Illustration: Theodore Modis

AIN311 Fundamentals, of Machine Learning

Lecture 9: Logistic Regression **Beriminative vs. Generative Classification**

Erkut Erdem // Hacettepe University // Fall 2024

Last time... Naïve Bayes Classifier **Naïve Bayes Classifier**

Given:

- $-$ Class prior $P(Y)$ – *d* conditionally independent features *X1,…Xd* given the
- $-$ d conditionally independent features $X_1,...X_d$ given the class label Y *|Y)*
- For each *Xi* feature, we have the conditional likelihood *P(Xi |Y)* \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{U} and \mathcal{U} \mathcal{U}

Naïve Bayes Decision rule: $f_{NB}(\mathbf{x}) = \arg \max_{y} P(x_1, \ldots, x_d | y) P(y)$ = $\arg \max_{y} \prod_{i=1} P(x_i|y)P(y)$

Last time... Naïve Bayes Algorithm **discrete features** for discrete features

 $f_{NB}(\mathbf{x}) = \arg \max_{y} \prod_{i=1}^{u} P(x_i|y)P(y)$ We need to estimate these probabilities!

Estimators $\hat{P}(y) = \frac{\{\#j : Y^{(j)} = y\}}{n}$ For Class Prior $\frac{\hat{P}(x_i, y)}{\hat{P}(y)} = \frac{\{\#j : X_i^{(j)} = x_i, Y^{(j)} = y\}}{\{\#j : Y^{(j)} = y\}}/n$ For Likelihood

NB Prediction for test data:
$$
X = (x_1, ..., x_d)
$$

\n
$$
Y = \arg \max_{y} \hat{P}(y) \prod_{i=1}^{d} \frac{\hat{P}(x_i, y)}{\hat{P}(y)}
$$

Last time… Text Classification

?

MEDLINE Article

MeSH Subject Category Hierarchy

- Antogonists and Inhibitors
- Blood Supply
- Chemistry
- Drug Therapy
- Embryology
- Epidemiology

How to represent a text document?

• …

Last time... Bag of words model

Typical additional assumption:

Position in document doesn't matter:

 $P(X_i=x_i | Y=y) = P(X_k=x_i | Y=y)$

- "Bag of words" model order of words on the page ignored The document is just a bag of words: i.i.d. words
- Sounds really silly, but often works very well!
- \Rightarrow K(50000-1) parameters to estimate

The probability of a document with words $x_1, x_2,...$

$$
LengthDoc
$$

$$
\prod_{i=1}^{W} P(x_i|y) = \prod_{w=1}^{W} P(w|y)^{count_w}
$$

Last time... What if features are continuous?

e.g., character recognition: *X_i* is intensity at ith pixel

Gaussian Naïve Bayes (GNB): Gaussian Naïve Bayes (GNB):), **Gaussian Naïve Bayes (GNB):** \bullet $P(X_i = x | Y = y_k) = \frac{1}{\sqrt{2}} e^{-\frac{(x_k + y_k)^2}{2}}$

Different mean and variance for each class k and each pixel i.

ios assumo varianco ies assume vanance Sometimes assume variance

- ependent of $\check{ }$ • or independent of Xi (i.e., Vk) • is independent of Y (i.e., σ_i), $\frac{1}{\frac{p}{\alpha}}$ Sonieuries assume vanance
 $\frac{p}{\alpha}$. is independent of Y (i.e., σ_i).
	- or independent of X_i (i.e., σ_k)
	- or both (i.e., σ)

$$
\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{j=1}^{N} x_j
$$

$$
\hat{\sigma}_{unbiased}^2 = \frac{1}{N-1} \sum_{j=1}^{N} (x_j - \hat{\mu})^2
$$

Logistic Regression

Recap: Naïve Bayes Recap[.] Naïve Bayes Recap: Naïve Bayes

- NB Assumption:
- NB Classifi • NB Classifier: σ ^{σ} d $f_{NB}(x) = \arg \max_{y} \prod_{i=1} P(x_i|y)P(y_i)$

 $i=1$

- Assume parametric form for $P(X_i|Y)$ and $P(Y)$
- Estimate parameters using MLE/MAP and **Example 20 Assume Form Form Portic Properties**
 F - Estimate parameters using MLE/MAP and plug in

Gaussian Naïve Bayes (GNB) **Gaussian(Naïve(Bayes((GNB)(**

- There%are%several%distribu\$ons%that%can%lead%to%a%linear%decision% nere are • There are several distributions that can lead to a linear boundary. There%are%several%distribu\$ons%that%can%lead%to%a%linear%decision%
	- As an example, consider Gaussian Naïve Bayes:

 $Y \sim \text{Bernoulli}(\pi)$

$$
P(X_i|Y=y) = \frac{1}{\sqrt{2\pi\sigma_{i,y}^2}} e^{-\frac{(X_i - \mu_{i,y})^2}{2\sigma_{i,y}^2}}
$$

Gaussian class conditional densities Gaussian class conditional densities

• What if we assume variance is independent of \hat{c}_i lass σ_i $\frac{1}{2}$ i.e. $\sigma_{i.0}^2$ = **Gaussian class conditional densities**

 $\left(y,y\right) ^{2}.$

GNB WIth equal variance is **Classifier!(GRAGIES IN A CONSECTED IN** $P(X_i|Y = y)$
 $P(X_i|Y = y) = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{\frac{-(X_i - \mu_{i,y})^2}{2\sigma_i^2}}$ GNB with equal variance is a Linear Classifier!

Decision boundary:

$$
\prod_{i=1}^{d} P(X_i|Y=0)P(Y=0) = \prod_{i=1}^{d} P(X_i|Y=1)P(Y=1)
$$

$$
\prod_{i=1}^{d} P(X_i|Y=0)P(Y=0) = \prod_{i=1}^{d} P(X_i|Y=1)P(Y=0)
$$

$$
\log \frac{P(Y=0)\prod_{i=1}^{d} P(X_i|Y=0)}{P(Y=1)\prod_{i=1}^{d} P(X_i|Y=1)} = \log \frac{1-\pi}{\pi} + \sum_{i=1}^{d} \log \frac{P(X_i|Y=0)}{P(X_i|Y=1)}
$$
\n
$$
\log \frac{P(Y=0)\prod_{i=1}^{d} P(X_i|Y=0)}{P(Y=0)\prod_{i=1}^{d} P(X_i|Y=0)} = \log \frac{1-\pi}{\pi} + \sum_{i=1}^{d} \log \frac{P(X_i|Y=0)}{P(X_i|Y=0)}
$$
\n
$$
\log \frac{P(X_i|Y=0)}{P(X|Y=1)} = \log \frac{1-\pi}{\pi} + \sum_{i=1}^{d} \log \frac{P(X_i|Y=0)}{P(X_i|Y=1)} = \log \frac{1-\pi}{\pi}
$$
\n
$$
\log \frac{P(Y=0)P(X|Y=0)}{P(X|Y=1)} = \log \frac{1-\pi}{\pi} + \sum_{i=1}^{d} \log \frac{P(X_i|Y=0)}{P(X|Y=1)} = \log \frac{P(X_i|Y=0)}{P(X|Y=0)} = \log \frac{P(X_i|Y=0)}{P(X|Y=0)}
$$

 $(5, 0)$ 1 π $P(X|Y = 0)$ \longrightarrow $\mu_{i,0} - \mu_{i,1}$

GNB WIth equal variance is **Classifier!(GRAGIES IN A CONSECTED IN** $P(X_i|Y = y)$
 $P(X_i|Y = y) = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{\frac{-(X_i - \mu_{i,y})^2}{2\sigma_i^2}}$ GNB with equal variance is a Linear Classifier!

Decision boundary:

$$
\prod_{i=1}^{d} P(X_i|Y=0)P(Y=0) = \prod_{i=1}^{d} P(X_i|Y=1)P(Y=1)
$$

$$
\prod_{i=1}^{d} P(X_i|Y=0)P(Y=0) = \prod_{i=1}^{d} P(X_i|Y=1)P(Y=0)
$$

$$
\log \frac{P(Y=0)\prod_{i=1}^{d} P(X_i|Y=0)}{P(Y=1)\prod_{i=1}^{d} P(X_i|Y=1)} = \log \frac{1-\pi}{\pi} + \sum_{i=1}^{d} \log \frac{P(X_i|Y=0)}{P(X_i|Y=1)}
$$
\n
$$
\log \frac{P(Y=0)\prod_{i=1}^{d} P(X_i|Y=0)}{P(Y=0)\prod_{i=1}^{d} P(X_i|Y=0)} = \log \frac{1-\pi}{\pi} + \sum_{i=1}^{d} \log \frac{P(X_i|Y=0)}{P(X_i|Y=0)}
$$
\n
$$
\log \frac{P(X_i|Y=0)}{P(X|Y=1)} = \log \frac{1-\pi}{\pi} + \sum_{i=1}^{d} \log \frac{P(X_i|Y=0)}{P(X_i|Y=1)} = \log \frac{1-\pi}{\pi}
$$
\n
$$
\log \frac{P(Y=0)P(X|Y=0)}{P(X|Y=1)} = \log \frac{1-\pi}{\pi} + \sum_{i=1}^{d} \log \frac{P(X_i|Y=0)}{P(X|Y=1)} = \log \frac{P(X_i|Y=0)}{P(X|Y=0)} = \log \frac{P(X_i|Y=0)}{P(X|Y=0)}
$$

 $(1 - \pi)$ 1 - π $P(X|Y=0)$ \longrightarrow $\mu_{i,0} - \mu_{i,1}$

GNB with equal variance is a GNB WIth equal variance is **GRAGIES IN A CONSECTED IN** Linear Classifier! **Classifier!(** $P(X_i|Y =$ $P(X_i|Y=y) = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{\frac{-(X_i-\mu_{i,y})^2}{2\sigma_i^2}}$

Decision boundary:

$$
\prod_{i=1}^{d} P(X_i|Y=0)P(Y=0) = \prod_{i=1}^{d} P(X_i|Y=1)P(Y=1)
$$

$$
\prod_{i=1}^{d} P(X_i|Y=0)P(Y=0) = \prod_{i=1}^{d} P(X_i|Y=1)P(Y=0)
$$

$$
\log \frac{P(Y=0)\prod_{i=1}^{d} P(X_i|Y=0)}{P(Y=1)\prod_{i=1}^{d} P(X_i|Y=1)} = \log \frac{1-\pi}{\pi} + \sum_{i=1}^{d} \log \frac{P(X_i|Y=0)}{P(X_i|Y=1)}
$$

$$
\log \frac{P(Y=0)\prod_{i=1}^{d} P(X_i|Y=0)}{P(Y \log \frac{1}{4})\prod_{i=1}^{d} \sum_{i} \left(\frac{\mu_{i,1}^2}{\sigma_i^2}\right)} = \log \frac{1-\pi}{\sigma_i^2} + \sum_{i=1}^{d} \log \frac{P(X_i|Y=0)}{P(X_i|Y=0)}
$$

$$
\log \frac{P(Y=0)P(X|Y \text{ Constant term } - \pi)}{P(Y=0)P(X|Y \text{ Constant term } - \pi)} = \frac{\text{First-order term 0}}{\sigma_i^2} = \frac{\mu_{i,0} - \mu_{i,1}}{\sigma_i^2}.
$$

Gaussian Naïve Bayes (GNB)

$$
X = (x_1, x_2)
$$

\n
$$
P_1 = P(Y = 0)
$$

\n
$$
P_2 = P(Y = 1)
$$

\n
$$
p_1(X) = p(X|Y = 0) \sim \mathcal{N}(M_1, \Sigma_1)
$$

\n
$$
p_2(X) = p(X|Y = 1) \sim \mathcal{N}(M_2, \Sigma_2)
$$

Generative vs. Discriminative Classifiers

- Generative classifiers (e.g. Naïve Bayes)
	- Assume some functional form for $P(X,Y)$ (or $P(X|Y)$ and $P(Y)$)
	- Estimate parameters of P(X|Y), P(Y) directly from training data
- But arg max Y P(X|Y) P(Y) = arg max Y P(Y|X)
- Why not learn P(Y|X) directly? Or better yet, why not learn the decision boundary directly?
- Discriminative classifiers (e.g. Logistic Regression)
	- Assume some functional form for P(Y|X) or for the decision boundary
	- Estimate parameters of P(Y|X) directly from training data

Regression vs. Classification

- Regression estimates a continuous value
- Classification predicts a discrete category

MNIST: classify hand-written digits (10 classes)

ImageNet: classify nature objects (1000 classes)

Regression

- Single continuous output
- Natural scale in
- Loss given e.g. in terms of difference *y* − *f*(*x*)

Classification

- Multiple classes, typically multiple outputs
- Score *should* reflect confidence …

Square Loss

•One hot encoding per class

$$
\mathbf{y} = [y_1, y_2, ..., y_n]^{\top}
$$

$$
y_i = \begin{cases} 1 \text{ if } i = y \\ 0 \text{ otherwise} \end{cases}
$$

- Train with squared loss
- Largest output wins

$$
\hat{y} = \underset{i}{\text{argmax}} \, o_i
$$

Classification

- Multiple classes, typically multiple outputs
- Score *should* reflect confidence …

Uncalibrated Scale

- One output per class
- Largest output wins

 \hat{y} = argmax o_i confidence ... *i*

• Want that correct class is recognized confidently (**large margin**)

$$
o_y - o_i \ge \Delta(y, i)
$$

Classification

- Multiple classes, typically multiple outputs
- Score *should* reflect

Calibrated Scale

•Output matches probabilities (nonnegative, sums to 1)

> $p(y | o) = softmax(o)$ confidence ... = exp(*oy*) $\sum_i \exp(o_i)$

Classification

- Multiple classes, typically multiple outputs
- Score *should* reflect

• Negative log-likelihood

$$
-\log p(y \mid o) = \log \sum_{i} \exp(o_i) - o_y
$$

Logistic Regression

Assumes the following functional form for P(Y|X):

$$
P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
$$

Logistic Regression is a Linear Classifier! **Classifier!(**

Assumes the following functional form for P(Y|X):

$$
P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
$$

Decision boundary:

$$
P(Y=0|X) \underset{i}{\geq} P(Y=1|X)
$$

$$
w_0 + \sum_i w_i X_i \underset{j}{\geq} 0
$$

(Linear Decision Boundary) (Linear Decision Boundary)

9%

Logis&c(Regression(is(a(Linear(Classifier!(Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y|X):

$$
P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
$$

$$
\Rightarrow P(Y=0|X) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
$$

$$
\Rightarrow \frac{P(Y=0|X)}{P(Y=1|X)} = \exp(w_0 + \sum_i w_i X_i) \quad \underset{i}{\geq} \quad \underline{\mathbf{1}} \\
\Rightarrow \boxed{w_0 + \sum_i w_i X_i} \quad \underset{1}{\geq} \quad \underline{\mathbf{0}} \\
\end{cases}
$$

Logistic Regression for more than 2 classes **Logis&c(Regression(for(more(than(2(** l Z Glas

• Logistic regression in more general case, where $Y \in \{y_1, \ldots, y_K\}$ \overline{C}

for k
$$
kK
$$

\n
$$
P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^d w_{ki} X_i)}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^d w_{ji} X_i)}
$$

for k=K (normalization, so no weights for this class)

$$
P(Y = y_K | X) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^{d} w_{ji} X_i)}
$$

Training Logistic Regression

We'll focus on binary classification:

$$
P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}
$$

$$
P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}
$$

How to learn the parameters $w_0, w_1, ..., w_d$? Training%Data% Training Data

Maximum Likelihood Estimates

$$
\widehat{\mathbf{w}}_{MLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{n} P(X^{(j)}, Y^{(j)} | \mathbf{w})
$$

Training Logistic Regression

We'll focus on binary classification:

$$
P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}
$$

$$
P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}
$$

How to learn the parameters $w_0, w_1, ..., w_d$? Training%Data% Training Data

Maximum Likelihood Estimates

$$
\widehat{\mathbf{w}}_{MLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{n} P(X^{(j)}, Y^{(j)} | \mathbf{w})
$$

But there is a problem... Don't have a model for P(X) or P(X|Y) $-$ only for P(Y|X) **But there is a problem … Don't have a model for P(X) or P(X|Y) — only for P(Y|X) But there is a problem…** Don't have a model for $P(X)$ or $P(X|Y)$ — only for $P(Y|X)$

Training Logistic Regression

How to learn the parameters w_0 , w_1 , ..., w_d ? Training%Data% Training Data

Maximum (Conditional) Likelihood Estimates

$$
\widehat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{n} P(Y^{(j)} | X^{(j)}, \mathbf{w})
$$

Discriminative philosophy — Don't waste effort learning P(X), focus on $P(Y|X)$ – that's all that matters for classification!

Expressing Conditional log Likelihood *l* This conditional data log likelihood, which we will denote *l*(*W*) can be written *l* ln*P*(*Y^l* ⁼ ¹*|X^l ,W*)+(1*Y^l* ⁼ ⁰*|X^l* Note here we are utilizing the fact that *Y* can take only values 0 or 1, so only one X *press x*ing Conditional log Likelihoo

$$
l(W) = \sum_{l} Y^{l} \ln P(Y^{l} = 1 | X^{l}, W) + (1 - Y^{l}) \ln P(Y^{l} = 0 | X^{l}, W)
$$

$$
P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}
$$

$$
P(Y = 1|X) = \frac{\exp(w_0 + \sum_{i=1}^{n} w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}
$$

Y can take only values 0 or 1, so only one of the two
terms in the expression will be non-zero for any given will be non-zero for any given Y^{\prime} *l* In this case, we can record of the condition of the condition of the condition of the conditional likelihood a
This case, we can record as: we can re terms in the expression will be non-zero for any given Y

Expressing Conditional log Likelihood *^P*(*^Y* ⁼ ⁰*|X*) = ¹ 4.6 *ⁱ*=1*wiXi*) (24) 1+exp(*w*⁰ +Â*ⁿ*

$l(W)$ = \sum *l* Y^l ln $P(Y^l = 1 | X^l, W) + (1 - Y^l) \ln P(Y^l = 0 | X^l, W)$

Expressing Conditional log Likelihood *^P*(*^Y* ⁼ ⁰*|X*) = ¹ 1+exp(*w*⁰ +Â*ⁿ* Note here we are utilizing the fact that *Y* can take only values 0 or 1, so only one *ⁱ*=1*wiXi*) (24) $P(Y-0|Y)$ 1+exp(*w*⁰ +Â*ⁿ* $P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$
 $\exp(w_0 + \sum_{i=1}^n w_i X_i)$ $P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$ of the two terms in the expression will be non-zero for any given *Y^l* To keep our derivation consistent with common usage, we will in this section \blacksquare of the two terms in the expression will be non-zero for any \blacksquare T is keep our derivation consistent with common usage, we will include T flip the assignment of the boolean variable *Y* so that we assign *^P*(*^Y* ⁼ ⁰*|X*) = ¹ $P(Y = 1|X) = \frac{\exp(w_0 + \sum_{i=1}^n w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$

$$
l(W) = \sum_{l} Y^{l} \ln P(Y^{l} = 1 | X^{l}, W) + (1 - Y^{l}) \ln P(Y^{l} = 0 | X^{l}, W)
$$

=
$$
\sum_{l} Y^{l} \ln \frac{P(Y^{l} = 1 | X^{l}, W)}{P(Y^{l} = 0 | X^{l}, W)} + \ln P(Y^{l} = 0 | X^{l}, W)
$$

 $\frac{1}{1+\exp(w_0+\sum_{i=1}^n w_iX_i)}$

 $\frac{1}{1+\frac{(\mathbf{w}^n - \mathbf{w}^n)^2}{\mathbf{w}^n - \mathbf{w}^n}}$

 $1 + \exp(w_0 + \sum_{i=1}^{\infty} w_i \mathbf{x}_i)$

 $\frac{\exp(w_0 + \sum_{i=1}^n w_i x_i)}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$

Expressing Conditional log Likelihood *^P*(*^Y* ⁼ ⁰*|X*) = ¹ 1+exp(*w*⁰ +Â*ⁿ* Note here we are utilizing the fact that *Y* can take only values 0 or 1, so only one *ⁱ*=1*wiXi*) (24) $P(Y-0|Y)$ 1+exp(*w*⁰ +Â*ⁿ* of the two terms in the expression will be non-zero for any given *Y^l* To keep our derivation consistent with common usage, we will in this section \blacksquare of the two terms in the expression will be non-zero for any \blacksquare T is keep our derivation consistent with common usage, we will include T flip the assignment of the boolean variable *Y* so that we assign *^P*(*^Y* ⁼ ⁰*|X*) = ¹

LOG PROLOG
$$
P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}
$$

$$
P(Y = 1|X) = \frac{\exp(w_0 + \sum_{i=1}^n w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}
$$

$$
l(W) = \sum_{l} Y^{l} \ln P(Y^{l} = 1 | X^{l}, W) + (1 - Y^{l}) \ln P(Y^{l} = 0 | X^{l}, W)
$$

\n
$$
= \sum_{l} Y^{l} \ln \frac{P(Y^{l} = 1 | X^{l}, W)}{P(Y^{l} = 0 | X^{l}, W)} + \ln P(Y^{l} = 0 | X^{l}, W)
$$

\n
$$
= \sum_{l} Y^{l} (w_{0} + \sum_{i}^{n} w_{i} X_{i}^{l}) - \ln(1 + \exp(w_{0} + \sum_{i}^{n} w_{i} X_{i}^{l}))
$$

\n
$$
= \sum_{i}^{n} Y^{l} (w_{i} + \sum_{i}^{n} w_{i} X_{i}^{l}) - \ln(1 + \exp(w_{0} + \sum_{i}^{n} w_{i} X_{i}^{l}))
$$

Maximizing Conditional log Likelihood **Maximizing(Condi&onal(log(Likelihood(**

$$
\max_{\mathbf{w}} l(\mathbf{w}) \equiv \ln \prod_{j} P(y^j | \mathbf{x}^j, \mathbf{w})
$$

=
$$
\sum_{j} y^j (w_0 + \sum_{i}^{d} w_i x_i^j) - \ln(1 + exp(w_0 + \sum_{i}^{d} w_i x_i^j))
$$

Bad news: no closed-form solution to maximize $l(w)$ Good news: $l(w)$ is concave function of w! concave functions easy to optimize (unique maximum)

Optimizing concave/convex functions **OUNDIZING CONCAVE/CONVEX IUNCHO**

- Conditional likelihood for Logistic Regression is concave
- Maximum of a concave function $=$ minimum of a convex fur Gradient Ascent (concave)/ Gradient Descent (convex) • Maximum of a concave function = minimum of a convex function

Gradient Ascent for Logistic Regression ent Ascent for Logistic Reare **Regression(**

Gradient ascent algorithm: iterate until change < ε

$$
w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]
$$

For
$$
i-1, \ldots, d
$$
,

$$
w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]
$$

repeat

repeat Predict what current weight thinks label Y should be

- Gradient ascent is simplest of optimization approaches • Gradient ascent is simplest of optimization approaches
	- e.g.,%Newton%method,%Conjugate%gradient%ascent,%IRLS%(see%Bishop%4.3.3)% − e.g. Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

Effect of step-size *η* **Effect** of \mathbf{C}

 \mathbf{C} maol oomvorgonoo bal idig
Also nossible oscillations Large $\eta \rightarrow$ Fast convergence but larger residual error Also possible oscillations

Small η → Slow convergence but small residual error

Gaussian(Naïve(Bayes(vs.(Logis&c(Regression(Naïve Bayes vs. Logistic Regression

Set of Gaussian Naïve Bayes parameters (feature variance) independent of class label)

Set of Logistic Regression parameters

- Representation equivalence
- − But only in a special case!!! (GNB with class-independent variances) **But (only 1998)**
- But what's the difference???

Gaussian(Naïve(Bayes(vs.(Logis&c(Regression(Naïve Bayes vs. Logistic Regression

Set of Gaussian Naïve Bayes parameters (feature variance) independent of class label)

Set of Logistic Regression parameters

- Representation equivalence
- − But only in a special case!!! (GNB with class-independent variances) **But (only 1998)**
- But what's the difference???
- LR makes no assumption about P(X|Y) in learning!!!
- Loss function!!!
- **Loss(func&on!!!(** − Optimize different functions! Obtain different solutions

Naïve Bayes vs. Logistic **Regression**

Consider Y Boolean, Xi continuous X=<X1 … Xd> Consider Y Boolean, X_i continuous X=<X

Number of parameters:

- NB: 4d+1 π , $(\mu_{1,y}, \mu_{2,y}, ..., \mu_{d,y})$, $(\sigma_{1,y}^2, \sigma_{2,y}^2, ..., \sigma_{d,y}^2)$ y=0,1
- \cdot LR: d+1 W_0 , W_1 , ..., W_d

Estimation method: Estimation metho

- NB parameter estimates are uncoupled • NB%parameter%es\$mates%are%uncoupled%
- LR parameter estimates are coupled Er paramotor commates are couple

Generative vs. Discriminative Generative vs. Discrimi

[Ng & Jordan, NIPS 2001] **Genera&ve(vs** [Ng%&%Jordan,%NIPS%2001]% **(Discrimina&ve(**

Given infinite data (asymptotically), Given%**infinite(data(**(asympto\$cally),% Given%**infinite(data(**(asympto\$cally),%

 If conditional independence assumption holds, Discriminative and generative NB perform similar. If conditional independence assumption holds

 $\epsilon_{\rm Dis, \infty}^{\rm Dis.} \sim \epsilon_{\rm Gen, \infty}^{\rm Gen, \infty}$

If conditional independence assumption does NOT holds, Discriminative outperforms generative NB.

$$
\epsilon_{\text{Dis},\infty}<\epsilon_{\text{Gen},\infty,\infty}
$$

Generative vs. Discriminative **GENERALIVE VS. DISCLIFIT**

[Ng & Jordan, NIPS 2001]

Given finite data (n data points, d features),

$$
\epsilon_{\text{Dis},n} \le \epsilon_{\text{Dis},\infty} + O\left(\sqrt{\frac{d}{n}}\right)
$$

$$
\epsilon_{\text{Gen},n} \le \epsilon_{\text{Gen},\infty} + O\left(\sqrt{\frac{\log d}{n}}\right)
$$

Naïve Bayes (generative) requires $n = O(log d)$ to converge to its asymptotic error, whereas Logistic regression (discriminative) requires $n = O(d)$.

 $\frac{26}{9}$ Why? "Independent class conditional densities"

• parameter estimates not coupled – each parameter is learnt independently, not jointly, from training data.

Naïve Bayes vs. Logistic Regression

Verdict

Both learn a linear decision boundary. Naïve Bayes makes more restrictive assumptions and has higher asymptotic error, BUT converges faster to its less accurate asymptotic error.

Experimental Comparison (Ng-Jordan'01)

UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features

What you should know

- LR is a linear classifier
	- − decision rule is a hyperplane
- LR optimized by maximizing conditional likelihood
	- − no closed-form solution
	- − concave ! global optimum with gradient ascent
- Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
	- − Solution differs because of objective (loss) function
- In general, NB and LR make different assumptions
	- − NB: Features independent given class! assumption on P(**X**|Y)
	- − LR: Functional form of P(Y|**X**), no assumption on P(**X**|Y)
- Convergence rates
	- − GNB (usually) needs less data
		- − LR (usually) gets to better solutions in the limit

Next Lecture: Linear Discriminant Functions Perceptron