
BBM 444, Spring 2024 - Programming Assignment 3
Hacettepe University, Department of Computer Engineering

BBM 444 – Programming Assignment 3: Flash/No Flash Photography
Due date: Monday, 22-04-2024, 23:59.

Overview

The purpose of this assignment is to explore photography with flash/no-flash pairs1. In general,
getting the lighting in your scene right is one of the most important considerations one needs to
take care of when taking a photograph. This can be particularly challenging when the scene you
are trying to photograph has a large dynamic range, including both very dark and very bright
objects. Previously, we saw a passive technique for photographing such difficult scenes, using HDR
imaging. Here we will investigate an alternative active technique, where we insert new light into
the scene using our camera’s flash.

As we discussed in class, using flash has advantages and disadvantages. The extra light reduces
noise, allows us to use larger shutter speeds to reduce motion blur, and can help illuminate the scene
more uniformly. On the flip side, the use of the harsh flash lighting can ruin the scene’s ambiance,
produce highlights, and overall result in unappealing appearance. These issues commonly arise
when using simple point flash lights, e.g., the one on a DLSR camera or at the back of a cell phone.
A photographer with access to some more advanced equipment would use either a pointable flash
that they can bounce off of the ceiling, or they would use a diffuse display to make the light
smoother. However, for the purposes of this assignment, we can assume we do not have access to
such equipment.

Instead, we can attempt to produce images that combine the advantages of flash and ambient
illumination by capturing two images, one with each illumination, and then fusing them into one.
In class we saw two types of techniques for this kind of flash/no-flash photography, one based on
bilateral filtering, and another based on gradient-domain processing. In this assignment, you will
implement both of these techniques, and apply them to photos provided by us, as well as photos
you capture on your own.

Throughout the assignment, we refer to a number of key papers that were also discussed in
class. Even though the assignment and class slides describe most of the steps you need to perform,
we highly recommended that you read the associated papers. As always, there is a “Hints and
Information” section at the end of this document that is likely to help.
Notation. Throughout this assignment we use bold font to denote image-sized quantities, and
regular font to denote scalars. We use regular multiplication, division, squaring, absolute value,
etc., notation involving image-sized quantities to denote element-wise operations. We use ⟨·, ·⟩
to indicate the scalar resulting from the vector dot product between vectorized versions of the
image-sized quantities.

1. Bilateral filtering (100 points)

In the first part of the assignment, you will use the lamp flash/no-flash images from the paper by
Petschnigg et al. [1], available in the ./data/lamp directory of the assignment ZIP archive. Your
focus will be on denoising the ambient image using bilateral filtering. Figure 1 shows representative
results for this section. As we discussed in class, bilateral filtering is a form of “blurring” that
attempts to respect sharp edges in the image. This is achieved by weighting neighboring pixels not
just based on their distance from the pixel that is being filtered, but also based on their similarity to
it. This can help reduce noise in an image, without overly blurring details. Further improvements
can be obtained by using bilateral filtering techniques that combine information from both the

1Adapted from the programming assignment developed by Ioannis Gkioulekas for his computational photography
class.

Page 1

BBM 444, Spring 2024 - Programming Assignment 3
Hacettepe University, Department of Computer Engineering

Figure 1: From left to right: Photos taken under ambient lighting and flash lighting; denoising
result using basic bilateral filtering; and final denoising result.

flash and ambient illumination images, as proposed by Petschnigg et al. [1]. Figure 3 of that paper
is particularly helpful for navigating this assignment.
Implement bilateral filtering (40 points). As a first attempt at denoising, you can simply
apply the bilateral filter on the ambient image. Using the notation of Petschnigg et al. [1], we will
denote the ambient image A and the denoised image ABase. You will implement bilateral filter as
described in the “PiecewiseBilateral” algorithm of Section 5 of the paper by Durand and Dorsey [2].
Implement joint-bilateral filtering (30 points). You will now attempt to get a better result
by using joint bilateral filtering, as described in Section 4.1 of Petschnigg et al. [1], to produce
the image ANR in the paper’s notation. As we discussed in class, joint bilateral filtering involves
computing the intensity kernel using the flash image—see also Equation (4) of Petschnigg et al. [1].
Implement detail transfer (20 points). While joint bilateral filtering can help avoid overblur-
ring the ambient image, it cannot add new detail to it. You will enhance the detail of your result by
implementing the flash-to-ambient detail transfer procedure described in Section 4.2 of Petschnigg
et al. [1]. For this, you will need to apply basic bilateral filtering to the flash image. Following
Petschnigg et al. [1], we denote the flash image F and the result of filtering F Base. Then, you
can form a new estimate for the ambient image by combining F , F Base, and the image ANR from
before, as:

ADetail = ANR F + ϵ

F Base + ϵ
(1)

where ϵ is some small value you can select on your own.
Implement shadow and specularity masking (10 points). Finally, it is time to create the
mask M described in Section 4.3 of Petschnigg et al. [1]. This is used to detect regions in the
flash image that have shadows or specularities not present in the ambient image. The mask can
be generated using the simple thresholding operations described in the paper. Once you have the
mask, form a final estimate AFinal of the ambient image as

AFinal = (1 − M) · ADetail + M · ABase (2)

Implementation details. These details apply to all four of the previous steps. As we discussed
in class, the bilateral filter takes as input two parameters, the standard deviation σs of the spatial
Gaussian kernel, and the standard deviation σr of the intensity Gaussian kernel. You will need to
experiment with different values of these parameters to find which ones give the most aesthetically
pleasing results. A good range to experiment with is σs ∈ [1, 64] and σr ∈ [0.05, 0.25]. Note that
these values assume that the maximum value in your image is 1, so make sure to normalize first.

In general, the best parameters will be different for each of the four types of filtering you will
implement: basic bilateral filtering, joint bilateral filtering, denoising with detail transfer, and
mask-based merging. In your report, you should compare the results of the four algorithms for
different sets of parameter values. In these comparisons, you should make sure to show difference
images image1 − image2, which should help highlight where in the images the techniques perform

Page 2

BBM 444, Spring 2024 - Programming Assignment 3
Hacettepe University, Department of Computer Engineering

Figure 2: Combining photographs taken under ambient lighting (left) and flash lighting (middle),
to produce a new image that combines the best of both worlds (right).

differently. You should report the parameter values you chose as best for the four types of filtering,
and discuss the advantages and disadvantages of each type.

2. Gradient-domain processing (100 points)

In the second part of the assignment, you will use the museum flash/no-flash images from the
paper by Agrawal et al. [1], available in the ./data/museum directory of the assignment ZIP
archive. Figure 2(a-b) shows the two images. As you can see in the ambient image, the background
painting is nicely illuminated from the ambient lighting. However, the person in the foreground
is very dimly lit. We can attempt to address this using the camera’s flash, which results in the
flash photograph. Now the person in the foreground is well-illuminated, but our photograph suffers
from a different problem: The sharp lighting of our flash has created a specular highlight on the
painting. In this part of the assignment, you will focus on fusing the flash and ambient images,
in order to produce uniform illumination without the specularity and other artifacts. Figure 2(c)
shows the end result of the fusion. You will do this fusion using gradient-domain processing, as
proposed by Agrawal et al. [3]. As usual, you are strongly encouraged to read through the paper,
to find many implementation details and insights about the various parameters.
Differentiate and then re-integrate an image (75 points). This task will not give you any
new images, but it should help you write and test the Poisson solver you will use next to create
fused flash/no-flash images.

Take any image you want (e.g., the ambient image from the museum pair), which we will denote
as I. The gradient field ∇I of this image will be a two-channel image, where one channel is the
per-pixel partial-x derivatives Ix, and the other channel is the per-pixel partial-y derivatives Iy.
You will attempt to integrate this gradient field to form a new image, I∗, that should ideally be
the same as the original image I.

For this, you should first compute the divergence of the gradient field ∇I,

div(∇I) = ∇ · ∇I = Ixx + Iyy , (3)

which you can do by using Laplacian filtering on the original image I. Then, you will use this
divergence as input to your implementation of the Poisson solver. You will implement the conjugate
gradient descent (CGD) algorithm we discussed in class. We recommend that you read through
Sections 8 and B2 of Shewchuk’s [4] excellent (and funny) discussion of CGD. Algorithm 1 shows
the CGD procedure you should implement. In the algorithm, LaplacianFiltering is convolution
with the Laplacian kernel, B is a binary image-sized mask that equals 0 on the boundary and 1
elsewhere, and I∗

boundary is an image equal at the boundary to the values used by the boundary
conditions.

Page 3

BBM 444, Spring 2024 - Programming Assignment 3
Hacettepe University, Department of Computer Engineering

For initialization, set I∗
init equal to the zero image. For Dirichlet boundary conditions, set the

outermost pixels of I∗
boundary, at all four image edges, to equal the corresponding pixels of the orig-

inal image I. You can experiment with different values for the parameters ϵ and N controlling the
convergence of your algorithm. If your implementation is correct, then the final image I∗ should
be equal to the original image I.

Create the fused gradient field (25 points). In this part, we will follow the notation of
Agrawal et al. [3], to make it easier to compare with the paper. Note that some quantities reuse
symbols from the bilateral filtering question, but are not necessarily the same. We will denote
the ambient image as a, the flash image as Φ′, and the fused image as Φ∗. The first step in the
fusion process requires forming the gradient field that will be used to create Φ∗. In turn, this
gradient field will be created using the gradient fields ∇a and ∇Φ′ of the ambient and flash image,
respectively.

First, compute ∇a and ∇Φ′ . As with ∇I, these are two-channel images, with one channel cor-
responding to partial-x and the other partial-y derivatives. Then, use these gradients to implement
the following steps:

1. Compute the gradient orientation coherency map M using Equation (5) of Agrawal et al. [3],

M = |∇Φ′ · ∇a|
||∇Φ′|| ||∇a||

=
|Φ′

x · ax + Φ′
y · ay|√

Φ′
x

2 + Φ′
y

2
√

a2
x + a2

y

. (4)

Note that, in this equation, both the numerator and denominator are computed pixel-wise,
and the mask M is image-sized.

2. Compute the pixel-wise saturation weight map ws from the flash image Φ′ using Equation
(11) of Agrawal et al. [3],

ws = tanh
(
σ · (Φ′ − τs)

)
. (5)

Normalize the saturation map to be in the range [0, 1].

Page 4

BBM 444, Spring 2024 - Programming Assignment 3
Hacettepe University, Department of Computer Engineering

3. Compute a new gradient field (two-channel image) for the fused image Φ∗ using Equation
(12) of Agrawal et al. [3],

∇Φ∗ = ws · ∇a + (1 − ws)(M · ∇Φ′ + (1 − M) · ∇a) , (6)

or equivalently,[
Φ∗

x

Φ∗
y

]
=

[
ws · ax + (1 − ws)(M · Φ′

x + (1 − M) · ax)
ws · ay + (1 − ws)(M · Φ′

y + (1 − M) · ay)

]
. (7)

You should experiment with different values for the scalar parameters σ and τs, starting with
the values recommended in the paper. In your report, you should show the gradient fields ∇a,
∇Φ′, and ∇Φ∗, and mention the parameter values you used.

Finally, integrate the gradient field ∇Φ∗, by computing its divergence and providing it as input
to the Poisson solver you implemented earlier. The result will be a final fused image Φ∗. We
recommend using Dirichlet boundary conditions: Set the outermost pixels of Φ∗, at all four image
edges, to equal the corresponding pixels of either the ambient image, or the flash image, or their
average. Likewise, you can use different initializations, corresponding to either the ambient image,
or the flash image, or the average of the two, or even the all-zero image. Experiment with different
boundary conditions and initializations, and show the final fused image you obtain.

3. Capture your own flash/no-flash pairs (100 points)

Now it is time to apply what you implemented above to your own pictures. You should capture two
flash/no- flash pairs. The first pair should be suitable for applying the denoising techniques based
on bilateral filtering. Good examples include dimly lit environments, e.g., a room illuminated by
just a desk lamp, or an outdoors scene at night illuminated by only a street lamp. You can look
at Petschnigg et al. [1] for inspiration.

The second pair should be suitable for applying the fusion algorithm based on gradient-domain
processing. To create results which are clearly better than any single exposure, you should take
pictures of a scene where flash affects some parts of the image, while leaving others relatively
unaffected. Good examples include dark scenes that have both matte and specular objects. You
can look at Agrawal et al. [3] for inspiration.

The total number of points you will get for this part will depend on how visually compelling
the final fused images you create are.

What to Hand In

Your submitted solution should include the following:

• The filled-in Jupyter Notebook as both your source code and report. The notebook should
include (1) markdown cells reporting your written answers alongside any relevant figures and
images and (2) well-commented code cells with reproducible results.

• Image files for Problems 1 and 2, showing the various fusion results you are asked to generate.

• Image files that you create in Problem 3, showing the original flash and no-flash pairs you
capture with your camera, and the fused images you generate from them. You can also
include additional image files for various experiments (e.g., fusion with different values) other
than the final ones if you think they show something important.

Page 5

BBM 444, Spring 2024 - Programming Assignment 3
Hacettepe University, Department of Computer Engineering

You should prepare a ZIP file named name-surname(s)-assgn3.zip containing the files stated above
and, and submit it via email to abtasdemir@cs.hacettepe.edu.tr.

When submitting your work, please follow these guidelines:

• Use the subject line: ”BBM 446 Assignment 3”

• Include your full name and student ID in the email body.

• Ensure that the file you share is accessible.

Late policy

You may use up to five extension days (in total) over the course of the semester for the programming
assignments. Late submission will not be allowed.

Academic Integrity

All work on assignments must be done individually unless stated otherwise. You are encouraged
to discuss with your other classmates about the given assignments, but these discussions should
be carried out in an abstract way. That is, discussions related to a particular solution to a specific
problem (either in actual code or in the pseudocode) will not be tolerated. In short, turning in
someone else’s work, in whole or in part, as your own will be considered as a violation of academic
integrity. Please note that the former condition also holds for the material found on the web as
everything on the web has been written by someone else.

Hints and Information

• When dealing with color images, you should apply all the algorithms you implement to each
color channel separately. (Though note the hint below about the mask M .)

• In your bilateral filtering implementation, you do not need to implement Gaussian filtering
on your own. Instead, you can use OpenCV’s gaussianblur function.

• The “PiecewiseBilateral” algorithm of Durand and Dorsey [2] includes an InterpolationWeight
step, which the paper implements using linear interpolation. We recommend implementing
this as follows: First, accumulate the images J j for all j values in a NB SEGMENTS-channel
image, where the j-th channel equals J j . Then, use scipy’s interpolate.interpn to inter-
polate the channels and form a final single-channel image.
Additionally, when creating the segments, you should make sure that the first value ij is
smaller than the smallest value in your image (typically 0), and the last value ij is larger than
the largest value in your images (typically 1). You can do this by defining minI ≡ min(I) − λ
and maxI ≡ max(I)+λ, where λ is a small constant (e.g., λ = 0.01, should be smaller than σr).
Then, use these adjusted values of minI and maxI to set NB SEGMENTS = ceil

(
maxI−minI

σr

)
and ij = minI + j · maxI−minI

NB SEGMENTS .

• When debugging your bilateral filter implementation of the bilateral filter, it can be helpful
to compare your output with that of OpenCV’s bilateralFilter. However, you should not
use the OpenCV implementation to produce any results.

Page 6

BBM 444, Spring 2024 - Programming Assignment 3
Hacettepe University, Department of Computer Engineering

• When computing the mask M for the shadow and specularity masking in Equation (2), you
will get better results by using linear images. However, the images you are provided with
are non-linear, and you do not have an exposure stack you can use to perform radiometric
calibration. As a default, you can apply the gamma correction operator of the sRGB stan-
dard [5]. This is the inverse of the gamma encoding operator you used in assignments 1 and
2, and corresponds to the following transformation:

Clinear =

Cnon-linear

12.92 , Cnon-linear ≤ 0.0404482,(
Cnon-linear+0.055

1.055

)2.4
, Cnon-linear > 0.0404482,

(8)

Additionally, the mask M may turn out to have a lot of small disconnected areas, or large
connected areas with small gaps. These can result in strong artifacts in your final image
AFinal. You can get better results by using morphological filtering operations (dilation, ero-
sion, opening, and closing) to post-process the individual shadow and specularity masks,
before combining them to form the mask M . Finally, note that even though you should
apply the various bilateral filtering operations separately on each channel, you will likely get
better results by computing a mask M from the luminance of the ambient and flash images,
and using this same mask for all color channels. You can experiment with all these options
and see what gives you better results.

• To solve this assignment, you will need to implement the gradient, divergence, and Lapla-
cian differential operators. We strongly recommend creating three subroutines, gradient,
divergence, laplacian, that you reuse throughout the assignment whenever you need to
compute these quantities. To compute the first-order derivatives in the gradient and di-
vergence operators, we recommend using numpy’s diff function with appropriate padding.
To compute the Laplacian, we recommend using scipy’s signal.convolve2d function to
convolve with the Laplacian kernel,

∆ =

0 1 0
1 −4 1
0 1 0

 , (9)

with arguments mode=’full’, boundary=’fill’, fillvalue=0.
The gradient and divergence implementations require different padding; figuring out exactly
how to pad can be tricky and will require some trial-and-error. To test your implementation,
you should ensure that for any arbitrary image I, the following holds

divergence(gradient(I)) = Laplacian(I) (10)

at all pixels except at the boundary (first and last row, first and last column). Note that the
incorrect boundary values is the reason we use the mask B when computing the residual in
Algorithm 1.

• The algorithms in this assignment can work with both RAW and rendered (e.g., PNG or
JPEG) images. Typically, working with RAW will give you better looking results, but in
that case you will also need to use dcraw and tonemapping. We leave it up to you to decide
what images to use.

References

[1] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama. Digital photog-
raphy with flash and no-flash image pairs. ACM Transactions on Graphics (TOG), 23(3):664–672,
2004.

Page 7

BBM 444, Spring 2024 - Programming Assignment 3
Hacettepe University, Department of Computer Engineering

[2] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-range images.
In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’02, pages 257–266, New York, NY, USA, 2002. ACM.

[3] A. Agrawal, R. Raskar, S. K. Nayar, and Y. Li. Removing photography artifacts using gradient
projection and flash-exposure sampling. ACM Transactions on Graphics (TOG), 24(3):828–835,
2005.

[4] J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
School of Computer Science. Carnegie Mellon University, Pittsburgh, PA, 15213:10, 1994.

[5] International Electrotechnical Commission and others. IEC 61966-2-1:1999. Multimedia sys-
tems and equipment–Colour measurements and management–Part 2-1: Colour management–Default
RGB colour space–sRGB, 1999.

Page 8

