[ Sl
X7 ﬁ@ o ?<
Fund mentals of )
f iﬁe*téér hing X -~
T RN

l/"/ \

e ) Le_ctu e 6:
¢ . <Y\ 6( Ze-mrﬁln§ tHQO% ) ,
.,;/g,robé%j/ Rewe

] \ x ,_-:‘ ' 4
sy, i o




Last time... Regularization, Cross-Validation
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Today

+ Learning Theory

+ Probability Review



Learning Theory:
Why ML Works
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- Entire subfield devoted to the
mathematical analysis of machine
learning algorithms

 Has led to several practical methods:

- PAC (probably approximately correct) learning
— boosting

- VC (Vapnik—Chervonenkis) theory
— support vector machines

Annual conference: Conference on Learning Theory (COLT)5
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The Role of Theory

+ Theory can serve two roles:

- |t can justify and help understand why

common practice works. N aftel
neo

- It can also serve to suggest new algorithms
and approaches that turn out to work well in
practice. be‘o\'e

tneo

Often, it turns out to be a mix!
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The Role of Theory

» Practitioners discover something that works

surprisingly well.

- Theorists figure out why it works and prove

something about it.

- In the process, they make it better or find new
algorithms.

+ Theory can also help you understand what’s

possible and what’s not possible.



Learning and Inference

The inductive inference process:

1. Observe a phenomenon

2. Construct a model of the phenomenon
3. Make predictions

- This Is more or less the definition of natural
sclences !

+ The goal of Machine Learning is to automate
this process

9INIIO Ag epls

og J

+ The goal of Learning Theory is to formalize it.

bsn
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Pattern recognition

- We consider here the supervised learning
framework for pattern recognition:

Data consists of pairs (instance, label)
Label is +1 or -1
Algorithm constructs a function (instance — label)

GGoal: make few mistakes on future unseen
Instances



Approximation/Interpolation

- It Is always possible to build a function that fits
exactly the data.

- But is it reasonable?

10
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Which Fit

from Bishop

M =0

11



Occam’s Razor |

- |dea: look for regularities in the observed
phenomenon

These can be generalized from the

Wiilia of Occam

observed past to the future (c. 1288 — c. 1348)

= choose the simplest consistent model

- How to measure simplicity ?

- Physics: number of constants
- Description length

- Number of parameters

12



No Free Lunch

- No Free Lunch

- If there is no assumption on how the past is related to
the future, prediction is impossible

- If there is no restriction on the possible phenomena,
generalization is impossible

- We need to make assumptions
- Simplicity is not absolute
- Data will never replace knowledge

- Generalization = data + knowledge

13



Recall from last week... Some key concepts

- Data fits — is linear model best (model selection)? |

t

— Simplest models do not capture all the important )
variations (signal) in the data: underfit

—1F

— More complex model may overfit the training data
(fit not only the signal but also the noise in the data),

especially if not enough data to constrain model

* One method of assessing fit:
— test generalization = model’s ability to predict
the held out data a :
- Regularization A= 00 A= —18 ImA—=0  1r— .
| N A\ w; 0.35 0.35 0.13 —9—?&‘{"“9
= 2 w* 232.37 4.74 -0.05 o Tes
E(w) = 9 Z {y(@n, w) —tn }\+ §HWH2 wy -5321.83 077  -0.06
% n—1 w} 48568.31 -31.97 -0.05 £ o5l
® wl | -231639.30 389 003 S
g , . , , ,wp| 64004226 5528 -0.02
— — wy | -1061800.52 4132 -0.01
g Wl = wiw = wy +wi+... +wy wt | 1042400.18 4595 -0.00
D wi | -557682.99 91.53 0.00 0
o wy | 125201.43 72.68 0.01
% 14
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Probably Approximately Correct
(PAC) Learning

- A formalism based on the realization that

the best we can hope of an algorithm is that

- |t does a good job most of the time (probably
approximately correct)

15
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Probably Approximately Correct
(PAC) Learning

» Consider a hypothetical learning algorithm
- We have 10 different binary classification data sets.
- For each one, it comes back with functions fi, /2, . . . , fio.

+ For some reason, whenever you run f4 on a test point, it
crashes your computer. For the other learned functions,
their performance on test data is always at most 5% error.

+ If this situtation is guaranteed to happen, then this
hypothetical learning algorithm is a PAC learning algorithm.

“+ It satisfies probably because it only failed in one out of
ten cases, and it’s approximate because it achieved low,
but non-zero, error on the remainder of the cases.

16
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PAC Learning

Definitions 1. An algorithm A is an (€,6)-PAC learning algorithm if, for
all distributions D: given samples from D, the probability that it returns a
“bad function” is at most o; where a “bad” function is one with test error
rate more than € on D.

17



PAC Learning

» Two notions of efficiency

- Computational complexity: Prefer an algorithm that runs quickly
to one that takes forever

- Sample complexity: The number of examples required for your
algorithm to achieve its goals

Definition: An algorithm A is an efficient (¢, )-PAC learning al-
gorithm if it is an (€, §)-PAC learning algorithm whose runtime is
polynomial in % and %.

In other words, to let your algorithm to achieve
4% error rather than 5%, the runtime required
to do so should not go up by an exponential factor!

||| wneq [eH woJ} paidepe

18
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Example: PAC Learning of Conjunctions

- Data points are binary vectors, for instance x=<0,1,1,0, 1)

- Some Boolean conjunction defines the true labeling of this data
(e.9. x1 A x2 A X5)

- There is some distribution Dx over binary data points (vectors)
X =<{X1, X2, ...,XD).

- There is a fixed concept conjunction ¢ that we are trying to learn.

- There is no noise, so for any example x, its true label is simply
y = c(X)

- Example: y | v v ox3 xy
- _Clearly, the true formula cannot 110 o 1 1
Include the terms xi , x2, x3, x4

+1 O 1 1 1

19
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Example: PAC Learning

of
Y

Conjunctions

X1 X2 X3 X4

+1
+1
-1

fO(X):xl AX] AX2 A X2 AX3 A x3 A Xg N\ xy

fl(x) =-x1 A X2 A X3 A\ X4

FA(X) =1 A X3 A X4

f3(X) =1 A X3 A X4

- After processing an example, it is guaranteed to classify that
example correctly (provided that there is no noise)

« Computationally very efficient

- Given a data set of N examples in D dimensions, it takes O (ND)
time to process the data. This is linear in the size of the data set.

20
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Example: PAC Learning
of Conjunctions

Yy X1 X2 X3 X4
+1 ) ) 1 1
+1 0) 1 1 1
-1 1 1 ) 1

- |s this an efficient (g, 0)-PAC learning
algorithm?

21



Learning Conjunctions: Analysis

f=X, AXy AX, AXGA X, R=2X AX, AX;AX4AXgA X,

-+ Claim 1: Any hypothesis consistent with the training data
will only make mistakes on positive future examples. Why?

- f
- A mistake will occur only if some literal z @h_
(in our example x4) is present in h but not in f |
- This mistake can cause a positive example to be predicted as
negative by h. Specifically: x1 = 0, x2 =1, x3=1, x4=1, x5=1, X100=1

+ The reverse situation can never happen

- For an example to be predicted as positive in the training set,
every relevant literal must have been present

22



Learning Conjunctions: Analysis

- Theorem: Suppose we are learning a
conjunctive concept with n dimensional
Boolean features using m training examples.

If
m > g (10g( ) + log (;)) Poly inn, 1/0, 1/€

then, with probability > 1 - 0, the error of the
learned hypothesis errp(h) will be less than €.

If we see these many training examples, then the algorithm
will produce a conjunction that, with high probability,
will make few errors

23



Learning Conjunctions: Analysis

- Theorem: Suppose we are learning a
conjunctive concept with n dimensional

Boolean features using m training examples.
If

n

m> <log(n) + log (;))

then, with probability > 1 - 0, the error of the
learned hypothesis errp(h) will be less than €.

Let’'s prove this assertion

24



Proof Intuition

f=X, AXy AX, AXGA X, R=2X AX, AX;AX4AXgA X,

- What kinds of examples would drive a hypothesis to
make a mistake?

- Positive examples, where x4 is absent
- f would say true and h would say false

* None of these examples appeared during training
- Otherwise x1 would have been eliminated

- If they never appeared during training, maybe their
appearance in the future would also be rare!

- Let’s quantify our surprise at seeing such examples

25



Learning Conjunctions: Analysis

Let p(z) be the probability that, in an example drawn from D,
the feature z is absent but the example has a positive label

-+ That is, after training is done, p(z) is the probability that in a
randomly drawn example, the literal z causes a mistake

For any z in the target function, p(z) = 0

26



Learning Conjunctions: Analysis

Let p(z) be the probability that, in an example drawn from D,
the feature z is absent but the example has a positive label

That is, after training is done, p(z) is the probability that in a
randomly drawn example, the literal z causes a mistake

For any z in the target function, p(z) = 0

™~

Remember that there will
only be mistakes on positive
examples for this toy
problem

27



Learning Conjunctions: Analysis

Let p(z) be the probability that, in an example drawn from D,
the feature z is absent but the example has a positive label

That is, after training is done, p(z) is the probability that in a
randomly drawn example, the literal z causes a mistake

For any z in the target function, p(z) = 0

f=x,AX, AX, ANXSAX,

h=X AX, ANX;NX, ANXs A X,

™~

Remember that there will
only be mistakes on positive
examples for this toy
problem

28



Learning Conjunctions: Analysis

Let p(z) be the probability that, in an example drawn from D,
the feature z is absent but the example has a positive label

That is, after training is done, p(z) is the probability that in a
randomly drawn example, the literal z causes a mistake

For any z in the target function, p(z) = 0

™~

Remember that there will
only be mistakes on positive
examples for this toy
problem

f=X,AX, ANX, ANXSA X, <(0,1,1,1,1,0,...0,1,1), 1>

h=X AX, ANX;NX, ANXs A X,

29



Learning Conjunctions: Analysis

Let p(z) be the probability that, in an example drawn from D,
the feature z is absent but the example has a positive label

That is, after training is done, p(z) is the probability that in a
randomly drawn example, the literal z causes a mistake

™~

Remember that there will
only be mistakes on positive
examples for this toy
problem

For any z in the target function, p(z) = 0

f=X,AX, ANX, ANXSA X, <,1,1,1,1,0,...0,1,1), 1 >

h=0 AX, AX;ANX, AXs A X, \/

p(x1): Probability that this
situation occurs

30



Learning Conjunctions: Analysis

Let p(z) be the probability that, in an example drawn from D,
the feature z is absent but the example has a positive label

That is, after training is done, p(z) is the probability that in a
randomly drawn example, the literal z causes a mistake

For any z in the target function, p(z) = 0

We know that errp(h) < Zp(z)

~ch Union bounad
. . . . , For a set of events,
via direct application of the union bound orobability that at least one

of them happens < the sum
of the probabilities of the
individual events

31



Learning Conjunctions: Analysis

€

+ Call aliteral z bad if p(z) > — n = dimensionalty

Intuitively, a bad literal is one that has a significant probability of
not appearing with a positive example

(And, if it appears in all positive training examples, it can cause errors)

If there are no bad literals, then errp(h) < €

32



Learning Conjunctions: Analysis

€

+ Call aliteral z bad if p(z) > — n = dimensionalty

Intuitively, a bad literal is one that has a significant probability of
not appearing with a positive example

(And, if it appears in all positive training examples, it can cause errors)

If there are no bad literals, then errp(h) < €
- Why? Because errp(h) < » p(2)

zZ€h

33



Learning Conjunctions: Analysis

€

Call a literal z bad if p(z) > - n = dimensionality

Intuitively, a bad literal is one that has a significant probability of
not appearing with a positive example

(And, if it appears in all positive training examples, it can cause errors)

If there are no bad literals, then errp(h) < €
Why? Because errp(h) < » p(z)

zZ€h

Let us try to see when this will not happen

34



Learning Conjunctions: Analysis

€

+ Call aliteral z bad if p(z) > — n = dimensionalty

Intuitively, a bad literal is one that has a significant probability of
not appearing with a positive example

(And, if it appears in all positive training examples, it can cause errors)

What if there are bad literals?

35



Learning Conjunctions: Analysis

€

Call a literal z bad if p(z) > - n = dimensionality

Intuitively, a bad literal is one that has a significant probability of
not appearing with a positive example

(And, if it appears in all positive training examples, it can cause errors)

What if there are bad literals?

Let z be a bad literal

What is the probability that it will not be eliminated by one training
example?

36



Learning Conjunctions: Analysis

: . € e o
Call a literal z bad if p(z) > - n = dimensionality

Intuitively, a bad literal is one that has a significant probability of
not appearing with a positive example

(And, if it appears in all positive training examples, it can cause errors)

What if there are bad literals?

Let z be a bad literal

What is the probability that it will not be eliminated by one training
example?

1 — Pr(z is eliminated by one example)
1 —p(z)

€
T

Pr(z survives one example)

VA

N\

37



Learning Conjunctions: Analysis

: . € e o
Call a literal z bad if p(z) > - n = dimensionality

Intuitively, a bad literal is one that has a significant probability of
not appearing with a positive example

(And, if it appears in all positive training examples, it can cause errors)

What if there are bad literals? There was one example of this kind
<,1,1,1,1,0,...0,1,1), 1 >

Let z be a bad literal

What is the probability that it will not be eliminated by one training
example?

1 — Pr(z is eliminated by one example)
1 —p(z)

€
T

Pr(z survives one example)

VA

N\

38



Learning Conjunctions: Analysis

- What we know so far: n = dimensionality

Pr(A bad literal is not eliminated by one example) < 1 — €
n

39



Learning Conjunctions: Analysis

- What we know so far: n = dimensionality

Pr(A bad literal is not eliminated by one example) < 1 — €
n

But say we have m training examples. Then

Pr(A bad literal survives m examples) < (1 — E)
n

40



Learning Conjunctions: Analysis

- What we know so far: n = dimensionality

Pr(A bad literal is not eliminated by one example) < 1 — €
n

But say we have m training examples. Then

Pr(A bad literal survives m examples) < (1 — E)
n

There are at most n bad literals. So

Pr(Any bad literal survives m examples) < n (1 — E)
n

41



Learning Conjunctions: Analysis

Pr(Any bad literal survives m examples) < n (1 — E)
n

- We want this probability to be small

- Why? So that we can choose enough training examples so that
the probability that any z survives all of them is less than some 0o.

42



Learning Conjunctions: Analysis

€

Pr(Any bad literal survives m examples) < n (1 — —)
n

- We want this probability to be small

- Why? So that we can choose enough training examples so that

the probability that any z survives all of them is less than some 0o.
€

- That is, we want n (1 — —) <0
T

43



Learning Conjunctions: Analysis

Pr(Any bad literal survives m examples) < n (1 — E)
n

- We want this probability to be small

- Why? So that we can choose enough training examples so that
the probability that any z survives all of them is less than some 0o.

- That is, we want n (1 — E) <0
T

€

- We know that 1 — x < ex. So it is sufficient to require ne” » < 0

44



Learning Conjunctions: Analysis

Pr(Any bad literal survives m examples) < n (1 — E)
n

- We want this probability to be small

- Why? So that we can choose enough training examples so that
the probability that any z survives all of them is less than some 0o.

- That is, we want n (1 — E) <0
T

€

- We know that 1 — x < ex. So it is sufficient to require ne” » < 0

- Or equivalently, n 1
m > — (log(n) log (5))

€

45



Learning Conjunctions: Analysis

- To guarantee a probability of failure (i.e, error > €) that is less
than o, the number of examples we need is

n

1
m > — (log(n) + log (g)) Poly inn, 1/0, 1/e

€

-+ That is, if m has this property, then

- With probability 1 - 0, there will be no bad literals,
Or equivalently, with probability 1 - 0, we will have errp(h) < €

46



Learning

Conjunctions: Analysis

- To guarantee a probability of failure (i.e, error > €) that is less
than o, the number of examples we need is

- Thatis, ifmhast

n 1
m > — (log(n) + log (g)) Poly inn, 1/0, 1/e

€

nis property, then

With probability -

- 0, there will be no bad literals,

Or equivalently, with probability 1 - 0, we will have errp(h) < €

What does this mean:

If e =0.1and 6 =

0.1, then for n = 100, we need 6908 training examples

47



Learning

Conjunctions: Analysis

To guarantee a probability of failure (i.e, error > €) that is less
than o, the number of examples we need is

That is, if m has t

m > —

n

1
y (log(n) + log (5)) Poly in n, 1/8, /e

nis property, then

With probability -

- 0, there will be no bad literals,

Or equivalently, with probability 1 - 0, we will have errp(h) < €

What does this mean:

If e =0.1and 6 =
If e =0.1and O =

0.1, then for n = 100, we need 6908 training examples

0.1, then for n = 10, we need only 461 examples

48



Learning

Conjunctions: Analysis

To guarantee a probability of failure (i.e, error > €) that is less
than o, the number of examples we need is

That is, if m has t

n 1
m > ; (log(n) + log (g)) Poly inn, 1/0, 1/e

nis property, then

With probability -

- 0, there will be no bad literals,

Or equivalently, with probability 1 - 0, we will have errp(h) < €

What does this mean:

fe=0.1and 0 =
fe=0.1and o =
fe=0.1and 0 =

0.1, then for n = 100, we need 6908 training examples
0.1, then for n = 10, we need only 461 examples

0.01, then for n = 10, we need 691 examples 49



Learning Conjunctions: Analysis

- To guarantee a probability of failure (i.e, error > €) that is less
than o, the number of examples we need is

n

1
m > — (log(n) + log (g)) Poly inn, 1/0, 1/e

€

-+ That is, if m has this property, then

With probability 1 - o, there will be no bad literals,
Or equivalently, with probability 1 - 0, we will have errp(h) < €

What we have here is a FAC guarantee

Our algorithm is Probably Approximately Correct.

50



||| wneq [eH woJ} paidepe

Vapnik-Chervonenkis
(VC) Dimension

- A classic measure of complexity of infinite hypothesis classes

based on this intuition.

- The VC dimension is a very classification-oriented notion of

complexity
- The idea is to look at a finite set of unlabeled examples

- no matter how these points were labeled, would we be able to
find a hypothesis that correctly classifies them

- The idea is that as you add more points, being able to

represent an arbitrary labeling becomes harder and harder.

Definitions 2. For data drawn from some space X, the VC dimension of
a hypothesis space H over X is the maximal K such that: there exists a set
X C X of size | X| = K, such that for all binary labelings of X, there exists
a function f € ‘H that matches this labeling.

51
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How many points can a linear

boundary classify exactly? (1-D)
+ 2 points:

Yes!

..... +_

e B« v v e .=ﬂ=.

3 points
No!

e -

o
e N L
v o

etc (8 total)
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How many points can a linear
boundary classify exactly? (2-D)

+ 3 points: \ \Q O :*’ . «

Yes!
ST A

- 4 points: +r o= T
No! 4+ + =

etc.

Bejuog pineq Aqg epis

figure credit: Chris Burges 53



Basic Probability
Review
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Probability

- A IS hon-deterministic event

— Can think of A as a boolean-valued
variable

- Examples

— A = your next patient has cancer

— A = Max Verstappen wins United States
Grand Prix 2023

55
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Interpreting Probabillities

If | flip this coin, the probabillity that it will come up
heads is 0.5

Frequentist Interpretation: If we flip this coin many times, it will
come up heads about half the time. Probabilities are the expected
frequencies of events over repeated trials.

Bayesian Interpretation: | believe that my next toss of this coin
Is equally likely to come up heads or tails. Probabilities quantify
subjective beliefs about single events.

Viewpoints play complementary roles in machine learning:

- Bayesian view used to build models based on domain
knowledge, and automatically derive learning algorithms

- Frequentist view used to analyze worst case behavior of
learning algorithms, in limit of large datasets

From either view, basic mathematics is the samel
56
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Axioms of Probability

+ 0<=P(A) <=1

+ P(empty-set) = 0

- P(everything) = 1

- P(A or B) = P(A) + P(B) — P(A and B)

58
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Interpreting the Axioms

+ 0<=P(A) <=1

+ P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) - P(A and B)

Event space of

all possible —___
worlds

Its area is 1=

Worlds in which

A is true

Worlds in which A is False

P(A) = Area of
reddish oval

59
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Interpreting the Axioms

+ 0<=P(A) <=1

+ P(empty-set) =0

- P(everything) = 1

- P(A or B) = P(A) + P(B) - P(A and B)

The area of A cant get
any smaller than O

And a zero area would
mean no world could
ever have A true

60



Interpreting the Axioms

» 0<=PA) <=1

- P(empty-set) = 0

- P(everything) = 1

- P(A or B) = P(A) + P(B) - P(A and B)

The area of A cant get
any bigger than 1

And an area of 1 would
mean all worlds will have
A true

eaeg Anuyqg Aq eplis
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Interpreting the Axioms

+ 0<=P(A) <=1

+ P(empty-set) = 0

- P(everything) = 1

- P(A or B) = P(A) + P(B) - P(A and B)

A

P(A or B

Simple addition and subtraction

62
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Discrete Random Variables

X — discrete random variable

sample space of possible outcomes,
X ” which may be finite or countably infinite

r € X —— outcome of sample of discrete random variable

63
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Discrete Random Variables

X — discrete random variable

sample space of possible outcomes,
X ” which may be finite or countably infinite

r € X —— outcome of sample of discrete random variable
p(X — $) —— probability distribution (probability mass function)

p(x) — shorthand used when no ambiguity

0<p(x)<lforallxze X Zp(w)zl

reX

| | | BFEEe

uniform distribution degenerate distribution




Joint Distribution
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Marginalization

-+ Marginalization
- Events: P(A) = P(A and B) + P(A and not B)

- Random variables P(X= x)= E P(X=xY=y)
y

66



Marginal Distributions
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Conditional Probabilities

-+ P(Y=y | X=X)
- What do you believe about Y=y, if | tell you X=x7?

- P(Max Verstappen winning the 2024 United

States Grand Prix)?

- What if | tell you:

- He has won the Formula One World Champion title for
2021, 2022, and 2023.

- He has won the United States Grand Prix 3/8 he has
raced there.

68
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Conditional Probabilities

- P(A | B) = In worlds that where B is true,

fraction where A Is true

- Example

- H: *"Have a headache”
- F: *Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

F
[ . } H Headaches are rare and flu
is rarer, but if you re coming
down with flu there s a 50-
50 chance you Il have a

headache.
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Independent Random Variables

P(x.y)

X 1Y

p(z,y) = p(z)p(y)
forallr e X,y e )

Equivalent conditions on conditional probabilities:

plz|Y =y) =p(z) and p(y) >0 for all y € Y
p(y| X =x) =p(y) and p(x) > 0 for all x € X
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Bayes Rule (Bayes Theorem)

p(z,y) = p(x)p(y | ) = p(y)p(z | y)
p(z,y)  plx|y)p(y)

pl2) : Zy’ey p(y)p(z | y’)
x p(z | y)p(y)

ply | )=

- A basic identity from the definition of conditional probability
- Used in ways that have no thing to do with Bayesian statistics!
- Typical application to learning and data analysis:

Y —— unknown parameters we would like to infer
X = 1 —— observed data available for learning
p(y) — prior distribution (domain knowledge)

p(x ‘ y) —— likelihood function (measurement model)

p(y | aj) — posterior distribution (learned information) .
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Binary Random Variables

- Bernoulli Distribution: Single toss of a (possibly biased)

coin
X = {O, 1}

0<60<1
Ber(z | 0) = 0°=1 (1 — §)°=0)

- Binomial Distribution: Toss a single (possibly biased)

coin n times, and report the number k of times it comes
up K=4{0,1,2,...,n}
0<o<I1]

EMMmmz(Z)Wﬂ—@“k (Z)me%w

/3
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Bean Machlne (Slr Francis Galton)

http://en.wikipedia.org/wiki/
Bean machine

75


http://en.wikipedia.org/wiki/Bean_machine
http://en.wikipedia.org/wiki/Bean_machine

Categorical Random Variables

- Multinoulli Distribution: Single roll of a (possibly biased) die

X = {01}, z =1
9_(91,92,... ), 0 > 0, Zek_1
Cat(z | 0) = H oL

k=1
- Multinomial Distribution: Roll a single (possibly biased) die
n times, and report the number nk of each possible

outcome
K

Mu(az|n,9):<n1.?n[( >H6’Z’* nk:ink

k:]_ ?’:1 76
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Aligned DNA Sequences
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Multinomial Model of DNA

<3 D A éC

123456789101112131415
Sequence Positio



Next Lecture:

Maximum Likelihood Estimation
(MLE)



