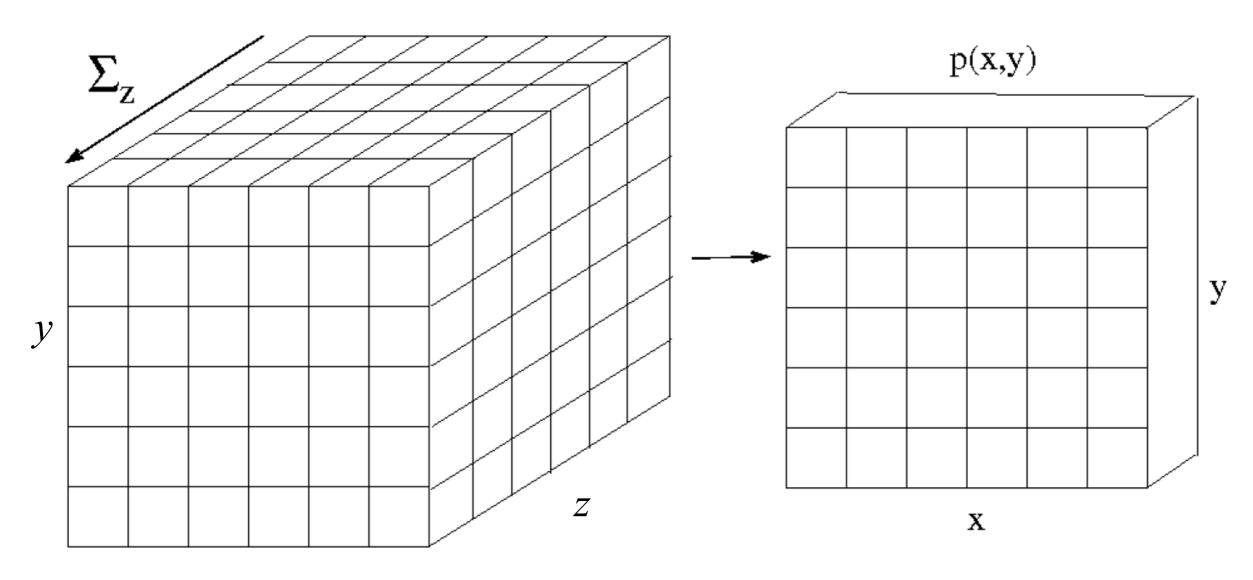


Х

Marginalization

- Marginalization
 - Events: P(A) = P(A and B) + P(A and not B)
 - Random variables $P(X = x) = \sum_{y} P(X = x, Y = y)$

Marginal Distributions



х

$$p(x,y) = \sum_{z \in \mathcal{Z}} p(x,y,z)$$

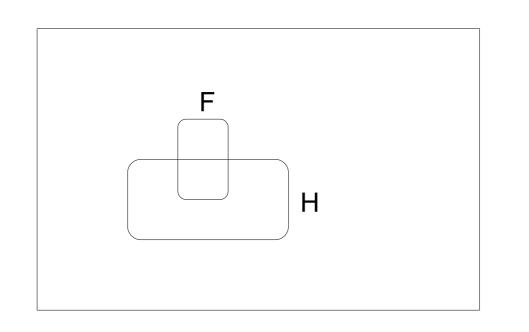
 $p(x) = \sum_{y \in \mathcal{Y}} p(x, y)$

Conditional Probabilities

- P(Y=y | X=x)
- What do you believe about Y=y, if I tell you X=x?
- P(Max Verstappen winning the 2024 United States Grand Prix)?
- What if I tell you:
 - He has won the Formula One World Champion title for 2021, 2022, and 2023.
 - He has won the United States Grand Prix 3/8 he has raced there.

Conditional Probabilities

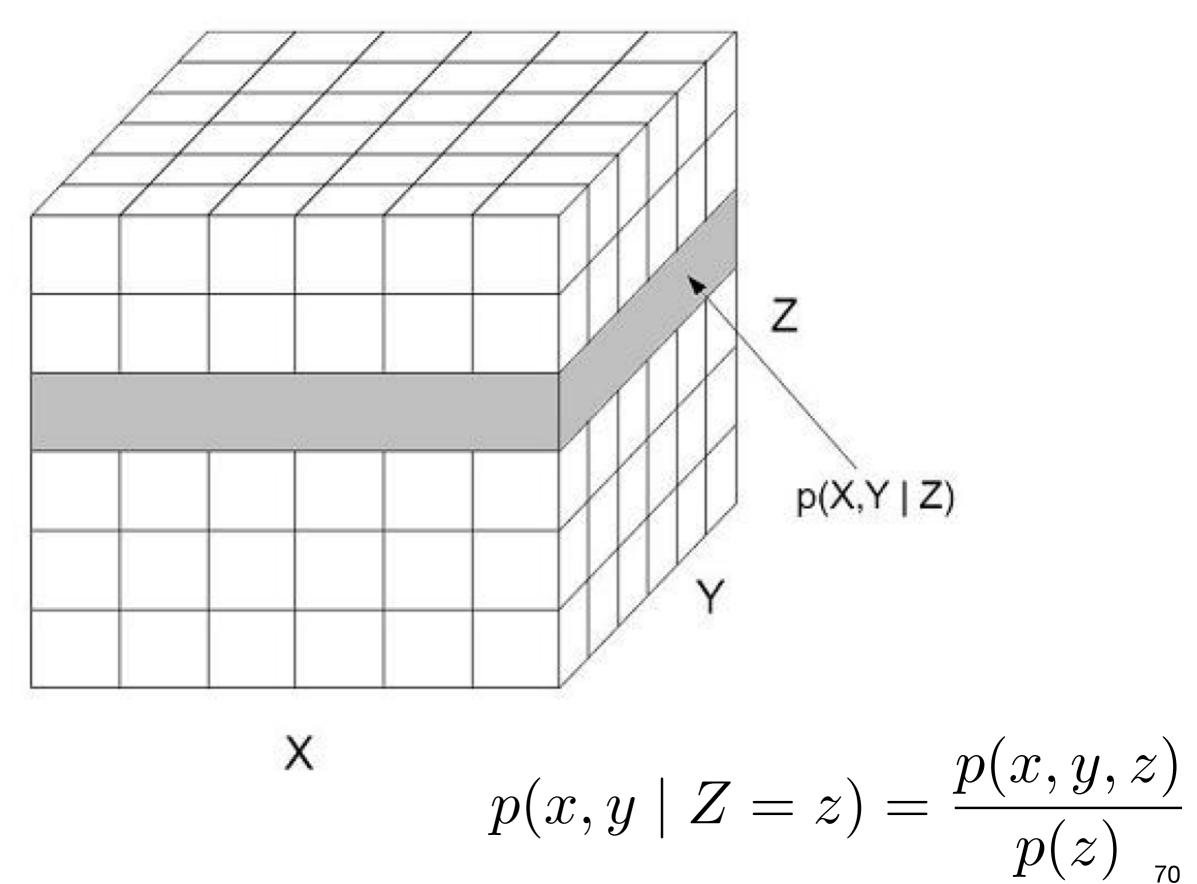
- P(A | B) = In worlds that where B is true, fraction where A is true
- Example
 - H: "Have a headache"
 - F: "Coming down with Flu"



P(H) = 1/10 P(F) = 1/40 P(H|F) = 1/2

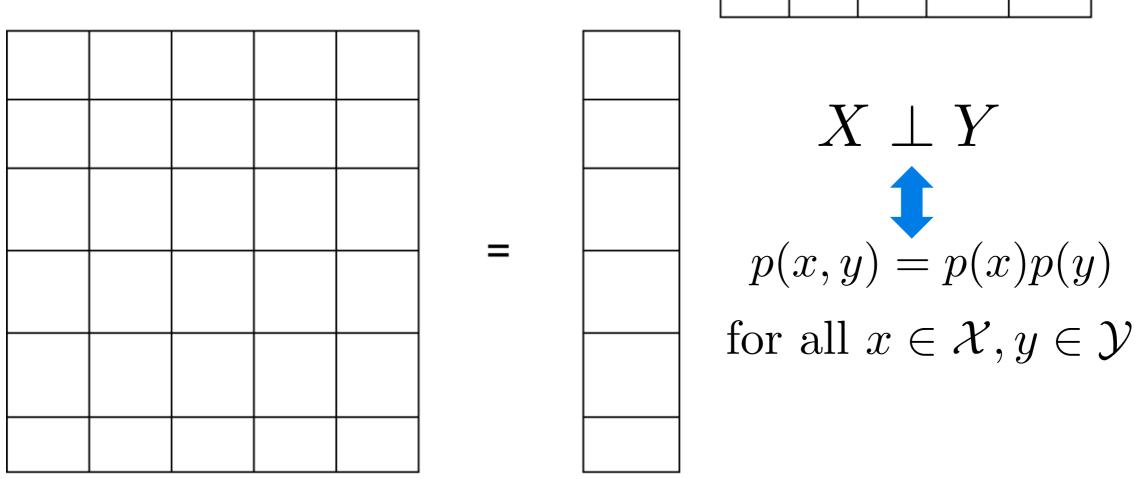
Headaches are rare and flu is rarer, but if you re coming down with flu there s a 50-50 chance you II have a headache.

Conditional Distributions



Independent Random Variables

P(x,y)



Equivalent conditions on conditional probabilities:

 $p(x \mid Y = y) = p(x) \text{ and } p(y) > 0 \text{ for all } y \in \mathcal{Y}$ $p(y \mid X = x) = p(y) \text{ and } p(x) > 0 \text{ for all } x \in \mathcal{X}$

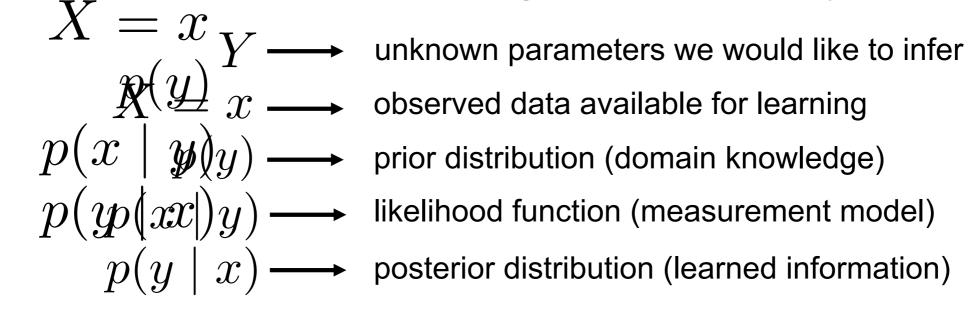
Bayes Rule (Bayes Theorem)

$$p(x, y) = p(x)p(y \mid x) = p(y)p(x \mid y)$$

$$p(y \mid x) = \frac{p(x, y)}{p(x)} = \frac{p(x \mid y)p(y)}{\sum_{y' \in \mathcal{Y}} p(y')p(x \mid y')}$$

$$\propto p(x \mid y)p(y)$$

- A basic identity from the definition of conditional for the province of the
- Used in ways that have no thing to do with Bayesian statistics!
- Typical application to learning and data analysis:



Binary Random Variables

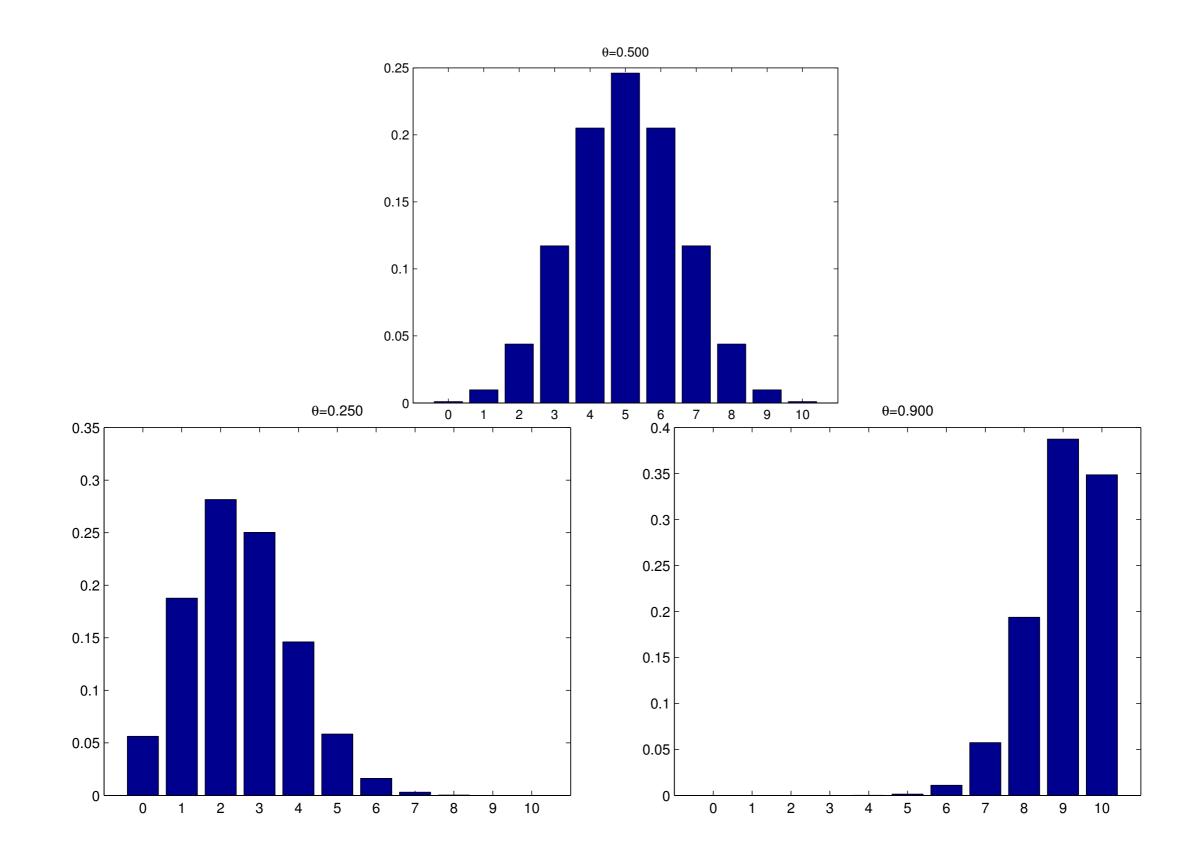
 Bernoulli Distribution: Single toss of a (possibly biased) coin

$$\begin{aligned} \mathcal{X} &= \{0, 1\} \\ \mathcal{X} &= \{0, 1\} \\ 0 &\leq \theta \leq 1 \\ \theta &\leq \theta \leq 1 \\ \theta &= \theta^{\delta(x, 1)}(1 - \theta)^{\delta(x, 0)} \\ \end{array}$$

• Binomial Distribution: Toss a single (possibly biased) coin *n* times, and report the number k of times it comes up $\mathcal{K} = \{0, 1, 2, \dots, n\}$ $0 < \theta < 1$

$$\operatorname{Bin}(k \mid n, \theta) = \binom{n}{k} \theta^k (1 - \theta)^{n-k} \quad \binom{n}{k} = \frac{n!}{(n-k)!k!} \frac{\frac{n!}{k!k!}}{(n-k)!k!}$$

Binomial Distributions



Bean Machine (Sir Francis Galton)

http://en.wikipedia.org/wiki/ Bean machine

Categorical Random Variables

Multinoulli Distribution: Single roll of a (possibly biased) die

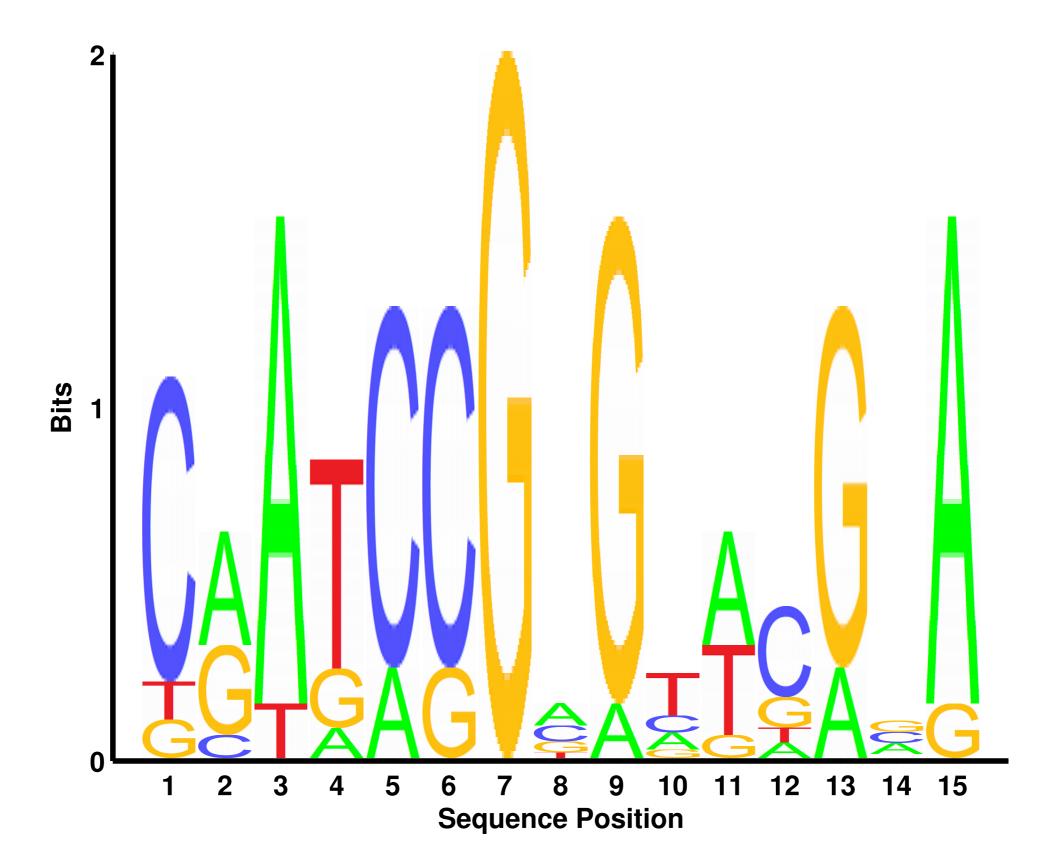
$$\mathcal{X} \overset{K_{K}}{=} \{ \{0,0\} \}_{j}^{K_{K}}, \sum_{\substack{k \in \mathbb{T}^{1} \\ k \in \mathbb{T}^{1}}} x y_{k} = \mathbf{1} \qquad \begin{array}{c} \text{binary vector} \\ \text{encoding} \\ \text{encoding} \\ \\ \mathcal{K} \\ \mathcal$$

• Multinomial Distribution: Roll a single (possibly biased) die *n* times, and report the number n_k of each possible outcome $Mu(x \mid n, \theta) = \begin{pmatrix} n \\ n_1 \dots n_K \end{pmatrix} \prod_{k=1}^{K} \theta_k^{n_k} \qquad n_k = \sum_{i=1}^{n} x_{ik}$

Aligned DNA Sequences

cgatacggggtcgaa caatccgagatcgca caatccgtgttggga caatcggcatgcgg cgagccgcgtacgaa catacggagcacgaa taatccgggcatgta cgagccgagtacaga ccatccgcgtaagca ggatacgagatgaca

Multinomial Model of DNA



Next Lecture: Maximum Likelihood Estimation (MLE)