BBM444 FUNDAMENTALS OF COMPUTATIONAL PHOTOGRAPHY

Lecture H02-I pace Formation
hacettepe
UNIVERSITY
COMPUTER
VISION LAB
VISION LAB

Firkut Erdem // ceettepe University // Spring 2023

Today's Lecture

- Pinhole camera
- Basics of geometric optics and lenses
- Field of view
- Magnification and perspective
- Zooming
- Orthographic camera and telecentric lenses

Disclaimer: The material and slides for this lecture were borrowed from
-loannis Gkioulekas' 15-463/15-663/15-862 "Computational Photography" class
-Steve Marschner’s CS6640 "Computational Photography" class
—David Lindell's CSC2529 "Computational Imaging" class

The modern photography pipeline

post-capture processing

Some motivational imaging experiments

Let's say we have a sensor...

... and an object we like to photograph

What would an image taken like this look like?

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

All scene points contribute to all sensor pixels

What does the image on the sensor look like?

Bare-sensor imaging

All scene points contribute to all sensor pixels

What can we do to make our image look better?

Let's add something to this scene

What would an image taken like this look like?

Pinhole imaging

Pinhole imaging

Pinhole imaging

Each scene point contributes to only one sensor pixel
What does the image on the sensor look like?

Pinhole imaging

Pinhole camera

Pinhole camera a.k.a. camera obscura

Pinhole camera a.k.a. camera obscura

First mention ...

Chinese philosopher Mozi (470 to 390 BC)

First camera ...

Greek philosopher Aristotle (384 to 322 BC)

Fun discovery - a small crack in the eastern facade of the Canada Malting Co silos has created a perfect pinhole camera. The result: real time projection of Toronto's waterfront on the silo's interior curved surfaces. An unplugged projection show!

9:37 AM • Jan 27, 2022 • Twitter for iPhone

B|B|C|FOUR

Vermeer and The Camera Obscura

Officer and Laughing Girl, 1657

Vermeer and The Camera Obscura

Pinhole camera terms

Pinhole camera terms

barrier (diaphragm)
image plane

Focal length

Focal length

What happens as we change the focal length?

Focal length

What happens as we change the focal length?

Focal length

What happens as we change the focal length?

Focal length

- Double "focal length" leads to
- image twice as large
- one fourth as much illumination at image plane

Pinhole size

Ideal pinhole has infinitesimally small size

- In practice that is impossible.

Pinhole size

What happens as we change the pinhole diameter?

Pinhole size

What happens as we change the pinhole diameter?

Pinhole size

Pinhole size

Pinhole size

What happens as we change the pinhole diameter?

Will the image keep getting sharper the smaller we make the pinhole?

Effect of pinhole size

Photograph made with small pinhole

Effect of pinhole size

Photograph made with larger pinhole

Smaller pinhole is sharper

1 mm

0.6 mm

LUZ
 OPTICA

FOTOGRAFIA
forbemaris

Smaller pinhole is sharper ... to a point

Diffraction limit

A consequence of the wave nature of light

What do geometric optics predict will happen?

What do wave optics predict will happen?

Diffraction limit

A consequence of the wave nature of light

What do geometric optics predict will happen?

What do wave optics predict will happen?

Diffraction limit

A consequence of the wave nature of light

What do geometric optics predict will happen?

What do wave optics predict will happen?

Diffraction limit

Diffraction pattern $=$ Fourier transform of the pinhole.

- Smaller pinhole means bigger Fourier spectrum.
- Smaller pinhole means more diffraction.

What about light efficiency?

What about light efficiency?

Some terminology notes

A "stop" is a change in camera settings that changes amount of light by a factor of 2

The " f-number" is the ratio: focal length / pinhole diameter

Accidental pinholes

What does this image say about the world outside?

Accidental pinhole camera

Accidental pinhole camera

Accidental pinhole camera

Accidental pinhole camera

Anti-pinhole or Pinspeck cameras

OPTICA ACTA, 1982, VOL. 29, NO. 1, 63-67

Anti-pinhole imaging

ADAM LLOYD COHEN
Parmly Research Institute, Loyola University of Chicago,
Chicago, Illinois 60626, U.S.A.
(Recerted 16 April 1981; recision recerited 8 July 1981)

Abstract

By complementing a pinhole to produce an isolated opaque spot, the light ordinarily blocked from the pinhole image is transmitted, and the light ordinarily transmitted is blocked. A negative geometrical image is formed, distinct from the familiar 'bright-spot' diffraction image. Anti-pinhole, or 'pinspeck' images are visible during a solar eclipse, when the shadows of objects appear crescent-shaped. Pinspecks demonstrate unlimited depth of field, freedom from distortion and large angular field. Images of different magnification may be formed simultaneously. Contrast is poor, but is improvable by averaging to remove noise and subtraction of a d.c. bias. Pinspecks may have application in X-ray space optics, and might be employed in the eyes of simple organisms.

Pinhole and Anti-pinhole cameras

Accidental pinhole camera

projected pattern on the wall

upside down

window with smaller gap

view outside window

Mixed accidental pinhole and anti-pinhole cameras

Accidental pinspeck camera

a)
a)

c)

c)

b)

d)

a) Difference image

b) Difference upside down

Pinhole camera trade-off

Small (ideal) pinhole:

1. Image is sharp.
2. Signal-to-noise ratio is low.

Pinhole camera trade-off

Large pinhole:

1. Image is blurry.
2. Signal-to-noise ratio is high.

Almost, by using lenses

Lenses map "bundles" of rays from points on the scene to the sensor.

The Eye

Figures: Francis Crick, The Astonishing Hypothesis, 1995

- The human eye is a camera

The Eye

- The human eye is a camera!
- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

The Retina

Receptors Density - Fovea

Receptors Density - Fovea

64	66	76	85	99	100	101	101	106	112	117	118	105	77	57	50	51	43	52	55	62
65	69	76	84	97	89	93	107	121	121	121	122	125	101	71	43	45	41	52	52	68
66	72	78	83	91	86	91	102	108	104	106	113	136	118	86	43	49	47	60	55	64
73	79	83	85	94	93	90	83	79	79	85	92	124	124	108	62	58	43	57	57	64
78	84	86	86	69	71	68	68	86	108	115	109	117	135	139	93	73	37	49	58	70
75	75	73	77	75	80	62	84	90	94	98	102	102	110	114	100	80	58	51	51	51
77	72	73	83	84	91	80	77	71	70	73	80	80	87	99	103	93	67	53	50	51
74	66	69	88	98	101	95	65	56	55	55	60	64	70	93	114	112	82	56	47	53
64	59	66	86	108	103	98	54	52	57	54	54	67	77	103	124	125	96	64	46	53
56	57	66	83	112	108	104	59	55	60	59	60	78	94	115	125	121	98	68	43	46
56	58	66	80	114	121	117	85	71	67	69	76	87	101	116	117	112	94	68	43	46
61	57	61	77	111	125	119	114	98	87	87	94	97	102	111	113	108	90	65	43	44
63	52	54	73	103	117	107	126	119	108	103	104	106	103	108	115	112	91	65	48	42
66	63	58	63	94	115	120	108	102	104	106	108	105	108	107	105	105	97	72	47	41
68	65	58	61	86	108	115	106	102	103	103	104	98	99	97	97	103	101	81	57	43
72	68	62	64	78	102	111	105	101	101	101	103	99	98	96	97	104	104	86	63	48
74	71	64	64	69	93	104	99	94	93	96	101	99	101	102	103	108	106	90	69	53

Animal Eyes

Fig. 1.6 A patch of light sensitive epithelium can be gradually turned into a perfectly focussed cameratype eye if there is a continuous selection for improved spatial vision. A theoretical model based on conservative assumptions about selection pressure and the amount of variation in natural populations suggest that the whole sequence can be accomplished amazingly fast, in less than 400000 generations. The number of generations is also given between each of the consecutive intermediates that are drawn in the figure. The starting point is a flat piece of epithelium with an outer protective layer, an intermediate layer of receptor cells, and a bottom layer of pigment cells. The first half of the sequence is the formation of a pigment cup eye. When this principle cannot be improved any further, a lens gradually evolves. Modified from Nilsson and Pelger (1994).

Natural Eyes

Lens (very) basics

Replacing pinholes with lenses

Daguerrotype

- invented in 1836 by Louis Daguerre
- lenses focus light, better chemicals!

exposure 10-12 mins

Lenses

- focus light
- magnify objects

Nimrud lens - 2700 years old

Lenses

Lenses

Lenses

What is a lens?

A piece of glass manufactured to have a specific shape

What is a lens?

A piece of glass manufactured to have a specific shape

The lens on your camera

How does a lens work?

Refraction

Refraction is the bending of rays of light when they move from one material to another

How does a lens work?

Lenses are designed so that their refraction makes light rays bend in a very specific way.

The thin lens model

Thin lens model

Simplification of geometric optics for well-designed lenses.

Thin lens model

Simplification of geometric optics for well-designed lenses.

Two assumptions:

1. Rays passing through lens center are unaffected.

Thin lens model

Simplification of geometric optics for well-designed lenses.

Two assumptions:

1. Rays passing through lens center are unaffected.
2. Parallel rays converge to a single point located on focal plane.

Thin lens model

Simplification of geometric optics for well-designed lenses.

Two assumptions:

1. Rays passing through lens center are unaffected.
2. Parallel rays converge to a single point located on focal plane.

Thin lens model

Simplification of geometric optics for well-designed lenses.

Two assumptions:

1. Rays passing through lens center are unaffected.
2. Parallel rays converge to a single point located on focal plane.

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

1. Trace rays through lens center.
2. For all other rays: a. Trace their parallel through lens center.
b. Connect on focal plane.

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

1. Trace rays through lens center.
2. For all other rays:
a. Trace their parallel through lens center.
b. Connect on focal plane.

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

1. Trace rays through lens center.
2. For all other rays: a. Trace their parallel through lens center.
b. Connect on focal plane.

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

1. Trace rays through lens center.
2. For all other rays: a. Trace their parallel through lens center.
b. Connect on focal plane.

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

1. Trace rays through lens center.
2. For all other rays: a. Trace their parallel through lens center.
b. Connect on focal plane.

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

1. Trace rays through lens center.
2. For all other rays:
a. Trace their parallel through lens center.
b. Connect on focal plane.

Focusing property:

1. Rays emitted from a point on one side converge to a point on the other side.

Tracing rays through a thin lens

Consider an object emitting a bundle of rays. How do they propagate through the lens?

1. Trace rays through lens center.
2. For all other rays:
a. Trace their parallel through lens center.
b. Connect on focal plane.

Focusing property:

1. Rays emitted from a point on one side converge to a point on the other side.
2. Bundles emitted from a plane parallel to the lens converge on a common plane.

Gaussian lens formula

How can we relate scene-space (S, y) and image space (S^{\prime}, y^{\prime}) quantities?

Gaussian lens formula

How can we relate scene-space (S, y) and image space ($\mathrm{S}^{\prime}, \mathrm{y}^{\prime}$) quantities?

Gaussian lens formula

How can we relate scene-space (S, y) and image space ($\mathrm{S}^{\prime}, \mathrm{y}^{\prime}$) quantities?

Use similar triangles.

Gaussian lens formula

How can we relate scene-space (S, y) and image space ($\mathrm{S}^{\prime}, \mathrm{y}^{\prime}$) quantities?
$\frac{y^{\prime}}{y}=\frac{S^{\prime}}{S}$

Use similar triangles.

Gaussian lens formula

How can we relate scene-space (S, y) and image space ($\mathrm{S}^{\prime}, \mathrm{y}^{\prime}$) quantities?

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\frac{S^{\prime}}{S} \\
\frac{y^{\prime}}{y} & =?
\end{aligned}
$$

Gaussian lens formula

How can we relate scene-space (S, y) and image space ($\mathrm{S}^{\prime}, \mathrm{y}^{\prime}$) quantities?

Gaussian lens formula

How can we relate scene-space (S, y) and image space ($\mathrm{S}^{\prime}, \mathrm{y}$) quantities?
$\frac{1}{S^{\prime}}+\frac{1}{S}=\frac{1}{f}$

- We call $m=y^{\prime} / y$ the magnification.

Special focus distances

$$
S^{\prime}=f, S=?, m=?
$$

$$
\begin{aligned}
& \frac{1}{S^{\prime}}+\frac{1}{S}=\frac{1}{f} \\
& m=\frac{S^{\prime}-f}{f}
\end{aligned}
$$

Special focus distances

$$
S^{\prime}=f, S=\infty, m=0 \rightarrow \text { infinity focus (parallel rays) }
$$

$$
\begin{array}{|l|}
\hline \frac{1}{S^{\prime}}+\frac{1}{S}=\frac{1}{f} \\
m=\frac{S^{\prime}-f}{f} \\
\hline
\end{array}
$$

$$
S^{\prime}=S=?, m=?
$$

Special focus distances

$$
S^{\prime}=f, S=\infty, m=0 \rightarrow \text { infinity focus (parallel rays) }
$$

$S^{\prime}=S=2 f, m=1 \rightarrow$ object is reproduced in real-life size

Free lunch?

By using a lens, we simultaneously achieve:

1. Image is sharp.

Do we lose anything by using a lens?
2. Signal-to-noise ratio is high.

Defocus

What happens if we don't place the sensor at the focus distance?

Defocus

What happens if we don't place the sensor at the focus distance?

We get a blurry image. This is called defocus.

- Defocus never happens with an ideal pinhole camera.

Defocus

Can't we just move the sensor to the correct distance?

Defocus

where we need to move sensor for squirrel to be in focus
Can't we just move the sensor to the correct distance?

Unless our scene is just one plane, part of it will always be out of focus.

How do we control what is in focus?

How do we control what is in focus?

How do we control what is in focus?

We change the distance between the sensor and the lens

move lens further
away from sensor

- What happens to plane in focus?

How do we control what is in focus?

- What happens to plane in focus? \rightarrow It moves closer.

The lens on your camera

Focus ring: controls distance of lens from sensor

Demonstration

Defocus

Does the mean that lenses are only good for planar scenes?

Circle of confusion

How do we find where the point will focus?

Circie ofconfusion

Will the point focus at a distance smaller or larger than S^{\prime} ?

Circle of confusion

How can we compute the diameter of the circle of confusion?

Circle of confusion

How can we compute the diameter of the circle of confusion? \rightarrow Use similar triangles.

Circle of confusion

How can we compute the diameter of the circle of confusion? \rightarrow Use similar triangles.

Circle of confusion

How can we compute the diameter of the circle of confusion? \rightarrow Use similar triangles.

Circle of confusion

How can we compute the diameter of the circle of confusion? \rightarrow Use similar triangles.

Depth of field

Distance from the in-focus object plane where the circle of confusion is acceptably small.

Depth of field

Circle of confusion

$$
c=M \cdot D \cdot \frac{\left|S-S_{1}\right|}{S}
$$

Canon 5D Mark III: f=50mm, f/2.8 ($\mathrm{N}=2.8$),
focused at 5 m , pixel size $=7.5 \mathrm{um}$

Defocus depends on aperture diameter

What happens to the circle of confusion as the aperture diameter is reduced?

Defocus depends on aperture diameter

What happens to the circle of confusion as the aperture diameter is reduced? \rightarrow It shrinks.

Defocus depends on aperture diameter

What happens to the depth of field as the aperture diameter is reduced?

Defocus depends on aperture diameter

What happens to the depth of field as the aperture diameter is reduced? \rightarrow It expands.
(:

Aperture size

Most lenses have apertures of variable size.

- The size of the aperture is expressed as the "f-number": The bigger this number, the smaller the aperture.

f/ 1.4

f/ 2.8

f/4

f/8

f/ 16

You can see the aperture by removing the lens and looking inside it.

Demonstration

Depth of Field

Form of defocus blur is determined by shape of aperture.

Defocus depends on aperture diameter

If small aperture sizes reduce defocus blur, should we always use the smallest aperture?

Bokeh

Sharp depth of field ("bokeh") is often desirable.

What happens as the aperture keeps getting smaller?

What happens as the aperture keeps getting smaller?

Lens becomes equivalent to a pinhole.

point maps to point (sharp image)
point maps to point (sharp image)

- No defocus, everything is sharp regardless of depth.
- Very little light, signal-to-noise ratio is just as bad as pinhole.

Lens camera and pinhole camera

The lens camera

The pinhole camera

The pinhole camera

Central rays propagate in the same way for both models!

Describing both lens and pinhole cameras

We can derive properties and descriptions that hold for both camera models if:

- We consider only central rays.
- We assume that everything of interest in the scene is within the depth of field.

Important difference: focal length

In a pinhole camera, focal length is distance between aperture and sensor

Important difference: focal length

In a lens camera, focal length is distance where parallel rays intersect

Describing both lens and pinhole cameras

We can derive properties and descriptions that hold for both camera models if:

- We consider only central rays.
- We assume everything of interest in the scene is within the depth of field.
- We assume that the focus distance of the lens camera is equal to the focal length of the pinhole camera.

Effect of aperture size on lens and pinhole cameras

Doubling the aperture diameter:

- Increases light throughput by four times.
- Increases circle of confusion for out-offocus plane by two times.
- Decreases depth of field by two times.

Doubling the aperture diameter:

- Increases light throughput by four times.
- Increases circle of confusion for all planes by two times.

Thin lenses are fiction!

Thin lenses are a fiction

The thin lens model assumes that the lens has no thickness, but this is rarely true...

To make real lenses behave like ideal thin lenses, we have to use combinations of multiple lens elements (compound lenses).

Thin lenses are a fiction

The thin lens model assumes that the lens has no thickness, but this is rarely true...

Even though we have multiple lenses, the entire optical system can be (paraxially) described using a single thin lens of some equivalent focal length and aperture number.

To make real lenses behave like ideal thin lenses, we have to use combinations of multiple lens elements (compound lenses).

Lenses - Aberrations

Lenses - Aberrations

Refraction at interfaces of complicated shapes

What shape should an interface have to make parallel rays converge to a point?

Refraction at interfaces of complicated shapes

What shape should an interface have to make parallel rays converge to a point?

Single hyperbolic interface:
point to parallel rays

Double hyperbolic interface: point to point rays

What shape should an interface have to make parallel rays converge to a point?

Spherical lenses

In practice, lenses are often made to have spherical interfaces for ease of fabrication.

- Two roughly fitting curved surfaces ground together will eventually become spherical.

Spherical lenses don't bring parallel rays to a point.

- This is called spherical aberration.
- Approximately axial (i.e., paraxial) rays behave better.

Aberrations

Deviations from ideal thin lens behavior (e.g., imperfect focus).

- Example: spherical aberration.

Lenses - Aberrations

Oblique aberrations

These appear only as we move further from the center of the field of view.

- Contrast with spherical and chromatic, which appear everywhere.
- Many other examples (astigmatism, field curvature, etc.).

Coma

Pincushion

Barrel

Distortion example

Lenses - Aberrations

Aberrations

Deviations from ideal thin lens behavior (e.g., imperfect focus).

- Example: chromatic aberration.
focal length shifts with wavelength

glass has dispersion (refractive index changes with wavelength)
one lens cancels out dispersion of other

glasses of different refractive index

Using a doublet (two-element compound lens), we can reduce chromatic aberration.

Chromatic aberration examples

Field of view

Field of view

- Determines how much of scene is in frame
- Traditionally specified by focal length
- but interpreting this number requires considering the "format," or size of the film or sensor
- After decades of 35 mm , that format is stuck in our heads
- fields of view are usually discussed using the numbers that would be written on a lens for the 35mm format
- Changing FOV while keeping the camera fixed
- strictly "crops" the image: relationships between objects are fixed corresponds to turning the zoom control on a modern camera

Field of view

Note: here I drew a lens, but I could have just as well drawn a pinhole

Field of view depends of focal length

Size of field of view governed by size of the camera retina:

$$
\varphi=\tan ^{-1}\left(\frac{d}{2 f}\right)
$$

Smaller field of view = larger focal length

Field of view

The part of the in-focus plane that gets mapped on the sensor.
field of view

- What happens to field of view as we focus closer?

Field of view

The part of the in-focus plane that gets mapped on the sensor.

- What happens to field of view as we focus closer? \rightarrow It becomes smaller.

Comparison with pinhole camera

- What happens to field of view as we move closer?

Comparison with pinhole camera

No need to refocus: we can move object closer without changing aperture-sensor distance.

- What happens to field of view as we move closer? \rightarrow It becomes smaller, but amount differs.

Comparison with pinhole camera

No need to refocus: we can move object closer without changing aperture-sensor distance.

This can be done with a lens only if depth of field is large enough. Then the two behave the same.

Field of view also depends on sensor size

- What happens to field of view when we reduce sensor size?

Field of view also depends on sensor size

- What happens to field of view when we reduce sensor size? \rightarrow It decreases.

Field of view also depends on sensor size

- "Full frame" corresponds to standard film size.
- Digital sensors come in smaller formats due to manufacturing limitations (now mostly overcome).
- Lenses are often described in terms of field of view on film instead of focal length.
- These descriptions are invalid when not using full-frame sensor.

Crop factor

Magnification and perspective

Magnification depends on depth

- What happens to magnification as we focus further away?

Magnification depends on depth

- What happens to magnification as we focus further? \rightarrow It becomes smaller.

Magnification depends on depth

Comparison with pinhole camera

No need to refocus: we can move object further without changing aperture-sensor distance.

This can be done with a lens only if depth of field is large enough. Then the two behave the same.

Forced perspective

The Ames room illusion

The Ames room illusion

The arrow illusion

Prof. Kokichi Sugihara has many other amazing illusions involving perspective distortion, check them out on YouTube or on his website:
http://www.isc.meiji.ac.jp/~kokichis/

Zooming

Field of view

The part of the in-focus plane that gets mapped on the sensor.

- What happens to field of view as we focus closer? \rightarrow It becomes smaller.

Zooming means changing the focal length

Very different process from refocusing

Zooming and field of view

- What happens to field of view when we focus closer? \rightarrow It decreases.
- What happens to field of view when we increase lens focal length?

Zooming and field of view

move sensor to keep focus at

- When we increase lens focal length, field of view decreases (we "zoom in").

Field of view

Andrew McWilliams

Field of view

Field of view

Increasing the lens focal length is similar to cropping

$\mathrm{f}=25 \mathrm{~mm}$

$f=50 \mathrm{~mm}$

$\mathrm{f}=135 \mathrm{~mm}$
Is this effect identical to cropping?

The lens on your camera

Focus ring: controls distance of lens from sensor

Zoom ring: controls focal length of lens

The lens on your camera

Focusing versus zooming

When you turn the focus ring to bring lens further-away from the sensor:

1. The in-focus distance decreases (you need to get closer to object).
2. The field of view decreases (you see a smaller part of the object).
3. The magnification increases (same part of the object is bigger on sensor).

When you turn the zoom ring to decrease the focal length of the lens:

1. The in-focus distance increases (you need to move away from the object).
2. The field of view increases (you see a larger part of the object).
3. The magnification decreases (same part of the object is smaller on sensor).

Focusing versus zooming

When you turn the focus ring to bring lens further-away from the sensor:

1. The in-focus distance decreases (you need to get closer to object).
2. The field of view decreases (you see a smaller part of the object).
3. The magnification increases (same part of the object is bigger on sensor).

When you turn the zoom ring to decrease the focal length of the lens:

1. The in-focus distance increases (you need to move away from the object).
2. The field of view increases (you see a larger part of the object).
3. The magnification decreases (same part of the object is smaller on sensor)

We can use both focus and zoom to cancel out their effects.

What if...

What if...

Is this the same image as the one we had at focal length $2 f$ and distance $2 Z$?

Similar construction can be done with lenses, after taking care of refocusing.

Perspective distortion

long focal length

mid focal length

short focal length

Perspective distortion

Perspective distortion

What is the best focal length for portraits?

That's like asking which is better, vi or emacs...

long focal length

mid focal length

short focal length

Vertigo effect

Named after Alfred Hitchcock's movie

- also known as "dolly zoom"

Vertigo effect

How would you create this effect?

Long focal length

When the focal length is long, the field of view becomes very small and the resulting image appears more flat.

Long focal length

Here's another example: Empire State building and the Statue of Liberty are about 4.5 miles apart, and the former is $5 x$ taller.

Orthographic camera and telecentric lenses

What if...

Continue increasing Z and f while maintaining same magnification?

$$
f \rightarrow \infty \text { and } \frac{f}{Z}=\text { constant }
$$

Orthographic camera

Depth-independent magnification $m=1$ (real-life size).

Weak-perspective camera

Depth-independent magnification $m=f / Z_{0}$.

How can we implement such a camera with lenses?

Telecentric lens

Place a pinhole at focal length, so that only rays parallel to primary ray pass through.

Telecentric lens

Place a pinhole at focal length, so that only rays parallel to primary ray pass through.

Regular vs telecentric lens

regular lens
telecentric lens

Next Lecture:
 Noise and Color

