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Today’s Lecture
• Controlling exposure 

• High-dynamic-range imaging

• Tonemapping

Disclaimer: The material and slides for this lecture were borrowed from 
—Ioannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class

—Wojciech Jarosz’s CS 89.15/189.5 “Computational Aspects of Digital Photography” class

—Derek Hoiem’s CS 498 “Computational Photography” class
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Light, exposure and dynamic range
• Exposure: how bright is the scene overall? 

• Dynamic range: contrast in the scene

• ratio of brightest to darkest intensity
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Today’s Lecture
• Controlling exposure 

• High-dynamic-range imaging

• Tonemapping
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Exposure control

5



Roughly speaking, the “brightness” of a captured image given a fixed scene.

Exposure = Gain x Flux x Time

• Flux is controlled by the aperture.
• Time is controlled by the shutter speed.
• Gain is controlled by the ISO.

6

What is exposure?



Exposure

Aperture

Shutter ISO
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Exposure controls brightness of image



Exposure

Aperture

Shutter ISO
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Exposure controls brightness of image



shutter

incoming 
light

Controls the length of time that shutter remains 
open.

closed shutter

sensor
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Shutter speed



shutter

incoming 
light

Controls the length of time that shutter remains 
open.

open shutter

sensor
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Shutter speed



Shutter speed
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shutter

sensor

incoming 
light

Controls the period of time that shutter remains 
open.

open shutter
What happens to the image as we increase shutter speed?
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Shutter speed



How can we “simulate” decreasing the shutter speed?

Moving scene elements appear blurry.
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Side-effects of shutter speed



Shah et al. High-quality Motion Deblurring from a Single Image, SIGGRAPH 2008 14

Motion deblurring



Exposure

Aperture

Shutter ISO
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Exposure controls brightness of image



sensor distance S’

in-focus object distance S focal length f

Controls area of lens that lets light pass through. 

actual object distance O

Also determines 
circle of confusion.
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Aperture size



sensor distance S’

in-focus object distance S focal length f

actual object distance O

Controls area of lens that lets light pass through. 

Also determines 
circle of confusion.
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Aperture size



You can see the aperture by removing the lens and looking inside it.

Most lenses have apertures of variable size.
• The size of the aperture is expressed as the “f-number”: The bigger this 

number, the smaller the aperture. 

f / 1.4 f / 2.8 f / 4 f / 8 f / 16
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Aperture size



Depth of field decreases as aperture size increases.
• Having a very sharp depth of field is known as “bokeh”.
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Side-effects of aperture size
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How can we simulate bokeh?



Barron et al., “Fast Bilateral-Space Stereo for Synthetic Defocus,” CVPR 2015

Infer per-pixel depth, then blur with depth-dependent kernel.
• Example: Google camera “lens blur” feature
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How can we simulate bokeh?



Zhang et al., “Synthetic Defocus and Look-Ahead Autofocus for Casual Videography,” SIGGRAPH 2019 22

How can we simulate bokeh?

Synthetic Defocus and Look-Ahead Autofocus for Casual Videography • 30:5
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(3D) Comparison of synthetic shallow '2)� rendering models. 
The in-focus regions such as the person's shoulder and hat should 
occlude the background defocus. Our forward model, see 
Section 4.1 correctly renders such occlusions while the model that 
uses weighted layer summation [Srinivasan et al. 2018] does not.

(3B) Shallow DOF Rendering with HDR Recovery. Visually salient bokeh that appears at saturated regions in (a) is suppressed in (b) without recovering a 
higher dynamic range. Predicted HDR recovery map enables more photo-realistic shallow DOF rendering. Rendered video results demonstrate more 
visually prominent differences and can be seen in the accompanying video.

(3C) Effect of photo triplets in training. We compare the disparity map 
and shallow DOF rendering using networks trained w� and w�R triplet 
consistency. The results with triplet consistency are geometrically more 
accurate in the background region of high disparity.

7HPSRUDO�VWDELOL]DWLRQ��FORVH�XS
��$�� )OLFNHU� UHGXFWLRQ� E\� WHPSRUDO� ILOWHULQJ�� )OLFNHU� UHGXFWLRQ� LV� EHVW�
DSSUHFLDWHG� LQ� WKH� DFFRPSDQ\LQJ� YLGHR�� $V� D� SUR[\�� ZH� SORW� WKH�PHDQ�
SL[HO� YDOXH� DURXQG� VDWXUDWHG� SL[HOV�� ZKLFK� ZH� ILQG� LV� FRUUHODWHG� ZLWK�
IOLFNHU� OHYHO� LQ� YLGHR�� 1RWH� WKDW� WHPSRUDO� ILOWHULQJ� JUHDWO\� UHGXFHV� WKH�
KLJK�IUHTXHQF\� IOXFWXDWLRQV�� 7KH� VDPSOH� YLGHR� IUDPHV� LOOXVWUDWH�
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Fig. 3. Summarized contribution of our Refocusable Video Rendering subsystem (Section 4).

ACM Trans. Graph., Vol. 38, No. 4, Article 30. Publication date: July 2019.

Synthetic Defocus and Look-Ahead Autofocus for Casual Videography • 30:5

Input Training without triplets 

Training with triplets Back plane focus, close-up

(a) Input f/22 (b) SDOF w/o HDR Recovery (c) SDOF w/ HDR Recovery

0.525

0.555

0.585

No stabilization�
Temporal stabilization

Flicker Reduction

Video frame index

M
ea

n 
pi

xe
l v

al
ue

Input video frames

No stabilization, close-up

Input Our renderingSrinivasan�HW�DO [2018]

(3D) Comparison of synthetic shallow '2)� rendering models. 
The in-focus regions such as the person's shoulder and hat should 
occlude the background defocus. Our forward model, see 
Section 4.1 correctly renders such occlusions while the model that 
uses weighted layer summation [Srinivasan et al. 2018] does not.

(3B) Shallow DOF Rendering with HDR Recovery. Visually salient bokeh that appears at saturated regions in (a) is suppressed in (b) without recovering a 
higher dynamic range. Predicted HDR recovery map enables more photo-realistic shallow DOF rendering. Rendered video results demonstrate more 
visually prominent differences and can be seen in the accompanying video.

(3C) Effect of photo triplets in training. We compare the disparity map 
and shallow DOF rendering using networks trained w� and w�R triplet 
consistency. The results with triplet consistency are geometrically more 
accurate in the background region of high disparity.

7HPSRUDO�VWDELOL]DWLRQ��FORVH�XS
��$�� )OLFNHU� UHGXFWLRQ� E\� WHPSRUDO� ILOWHULQJ�� )OLFNHU� UHGXFWLRQ� LV� EHVW�
DSSUHFLDWHG� LQ� WKH� DFFRPSDQ\LQJ� YLGHR�� $V� D� SUR[\�� ZH� SORW� WKH�PHDQ�
SL[HO� YDOXH� DURXQG� VDWXUDWHG� SL[HOV�� ZKLFK� ZH� ILQG� LV� FRUUHODWHG� ZLWK�
IOLFNHU� OHYHO� LQ� YLGHR�� 1RWH� WKDW� WHPSRUDO� ILOWHULQJ� JUHDWO\� UHGXFHV� WKH�
KLJK�IUHTXHQF\� IOXFWXDWLRQV�� 7KH� VDPSOH� YLGHR� IUDPHV� LOOXVWUDWH�
W\SLFDO�OHYHOV�RI�VWDELOL]DWLRQ�GHOLYHUHG�E\�WKH�WHPSRUDO�ILOWHULQJ��1RWH�WKH�
KLJK�IOXFWXDWLRQ�LQ�IRFXV�RQ�WKH�ZRPDQ
V�IDFH�EHIRUH�ILOWHULQJ�

Fig. 3. Summarized contribution of our Refocusable Video Rendering subsystem (Section 4).

ACM Trans. Graph., Vol. 38, No. 4, Article 30. Publication date: July 2019.

Synthetic Defocus and Look-Ahead Autofocus for Casual Videography
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Fig. 1. We present a new approach to pursue cinema-like focus in casual videography, with shallow depth of field (DOF) and accurate focus that isolates the
subject. We start with (A) a deep DOF video shot with a small lens aperture. We use a new combination of machine learning, physically-based rendering,
and temporal filtering to synthesize (B) a shallow DOF, refocusable video. We also present a novel Look-Ahead Autofocus (LAAF) framework that uses
computer vision to (C) analyze upcoming video frames for focus targets. Here, for example, we see face detection (white boxes) and localization of who is
speaking/singing [Owens and Efros 2018] (heat map). The result is shallow DOF video (D), where LAAF tracks focus on the singer to start, and transitions
focus to the child as the camera pans away from the musicians. The LAAF framework makes future-aware decisions to drive focus tracking and transitions at
each frame. This presents a new framework to solve the fundamental realtime limitations of camera-based video autofocus systems.

In cinema, large camera lenses create beautiful shallow depth of �eld (DOF),
but make focusing di�cult and expensive. Accurate cinema focus usually
relies on a script and a person to control focus in realtime. Casual videogra-
phers often crave cinematic focus, but fail to achieve it. We either sacri�ce
shallow DOF, as in smartphone videos; or we struggle to deliver accurate
focus, as in videos from larger cameras. This paper is about a new approach
in the pursuit of cinematic focus for casual videography. We present a system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/7-ART30 $15.00
https://doi.org/10.1145/3306346.3323015

that synthetically renders refocusable video from a deep DOF video shot with
a smartphone, and analyzes future video frames to deliver context-aware
autofocus for the current frame. To create refocusable video, we extend
recent machine learning methods designed for still photography, contribut-
ing a new dataset for machine training, a rendering model better suited to
cinema focus, and a �ltering solution for temporal coherence. To choose
focus accurately for each frame, we demonstrate autofocus that looks at
upcoming video frames and applies AI-assist modules such as motion, face,
audio and saliency detection. We also show that autofocus bene�ts from
machine learning and a large-scale video dataset with focus annotation,
where we use our RVR-LAAF GUI to create this sizable dataset e�ciently.
We deliver, for example, a shallow DOF video where the autofocus transi-
tions onto each person before she begins to speak. This is impossible for
conventional camera autofocus because it would require seeing into the
future.

ACM Trans. Graph., Vol. 38, No. 4, Article 30. Publication date: July 2019.
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Employ a learning-based strategy, i.e. an image-to-image translation model



Exposure

Aperture

Shutter ISO
23

Exposure controls brightness of image



The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicingdenoising

color 
transforms

tone 
reproduction compression

final RGB 
image (non-
linear, 8-bit)

24

The (in-camera) image processing pipeline



analog amplifier (gain):
• gets voltage in range 

needed by A/D converter.
• accommodates ISO 

settings.
• accounts for vignetting.

look-up table (LUT):
• corrects non-linearities in 

sensor’s response 
function (within proper 
exposure).

• corrects defective pixels.

analog-to-digital 
converter (ADC):
• depending on sensor, 

output has 10-16 bits.
• most often (?) 12 bits.

analog 
voltage

analog 
voltage

discrete 
signal

discrete 
signal
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Analog front-end



Image becomes very grainy because noise is amplified.
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Side-effects of increasing ISO



ISO is not an acronym.
• It refers to the International Organization for Standardization.
• ISO comes from the Greek word ίσος, which means equal.
• It is pronounced (roughly) eye-zo, and should not be spelled out.
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Note about the name ISO



Aperture priority (“A”): you set aperture, camera sets everything else.
• Pros: Direct depth of field control.
• Cons: Can require impossible shutter speed (e.g. with f/1.4 for a bright scene).

Shutter speed priority (“S”): you set shutter speed, camera sets everything else.
• Pros: Direct motion blur control.
• Cons: Can require impossible aperture (e.g. when requesting a 1/1000 speed for a dark 

scene)

Automatic (“AUTO”): camera sets everything.
• Pros: Very fast, requires no experience.
• Cons: No control.

Manual (“M”): you set everything.
• Pros: Full control.
• Cons: Very slow, requires a lot of experience.

generic camera mode dial
28

Camera modes



Aperture priority (“A”): you set aperture, camera sets everything else.
• Pros: Direct depth of field control.
• Cons: Can require impossible shutter speed (e.g. with f/1.4 for a bright scene).

Shutter speed priority (“S”): you set shutter speed, camera sets everything else.
• Pros: Direct motion blur control.
• Cons: Can require impossible aperture (e.g. when requesting a 1/1000 speed for a dark 

scene)

Automatic (“AUTO”): camera sets everything.
• Pros: Very fast, requires no experience.
• Cons: No control.

Manual (“M”): you set everything.
• Pros: Full control.
• Cons: Very slow, requires a lot of experience.

generic camera mode dial
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Camera modes



Light metering

30



• SLR cameras use a separate low-
resolution sensor that is placed at the 
focusing screen.

• Mirrorless cameras use measurements 
directly from the main sensor.
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Light metering in modern cameras



• Measurements are averaged to produce a single intensity estimate, which is assumed to 
correspond to a scene of 18% reflectance (the “key”). 

• Exposure is set so that this average is exposed at the middle of the sensor’s dynamic 
range.

• Averaging can be done in many ways:

1. Center-weighed.

2. Spot.

3. Scene-specific preset 
(portrait, landscape, horizon).

4. “Intelligently” using proprietary algorithm.
32

Light metering in modern cameras



Low-resolution can make it difficult to correctly meter the scene and set exposure.
• In which of these scenes is it OK to let the brightest pixels be overexposed?

33

Metering challenges: low resolution



Low-resolution can make it difficult to correctly meter the scene and set exposure.
• In which of these scenes is it OK to let the brightest pixels be overexposed?
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Metering challenges: low resolution



Today’s Lecture
• Controlling exposure 

• High-dynamic-range imaging

• Tonemapping
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Light, exposure and dynamic range
• Exposure: how bright is the scene overall? 

• Dynamic range: contrast in the scene

• ratio of brightest to darkest intensity
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Our devices do not match the world

37



1500

1

25,000

400,000

2,000,000,000
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The world has a high dynamic range

Relative brightness of different scenes, ranging from 1 inside 
a dark room lit by a monitor to 2,000,000 looking at the Sun. 



10-6 106

adaptation range of our eyes

common real-world scenes
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The world has a high dynamic range



10-6 106

adaptation range of our eyes

common real-world scenes

10-6 106
sensor
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(Digital) sensors also have a low dynamic range



10-6 106

adaptation range of our eyes

common real-world scenes

10-6 106
image

low exposure
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(Digital) images have an even lower dynamic range



10-6 106

adaptation range of our eyes

common real-world scenes

10-6 106
image

high exposure
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(Digital) images have an even lower dynamic range



The dynamic range challenge
Examples Inside is too dark 

Outside is too bright

Sun overexposed 
Foreground too dark

Af
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 sl

id
e 

by
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o 
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nd
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Examples Inside is too dark 
Outside is too bright

Sun overexposed 
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Inside is too dark 
Outside is too brightSun overexposed 

Foreground too dark



Low Dynamic Range (LDR)
Shorter exposure

✓detail in shadows 
✗ clipped highlights

✓detail in highlights 
✗ noisy/clipped shadows

[Durand and Dorsey 02] [Durand and Dorsey 02]

5

Low Dynamic Range (LDR)

44

detail in shadows
clipped highlights

detail in highlights 
noisy/clipped shadows

Longer exposure



10-6 106

adaptation range of our eyes

common real-world scenes

10-6 106
image

low exposure
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(Digital) images have an even lower dynamic range



10-6 106

adaptation range of our eyes

common real-world scenes

10-6 106
image

high exposure
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(Digital) images have an even lower dynamic range



pure black pure white

Any guesses about the dynamic range of a standard 0-255 image?

47

(Digital) images have an even lower dynamic range



pure black pure white

Any guesses about the dynamic range of a standard 0-255 image?

about 50x 
brighter

48

(Digital) images have an even lower dynamic range



Two challenges:

1. HDR imaging – which parts of the world do we measure in the 8-14 bits available to our sensor?

2. Tonemapping – which parts of the world do we show in the 4-10 bits available to our display?

49

Our devices do not match the real world
• 10:1 photographic print (higher for glossy paper)

• 20:1 artist's paints

• 200:1 slide film

• 500:1 negative film

• 1000:1 LCD display

• 2000:1 digital SLR (at 12 bits)

• 100000:1 real world



• 10:1 photographic print (higher for glossy paper)

• 20:1 artist's paints

• 200:1 slide film

• 500:1 negative film

• 1000:1 LCD display

• 2000:1 digital SLR (at 12 bits)

• 100000:1 real world

Tonemapping compensates for display limitations

HDR imaging compensates for sensor limitations

HDR imaging and tonemapping are distinct 
techniques with different goals

50

Our devices do not match the real world

Two challenges:

1. HDR imaging – which parts of the world do we measure in the 8-14 bits available to our sensor?

2. Tonemapping – which parts of the world do we show in the 4-10 bits available to our display?



High dynamic range imaging

51



52

-4 stops
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-2 stops
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2 stops



55

4 stops



Slide credits

56

HDR 
contrast 

reduction 
(scaling)
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HDR 
local tone 
mapping



1. Exposure bracketing: Capture multiple LDR images at different exposures

2. Merging: Combine them into a single HDR image

58

Key idea



59“Sunset from Rigi Kaltbad” [Wojciech Jarosz 2014]

Application: Photography



60“Sunset from Rigi Kaltbad” [Wojciech Jarosz 2014]



61“Camogli Lighthouse” [Wojciech Jarosz 2012]



62“Camogli Lighthouse” [Wojciech Jarosz 2012]



63“Florence” [Wojciech Jarosz 2011]



64“Florence” [Wojciech Jarosz 2011]



65“Matterhorn and Riffelsee” [Wojciech Jarosz 2010]



66“Matterhorn and Riffelsee” [Wojciech Jarosz 2010]



1. Exposure bracketing: Capture multiple LDR images at different exposures

2. Merging: Combine them into a single HDR image

67

Key idea



10-6 106

10-6 106

image

low contrast
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Multiple exposure photography

high dynamic range

real
world



10-6 106

10-6 106

image

low contrast
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Multiple exposure photography

high dynamic range

real
world



10-6 106

10-6 106

image

low contrast

70

Multiple exposure photography

high dynamic range

real
world



10-6 106

10-6 106

image

low contrast
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Multiple exposure photography

high dynamic range

real
world



10-6 106

10-6 106

image

low contrast
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Multiple exposure photography

high dynamic range

real
world



10-6 106

10-6 106

image

low contrast
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Multiple exposure photography

high dynamic range

real
world



1. Shutter speed

2. F-stop (aperture, iris)

3. ISO

4. Neutral density (ND) filters

Pros and cons of each for HDR?
74

Ways to vary exposure



1. Shutter speed
– Range: about 30 sec to 1/4000 sec (6 orders of magnitude)
– Pros: repeatable, linear
– Cons: noise and motion blur for long exposure

2. F-stop (aperture, iris)
– Range: about f/0.98 to f/22 (3 orders of magnitude)
– Pros: fully optical, no noise
– Cons: changes depth of field

3. ISO
– Range: about 100 to 1600 (1.5 orders of magnitude)
– Pros: no movement at all
– Cons: noise

4. Neutral density (ND) filters
– Range: up to 6 densities (6 orders of magnitude)
– Pros: works with strobe/flash
– Cons: not perfectly neutral (color shift), extra glass (interreflections, aberrations), 

need to touch camera (shake)
75

Ways to vary exposure



Note: shutter times usually obey a power series – each “stop” is a factor of 2
1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec
usually really is
1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

Questions:
1. How many exposures?
2. What exposures?

76

Exposure bracketing with shutter speed



Note: shutter times usually obey a power series – each “stop” is a factor of 2
1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec
usually really is
1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

Questions:
1. How many exposures?
2. What exposures?

Answer: Depends on the scene, but a good default is 5 exposures, 
the metered exposure and +/- 2 stops around that.
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Exposure bracketing with shutter speed



1. Exposure bracketing: Capture multiple LDR images at different exposures

2. Merging: Combine them into a single HDR image

78

Key idea



The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicingdenoising

color 
transforms

tone 
reproduction compression

final RGB 
image (non-
linear, 8-bit)

79

The image processing pipeline



The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicingdenoising

color 
transforms

tone 
reproduction compression

final RGB 
image (non-
linear, 8-bit)
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The image processing pipeline



when not over/under exposed

Colorchecker: Great tool for radiometric 
and color calibration.

Patches at bottom row have log-
reflectance that increases linearly.
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RAW images have a linear response curve



in shadows we are 
limited by noise

in highlights we are 
limited by clipping
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Over/under exposure



Exposure time:
t5 t4 t3 t2 t1

Real scene flux for image pixel (x,y):    Φ(x, y) 

What is an expression for the image Ilinear(x,y) as a function of Φ(x,y)?
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RAW (linear) image formation model



Exposure time:
t5 t4 t3 t2 t1

What is an expression for the image Ilinear(x,y) as a function of Φ(x,y)?

84

Scene radiance Φ(x,y) reaches the sensor at a pixel x, 
y 
For each image I, 
- radiance gets multiplied by exposure factor ti

(depends on shutter speed, aperture, ISO) 
- noise gets added 
- values above 1 get clipped

(depends on photosite well capacity) 

Real scene flux for image pixel (x,y):    Φ(x, y) 

RAW (linear) image formation model



Exposure time:
t5 t4 t3 t2 t1

Real scene flux for image pixel (x,y):    Φ(x, y) 

What is an expression for the image Ilinear(x,y) as a function of Φ(x,y)?

Ilinear(x,y) = clip[ ti ⋅ Φ(x,y) + noise ]
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RAW (linear) image formation model



Exposure time:
t5 t4 t3 t2 t1

Real scene flux for image pixel (x,y):    Φ(x, y) 

What is an expression for the image Ilinear(x,y) as a function of Φ(x,y)?

Ilinear(x,y) = clip[ ti ⋅ Φ(x,y) + noise ]

How would you merge these images into an HDR one?
86

RAW (linear) image formation model
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Simple in principle: 
- imageA = 1/30th second (“brighter” image) 
- imageB = 1/120th second (“darker” image) 
- imageHDR = average(4·imageB, remove-clipped(imageA)) 
- assumes images have been linearized

2-image example

imageA imageB imageHDR

2-image example

Simple in principle:

- imageA = 1/30th second (“brighter” image)

- imageB = 1/120th second (“darker” image)

- imageHDR = average(4·imageB, remove-clipped(imageA)) 

- assumes images have been linearized



t5 t4 t3 t2 t1

For each pixel:

1. Find “valid” images

2. Weight valid pixel values appropriately

3. Form a new pixel value as the weighted average of valid pixel values

How would you 
implement steps 1-2?
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Merging RAW (linear) exposure stacks



t5 t4 t3 t2 t1

For each pixel:

1. Find “valid” images

2. Weight valid pixel values appropriately

3. Form a new pixel value as the weighted average of valid pixel values

(noise) 0.05 < pixel < 0.95 (clipping)

valid
noise

clipped
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Merging RAW (linear) exposure stacks



t5 t4 t3 t2 t1

For each pixel:

1. Find “valid” images

2. Weight valid pixel values appropriately

3. Form a new pixel value as the weighted average of valid pixel values

(noise) 0.05 < pixel < 0.95 (clipping)

(pixel value) / ti
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Merging RAW (linear) exposure stacks



91

Merging result (after tonemapping)



92

What if I cannot use raw?



Radiometric calibration
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• Can you foresee any problem when we switch from RAW to rendered images?

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicingdenoising

color 
transforms

tone 
reproduction compression

final RGB 
image (non-
linear, 8-bit)
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The image processing pipeline



• Can you foresee any problem when we switch from RAW to rendered images?
• How do we deal with the nonlinearities?

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicingdenoising

color 
transforms

tone 
reproduction compression

final RGB 
image (non-
linear, 8-bit)
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The image processing pipeline



The process of measuring the camera’s response curve. Can be done in three ways:

• Take images of scenes with different flux while keeping exposure the same.

• Take images under different exposures while keeping flux the same.

• Take images of scenes with different flux and under different exposures.
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Radiometric calibration



Patches at bottom row have log-
reflectance that increases linearly.

Colorchecker: Great tool for radiometric 
and color calibration.

Different values correspond to patches 
of increasing reflected flux.
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Same camera exposure, varying scene flux



White balance card: Great tool for white 
balancing and radiometric calibration.

All points on (the white part of) the 
target have the same reflectance.

Different values correspond to images 
taken under increasing camera 

exposure.
kn

ow
n 

ex
po

su
re
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Same scene flux, varying camera exposure



You can do this using the LDR exposure stack itself.

Same scene flux, different camera exposure

Different scene flux, same camera exposure
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Varying both scene flux and camera exposure



Real scene flux for image pixel (x,y): Φ(x, y)

How would you merge the non-linear images into an HDR one?

Exposure time: ti

Ilinear(x,y) = clip[ ti ⋅ Φ(x,y) + noise ]

Inon-linear(x,y) = f[ Ilinear(x,y) ]
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Non-linear image formation model



Real scene flux for image pixel (x,y): Φ(x, y)

Use inverse transform to estimate linear image, then proceed as before

Exposure time: ti

Ilinear(x,y) = clip[ ti ⋅ Φ(x,y) + noise ]

Inon-linear(x,y) = f[ Ilinear(x,y) ] Iest(x,y) = f-1[ Inon-linear(x,y) ]
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Non-linear image formation model



Inon-linear(x,y) = f[ Ilinear(x,y) ]

Iest(x,y) = f-1[ Inon-linear(x,y) ]
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Linearization



1. Calibrate response curve

2. Linearize images

For each pixel:

3. Find “valid” images

4. Weight valid pixel values appropriately

5. Form a new pixel value as the weighted average of valid pixel values

(noise) 0.05 < pixel < 0.95 (clipping)

(pixel value) / ti

Same steps as in the RAW case.
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Merging non-linear exposure stacks



104

What if I cannot measure the response curve?



If you cannot do calibration, take a look at the image’s 
EXIF data (if available).

Often contains information about tone reproduction 
curve and color space.
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You may find information in the image itself



The exact tone reproduction curve depends on the camera.
• Often well approximated as Lγ, for different values of the power γ (“gamma”).
• A good default is γ = 1 / 2.2.

before gamma after gamma

If nothing else, take the square of your image to approximately remove effect of tone 
reproduction curve.
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Tone reproduction curves



107

What if I cannot measure the response curve?
• Predict an approximated camera response function from the observed images.



The Approach
• Get pixel values Zij for image with shutter time Δtj (ith pixel location, jth image)

• Exposure is radiance integrated over time:

• To recover radiance Ri, we must map pixel values to log exposure: ln(Eij)= g(Zij)

• Solve for R, g by minimizing:
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The objective
Solve for radiance R and mapping g for each of 256 pixel values to 
minimize: 

[ ] ååå
== =

¢¢+-D+
max

min

Z

Zz

N

i

P

j
ijjiij zgzwZgtRZw 2

1 1

2 )()()(lnln)( l

give pixels near 0 
or 255 less weight

known shutter 
time for image j

radiance at particular 
pixel site is the same 
for each image

exposure should smoothly 
increase as pixel intensity 
increases

exposure, as a function of 
pixel value
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The Math
• Let g(z) be the discrete inverse response function

• For each pixel site i in each image j, want:

• Solve the overdetermined linear system:

fitting term smoothness term
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Matlab Code

4 Conclusion
We have presented a simple, practical, robust and accurate method
of recovering high dynamic range radiancemaps from ordinary pho-
tographs. Our method uses the constraint of sensor reciprocity to
derive the response function and relative radiance values directly
from a set of images taken with different exposures. This work has
a wide variety of applications in the areas of image-based modeling
and rendering, image processing, and image compositing, a few of
which we have demonstrated. It is our hope that this work will be
able to help both researchers and practitioners of computer graphics
make much more effective use of digitized photographs.
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A Matlab Code
Here is the MATLAB code used to solve the linear system that min-
imizes the objective function in Equation 3. Given a set of ob-
served pixel values in a set of images with known exposures, this
routine reconstructs the imaging response curve and the radiance
values for the given pixels. The weighting function is found
in Equation 4.

%
% gsolve.m − Solve for imaging system response function
%
% Given a set of pixel values observed for several pixels in several
% images with different exposure times, this function returns the
% imaging system’s response function g as well as the log film irradiance
% values for the observed pixels.
%
% Assumes:
%
%  Zmin = 0
%  Zmax = 255
%
% Arguments:
%
%  Z(i,j) is the pixel values of pixel location number i in image j
%  B(j)   is the log delta t, or log shutter speed, for image j
%  l      is lamdba, the constant that determines the amount of smoothness
%  w(z)   is the weighting function value for pixel value z
% 
% Returns:
%
%  g(z)   is the log exposure corresponding to pixel value z
%  lE(i)  is the log film irradiance at pixel location i
%

function [g,lE]=gsolve(Z,B,l,w)

n = 256;

A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);

%% Include the data−fitting equations

k = 1;
for i=1:size(Z,1)
  for j=1:size(Z,2)
    wij = w(Z(i,j)+1);
    A(k,Z(i,j)+1) = wij;  A(k,n+i) = −wij;       b(k,1) = wij * B(i,j);
    k=k+1;
  end
end

%% Fix the curve by setting its middle value to 0

A(k,129) = 1;
k=k+1;

%% Include the smoothness equations

for i=1:n−2
  A(k,i)=l*w(i+1);        A(k,i+1)=−2*l*w(i+1);  A(k,i+2)=l*w(i+1);
  k=k+1;
end

%% Solve the system using SVD

x = A\b;

g = x(1:n);
lE = x(n+1:size(x,1));

• 21 lines of code!
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Illustration
Exposure stack

• 3

• 1

• 2

∆t =
1 sec

• 3

• 1

• 2

∆t =
1/16 sec

• 3

• 1

• 2

∆t =
4 sec

• 3

• 1

• 2

∆t =
1/64 sec

• 3

• 1

• 2

∆t =
1/4 sec

Exposure = Radiance * Dt
log Exposure = log Radiance + log Dt

Pixel Value Z = f(Exposure)
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Response Curve

Assuming unit radiance
for each pixel

After adjusting radiances to obtain 
a smooth response curve

622 Computer Vision: Algorithms and Applications, 2nd ed. (final draft, Sept. 2021)
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Figure 10.13 Radiometric calibration using multiple exposures (Debevec and Malik 1997).
Corresponding pixel values are plotted as functions of log exposures (irradiance). The curves
on the left are shifted to account for each pixel’s unknown radiance until they all line up into
a single smooth curve.

Unfortunately, we do not know the irradiance values Ei, so these have to be estimated
at the same time as the radiometric response function f , which can be written (Debevec and
Malik 1997) as

zij = f(Ei tj), (10.2)

where tj is the exposure time for the jth image. The inverse response curve f�1 is given by

f�1(zij) = Ei tj . (10.3)

Taking logarithms of both sides (base 2 is convenient, as we can now measure quantities in
EVs), we obtain

g(zij) = log f�1(zij) = log Ei + log tj , (10.4)

where g = log f�1 (which maps pixel values zij into log irradiance) is the curve we are
estimating (Figure 10.13 turned on its side).

Debevec and Malik (1997) assume that the exposure times tj are known. (Recall that
these can be obtained from a camera’s EXIF tags, but that they actually follow a power of 2
progression . . . , 1/128, 1/64, 1/32, 1/16, 1/8, . . . instead of the marked . . . , 1/125, 1/60, 1/30,
1/15, 1/8, . . . values—see Exercise 2.5.) The unknowns are therefore the per-pixel exposures
Ei and the response values gk = g(k), where g can be discretized according to the 256
pixel values commonly observed in eight-bit images. (The response curves are calibrated
separately for each color channel.)

In order to make the response curve smooth, Debevec and Malik (1997) add a second-
order smoothness constraint

�
X

k

g00(k)2 = �
X

[g(k � 1) � 2g(k) + g(k + 1)]2, (10.5)
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Response Curve

Kodak DCS460
1/30 to 30 sec

each channel independently. Unfortunately, there will be three un-
known scaling factors relating relative radiance to absolute radi-
ance, one for each channel. As a result, different choices of these
scaling factors will change the color balance of the radiance map.
By default, the algorithm chooses the scaling factor such that a

pixel with value will have unit exposure. Thus, any pixel with
the RGB value will have equal radiance val-
ues for R, G, and B, meaning that the pixel is achromatic. If the
three channels of the imaging system actually do respond equally to
achromatic light in the neighborhood of , then our procedure
correctly reconstructs the relative radiances.
However, films are usually calibrated to respond achromatically

to a particular color of light , such as sunlight or fluorescent light.
In this case, the radiance values of the three channels should be
scaled so that the pixel value maps to a radi-
ance with the same color ratios as . To properly model the color
response of the entire imaging process rather than just the film re-
sponse, the scaling terms can be adjusted by photographing a cali-
bration luminaire of known color.

2.7 Taking virtual photographs

The recovered response functions can also be used to map radiance
values back to pixel values for a given exposure using Equa-
tion 1. This process can be thought of as taking a virtual photograph
of the radiance map, in that the resulting image will exhibit the re-
sponse qualities of the modeled imaging system. Note that the re-
sponse functions used need not be the same response functions used
to construct the original radiance map, which allows photographs
acquired with one imaging process to be rendered as if they were
acquired with another.9

3 Results
Figures 3-5 show the results of using our algorithm to determine the
response curve of a DCS460 digital camera. Eleven grayscale pho-
tographs filtered down to resolution (Fig. 3) were taken at
f/8 with exposure times ranging from of a second to 30 seconds,
with each image receiving twice the exposure of the previous one.
The film curve recovered by our algorithm from 45 pixel locations
observed across the image sequence is shown in Fig. 4. Note that al-
though CCD image arrays naturally produce linear output, from the
curve it is evident that the camera nonlinearly remaps the data, pre-
sumably tomimic the response curves found in film. The underlying
registered data are shown as light circles underneath
the curve; some outliers are due to sensor artifacts (light horizontal
bands across some of the darker images.)
Fig. 5 shows the reconstructed high dynamic range radiancemap.

To display this map, we have taken the logarithm of the radiance
values and mapped the range of these values into the range of the
display. In this representation, the pixels at the light regions do not
saturate, and detail in the shadow regions can be made out, indicat-
ing that all of the information from the original image sequence is
present in the radiance map. The large range of values present in
the radiance map (over four orders of magnitude of useful dynamic
range) is shown by the values at the marked pixel locations.
Figure 6 shows sixteen photographs taken inside a church with a

Canon 35mm SLR camera on Fuji 100 ASA color print film. A fish-
eye 15mm lens set at f/8was used, with exposure times ranging from
30 seconds to of a second in 1-stop increments. The film was
developed professionally and scanned in using a Kodak PhotoCD
film scanner. The scanner was set so that it would not individually

9Note that here we are assuming that the spectral response functions for
each channel of the two imaging processes is the same. Also, this technique
does not model many significant qualities of an imaging system such as film
grain, chromatic aberration, blooming, and the modulation transfer function.

Figure 3: (a) Eleven grayscale photographs of an indoor scene ac-
quired with a Kodak DCS460 digital camera, with shutter speeds
progressing in 1-stop increments from of a second to 30 seconds.
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Figure 4: The response function of the DCS460 recovered by our al-
gorithm, with the underlying data shown as light cir-
cles. The logarithm is base .

Figure 5: The reconstructed high dynamic range radiance map,
mapped into a grayscale image by taking the logarithm of the ra-
diance values. The relative radiance values of the marked pixel lo-
cations, clockwise from lower left: 1.0, 46.2, 1907.1, 15116.0, and
18.0.

each channel independently. Unfortunately, there will be three un-
known scaling factors relating relative radiance to absolute radi-
ance, one for each channel. As a result, different choices of these
scaling factors will change the color balance of the radiance map.
By default, the algorithm chooses the scaling factor such that a

pixel with value will have unit exposure. Thus, any pixel with
the RGB value will have equal radiance val-
ues for R, G, and B, meaning that the pixel is achromatic. If the
three channels of the imaging system actually do respond equally to
achromatic light in the neighborhood of , then our procedure
correctly reconstructs the relative radiances.
However, films are usually calibrated to respond achromatically

to a particular color of light , such as sunlight or fluorescent light.
In this case, the radiance values of the three channels should be
scaled so that the pixel value maps to a radi-
ance with the same color ratios as . To properly model the color
response of the entire imaging process rather than just the film re-
sponse, the scaling terms can be adjusted by photographing a cali-
bration luminaire of known color.

2.7 Taking virtual photographs

The recovered response functions can also be used to map radiance
values back to pixel values for a given exposure using Equa-
tion 1. This process can be thought of as taking a virtual photograph
of the radiance map, in that the resulting image will exhibit the re-
sponse qualities of the modeled imaging system. Note that the re-
sponse functions used need not be the same response functions used
to construct the original radiance map, which allows photographs
acquired with one imaging process to be rendered as if they were
acquired with another.9

3 Results
Figures 3-5 show the results of using our algorithm to determine the
response curve of a DCS460 digital camera. Eleven grayscale pho-
tographs filtered down to resolution (Fig. 3) were taken at
f/8 with exposure times ranging from of a second to 30 seconds,
with each image receiving twice the exposure of the previous one.
The film curve recovered by our algorithm from 45 pixel locations
observed across the image sequence is shown in Fig. 4. Note that al-
though CCD image arrays naturally produce linear output, from the
curve it is evident that the camera nonlinearly remaps the data, pre-
sumably tomimic the response curves found in film. The underlying
registered data are shown as light circles underneath
the curve; some outliers are due to sensor artifacts (light horizontal
bands across some of the darker images.)
Fig. 5 shows the reconstructed high dynamic range radiancemap.

To display this map, we have taken the logarithm of the radiance
values and mapped the range of these values into the range of the
display. In this representation, the pixels at the light regions do not
saturate, and detail in the shadow regions can be made out, indicat-
ing that all of the information from the original image sequence is
present in the radiance map. The large range of values present in
the radiance map (over four orders of magnitude of useful dynamic
range) is shown by the values at the marked pixel locations.
Figure 6 shows sixteen photographs taken inside a church with a

Canon 35mm SLR camera on Fuji 100 ASA color print film. A fish-
eye 15mm lens set at f/8was used, with exposure times ranging from
30 seconds to of a second in 1-stop increments. The film was
developed professionally and scanned in using a Kodak PhotoCD
film scanner. The scanner was set so that it would not individually

9Note that here we are assuming that the spectral response functions for
each channel of the two imaging processes is the same. Also, this technique
does not model many significant qualities of an imaging system such as film
grain, chromatic aberration, blooming, and the modulation transfer function.

Figure 3: (a) Eleven grayscale photographs of an indoor scene ac-
quired with a Kodak DCS460 digital camera, with shutter speeds
progressing in 1-stop increments from of a second to 30 seconds.
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Figure 4: The response function of the DCS460 recovered by our al-
gorithm, with the underlying data shown as light cir-
cles. The logarithm is base .

Figure 5: The reconstructed high dynamic range radiance map,
mapped into a grayscale image by taking the logarithm of the ra-
diance values. The relative radiance values of the marked pixel lo-
cations, clockwise from lower left: 1.0, 46.2, 1907.1, 15116.0, and
18.0.
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Radiance Image

115

each channel independently. Unfortunately, there will be three un-
known scaling factors relating relative radiance to absolute radi-
ance, one for each channel. As a result, different choices of these
scaling factors will change the color balance of the radiance map.
By default, the algorithm chooses the scaling factor such that a

pixel with value will have unit exposure. Thus, any pixel with
the RGB value will have equal radiance val-
ues for R, G, and B, meaning that the pixel is achromatic. If the
three channels of the imaging system actually do respond equally to
achromatic light in the neighborhood of , then our procedure
correctly reconstructs the relative radiances.
However, films are usually calibrated to respond achromatically

to a particular color of light , such as sunlight or fluorescent light.
In this case, the radiance values of the three channels should be
scaled so that the pixel value maps to a radi-
ance with the same color ratios as . To properly model the color
response of the entire imaging process rather than just the film re-
sponse, the scaling terms can be adjusted by photographing a cali-
bration luminaire of known color.

2.7 Taking virtual photographs

The recovered response functions can also be used to map radiance
values back to pixel values for a given exposure using Equa-
tion 1. This process can be thought of as taking a virtual photograph
of the radiance map, in that the resulting image will exhibit the re-
sponse qualities of the modeled imaging system. Note that the re-
sponse functions used need not be the same response functions used
to construct the original radiance map, which allows photographs
acquired with one imaging process to be rendered as if they were
acquired with another.9

3 Results
Figures 3-5 show the results of using our algorithm to determine the
response curve of a DCS460 digital camera. Eleven grayscale pho-
tographs filtered down to resolution (Fig. 3) were taken at
f/8 with exposure times ranging from of a second to 30 seconds,
with each image receiving twice the exposure of the previous one.
The film curve recovered by our algorithm from 45 pixel locations
observed across the image sequence is shown in Fig. 4. Note that al-
though CCD image arrays naturally produce linear output, from the
curve it is evident that the camera nonlinearly remaps the data, pre-
sumably tomimic the response curves found in film. The underlying
registered data are shown as light circles underneath
the curve; some outliers are due to sensor artifacts (light horizontal
bands across some of the darker images.)
Fig. 5 shows the reconstructed high dynamic range radiancemap.

To display this map, we have taken the logarithm of the radiance
values and mapped the range of these values into the range of the
display. In this representation, the pixels at the light regions do not
saturate, and detail in the shadow regions can be made out, indicat-
ing that all of the information from the original image sequence is
present in the radiance map. The large range of values present in
the radiance map (over four orders of magnitude of useful dynamic
range) is shown by the values at the marked pixel locations.
Figure 6 shows sixteen photographs taken inside a church with a

Canon 35mm SLR camera on Fuji 100 ASA color print film. A fish-
eye 15mm lens set at f/8was used, with exposure times ranging from
30 seconds to of a second in 1-stop increments. The film was
developed professionally and scanned in using a Kodak PhotoCD
film scanner. The scanner was set so that it would not individually

9Note that here we are assuming that the spectral response functions for
each channel of the two imaging processes is the same. Also, this technique
does not model many significant qualities of an imaging system such as film
grain, chromatic aberration, blooming, and the modulation transfer function.

Figure 3: (a) Eleven grayscale photographs of an indoor scene ac-
quired with a Kodak DCS460 digital camera, with shutter speeds
progressing in 1-stop increments from of a second to 30 seconds.
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Figure 4: The response function of the DCS460 recovered by our al-
gorithm, with the underlying data shown as light cir-
cles. The logarithm is base .

Figure 5: The reconstructed high dynamic range radiance map,
mapped into a grayscale image by taking the logarithm of the ra-
diance values. The relative radiance values of the marked pixel lo-
cations, clockwise from lower left: 1.0, 46.2, 1907.1, 15116.0, and
18.0.
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bands across some of the darker images.)
Fig. 5 shows the reconstructed high dynamic range radiancemap.

To display this map, we have taken the logarithm of the radiance
values and mapped the range of these values into the range of the
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Figure 5: The reconstructed high dynamic range radiance map,
mapped into a grayscale image by taking the logarithm of the ra-
diance values. The relative radiance values of the marked pixel lo-
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Radiance Image

116

624 Computer Vision: Algorithms and Applications, 2nd ed. (final draft, Sept. 2021)

Figure 10.15 Bracketed set of exposures captured with a film camera and the resulting
radiance image displayed in pseudocolor (Debevec and Malik 1997) © 1997 ACM.

Vazquez-Corral, and Bertalmı́o (2019) describe how to take this into account to get improved
results.

While Debevec and Malik (1997) use a general second-order smooth curve g to parame-
terize their response curve, Mann and Picard (1995) use a three-parameter function

f(E) = ↵ + �E� , (10.8)

while Mitsunaga and Nayar (1999) use a low-order (N  10) polynomial for the inverse
response function g. Pal, Szeliski et al. (2004) derive a Bayesian model that estimates an
independent smooth response function for each image, which can better model the more
sophisticated (and hence less predictable) automatic contrast and tone adjustment performed
in today’s digital cameras.

Once the response function has been estimated, the second step in creating high dynamic
range photographs is to merge the input images into a composite radiance map. If the re-
sponse function and images were known exactly, i.e., if they were noise free, you could use
any non-saturated pixel value to estimate the corresponding radiance by mapping it through
the inverse response curve E = g(z).

Unfortunately, pixels are noisy, especially under low-light conditions when fewer photons
arrive at the sensor. To compensate for this, Mann and Picard (1995) use the derivative of the
response function as a weight in determining the final radiance estimate, because “flatter”
regions of the curve tell us less about the incoming irradiance. Debevec and Malik (1997)
use a hat function (10.6) which accentuates mid-tone pixels while avoiding saturated val-
ues. Mitsunaga and Nayar (1999) show that to maximize the signal-to-noise ratio (SNR),

Kodak Gold ASA 100, PhotoCD



Recovered Response Curves
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Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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Other aspects of HDR imaging
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Final fused HDR image gives flux only up to a global scale
• If we know exact flux at one point, we can convert relative HDR image 

to absolute flux map

HDR image 
(relative flux)

spotmeter (absolute 
flux at one point)

absolute 
flux map
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Relative vs absolute flux



1. Capture multiple LDR images at different exposures

2. Merge them into a single HDR image

Any problems with this approach?

120

Basic HDR approach



1. Capture multiple LDR images at different exposures

2. Merge them into a single HDR image

Problem: Very sensitive to movement

• Scene must be completely static

• Camera must not move

Most modern automatic HDR solutions include an alignment step before merging 
exposures
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Basic HDR approach



• Family algorithms suggested for eliminating the artefacts 
occur due to moving objects/camera and/or dynamic 
backgrounds during HDR reconstruction.

• Mostly the motion is compensated by selecting or removing 
moving objects and finding alignments between images.
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HDR Deghosting

O. T. Tursun, A. O. Akyüz, A. Erdem & E. Erdem / The State of the Art in HDR Deghosting: A Survey and Evaluation

(a) A moving light source with
high noise

(b) Non-deformable body motion
with large displacements

(c) Deformable body motion (d) Deformable body motion with
occlusions

Figure 1: Different types of ghost artifacts.

Table 1: Notation used in this survey

L1,L2, ...,LN Input LDR images
Lre f Reference LDR image

Ln(p) Pixel intensity at position (p) in image Ln
H Output HDR image

f (·) Camera Response Function
gnm(·) Intensity Mapping or Color Transfer

Function from exposure n to m
Dtn Exposure time of the input image Ln

a(Ln(p)) Weight of pixel Ln(p)
E1,E2, ...,EN Input LDR image in the

radiance domain (Eq. 2)

ply computes a weighted average of all exposures, resulting
in different objects being blended together in case of object
movement. The artifacts that occur as a result of such blend-
ing are collectively termed as ghosts or ghosting artifacts
(see Figure 1).

We can formalize this notion as follows (see Table 1 for
the terminology used in this survey). Let L(p) represent an
LDR image pixel p which is obtained when the correspond-
ing sensor location is exposed to an irradiance E(p) for Dt
units of time (see Table 1):

L(p) = f (E(p) ·Dt), (1)

where f represents the camera response function (CRF)
which depends on several factors such as the white balance
and gamma correction setting, analog-to-digital conversion
parameters, physical characteristics of the sensor, camera
manufacturer preferences, etc. If the function f is known,
it is possible to recover the correct sensor irradiance from
the image pixel intensity using the following relation:

E(p) =
f�1(L(p))

Dt
. (2)

Most of the time, f is not known but can be recovered us-
ing various techniques [BK93,MP94,DM97,RBS99,MN99,
GN03,OAG13]. Alternatively, the images can be captured in
RAW formats which are typically linear (thus f (x) = mx for
an easily recoverable slope value, m).

Once f is recovered, the HDR value H(p) can be com-
puted as:

H(p) =

N
Â

n=1
a(Ln(p)) f�1(Ln(p))

Dtn

N
Â

n=1
a(Ln(p))

, (3)

where a is a weighting function which depends on the pixel
intensity level. Although one can use a simple triangular
weighting function that gives high weights to the center of
the intensity range while penalizing the extremes as pro-
posed by Debevec and Malik [DM97], recent research has
shown that other parameters such as the camera noise must
be taken into account to determine an optimal weighting
function [GAW⇤10].

The critical assumption of Equation 3 is that all input im-
ages L1, ...,LN measure the same scene radiance value for
each pixel position p:

f�1(Ln(p))
Dtn

=
f�1(Lm(p))

Dtm
8n,m, p. (4)

If this assumption, known as reciprocity, does not hold, H(p)
will be equal to the weighted sum of different sensor irra-
diance values, resulting in semi-transparent object appear-
ances known as ghosts. The reciprocity assumption may
break down for saturated pixels – a problem that is to be
dealt with by using a good a function.

The requirement of a pixel measuring the same irradiance
in all input exposures necessitates that the camera and the
scene remain static throughout the capture process. Because
this requirement would severely limit the range of scenes
that can be captured using the multiple exposures technique,
various solutions have been proposed for dealing with both
camera and object movement. It should noted however that,
of these two problems, the object movement is much more
severe as the former can be avoided by using a tripod or
registering the individual exposures prior to HDR image re-
construction. Although this survey discusses both types of
methods, the emphasis is especially placed on deghosting
algorithms that deal with dynamic objects.

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.
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c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.
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• Family algorithms suggested for eliminating the artefacts 
occur due to moving objects/camera and/or dynamic 
backgrounds during HDR reconstruction.

• Mostly the motion is compensated by selecting or removing 
moving objects and finding alignments between images.
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An Objective Deghosting Quality Metric for HDR Images
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(a) Moving people generate blending (red) and visual difference (blue) artifacts. (b) Over-smoothing gives rise to gradient inconsistency (green) artifacts.

Figure 1: Our metric detects several kinds of HDR deghosting artifacts. In (a), Khan et al.’s [KAR06] output is shown in the bottom-left
corner and our metric’s result in the bottom-right. The same for (b), except Hu et al.’s [HGPS13] deghosting algorithm is used. Exposure
sequences are shown on the top. Cyan color occurs due to both gradient and visual difference metrics producing high output.

Abstract

Reconstructing high dynamic range (HDR) images of a complex scene involving moving objects and dynamic backgrounds is
prone to artifacts. A large number of methods have been proposed that attempt to alleviate these artifacts, known as HDR
deghosting algorithms. Currently, the quality of these algorithms are judged by subjective evaluations, which are tedious to
conduct and get quickly outdated as new algorithms are proposed on a rapid basis. In this paper, we propose an objective
metric which aims to simplify this process. Our metric takes a stack of input exposures and the deghosting result and produces
a set of artifact maps for different types of artifacts. These artifact maps can be combined to yield a single quality score. We
performed a subjective experiment involving 52 subjects and 16 different scenes to validate the agreement of our quality scores
with subjective judgements and observed a concordance of almost 80%. Our metric also enables a novel application that we
call as hybrid deghosting, in which the output of different deghosting algorithms are combined to obtain a superior deghosting
result.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene Analysis—
Motion

1. Introduction

Due to its low-cost and availability, the most commonly used HDR
image capture method remains to be the multiple exposures tech-
nique (MET), which involves combining a set of exposures of a
scene into a single HDR image [DM97]. The main requirements of
this technique are that the camera and the captured scene remain

static throughout the capture process. Otherwise, the lack of cor-
respondence between exposures result in what is known as ghost-
ing artifacts. While stabilizing a camera can be achieved by us-
ing a tripod, ensuring a static scene is much more difficult as most
real-world scenes contain dynamic objects. Many deghosting algo-
rithms have been proposed to address this problem ranging from

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.12818



• Most standard image formats store integer 8-bit images
• Some image formats store integer 12-bit or 16-bit images
• HDR images are floating point 32-bit or 64-bit images
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How do we store HDR images?



Use specialized image formats for HDR images

sign exponent mantissa

portable float map (.pfm)
• very simple to implement

red green blue exponent

32 bits

Radiance format (.hdr)
• supported by Matlab

sign exponent mantissa

OpenEXR format (.exr)
• multiple extra features
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How do we store HDR images?



Light probes: place a chrome sphere in the scene and capture an HDR image
• Used to measure real-world illumination environments (“environment maps”)

Application: image-
based relighting
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Another type of HDR images



Physics-based renderers simulate flux maps 
(relative or absolute)

• Their outputs are very often HDR images
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Another way to create HDR images



• 10:1 photographic print (higher for glossy paper)

• 20:1 artist's paints

• 200:1 slide film

• 500:1 negative film

• 1000:1 LCD display

• 2000:1 digital SLR (at 12 bits)

• 100000:1 real world

Tonemapping compensates for display limitations

HDR imaging compensates for sensor limitations

HDR imaging and tonemapping are distinct 
techniques with different goals

128

Our devices do not match the real world

Two challenges:

1. HDR imaging – which parts of the world do we measure in the 8-14 bits available to our sensor?

2. Tonemapping – which parts of the world do we show in the 4-10 bits available to our display?



Today’s Lecture
• Controlling exposure 

• High-dynamic-range imaging

• Tonemapping

129



Tonemapping
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10-6 106

adaptation range of our eyes

common real-world scenes

10-6 106image HDR image

10-6 106
display
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How do we display our HDR images?



Tonemapping
• Called tone mapping operators 

• Two general categories:

• Global (spatially invariant)

• Local (spatially varying)
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Scale image so that maximum value equals 1.

HDR image looks 
underexposed because of 

the display’s limited 
dynamic range, but is not 
actually underexposed.
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Linear scaling



Scale image so that 10% value equals 1.

Can you think 
of something 

better?

HDR image looks 
saturated because of 
the display’s limited 

dynamic range, but is not 
actually saturated.
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Linear scaling



Apply the same non-linear scaling to all pixels in the image so that:
• Bring everything within range → asymptote to 1
• Leave dark areas alone → slope = 1 near 0

(exact formula more complicated)

HDR

HDR
display I

II
+

=
1

• Photographic because designed to approximate film zone system.
• Perceptually motivated, as it approximates our eye’s response curve.
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Photographic tonemapping



• Technique formulated by Ansel Adams for film development.
• Still used with digital photography.
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What is the zone system?



photographic tonemapping linear scaling (map 10% to 1) linear scaling (map 100% to 1) 137

Examples



photographic tonemapping high exposure low exposure 138

Compare with LDR images



If we tonemap all channels the same, colors are washed out

Can you think of a way to deal with this?
139

Dealing with color



tonemap
intensity 

(e.g., luminance 
Y in xyY)

How would you implement this?

leave color the 
same (e.g., xy

in xyY)
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Intensity-only tonemapping



Color now OK, but some details are washed out due to loss of contrast

Can you think of a way to deal with this?
141

Comparison



The importance of local contrast

142
Edward H. Adelson



The importance of local contrast

143
Edward H. Adelson



Purposes of tone mapping
Technical:

- fitting a wide range of values into a small space while preserving 
differences between values as much as possible

Artistic

- reproduce what the photographer/artist feels she saw 
- stylize the look of a photo
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tonemap low-frequency 
intensity component

How would you implement this?

leave color the same

leave high-frequency 
intensity component 

the same
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Low-frequency intensity-only tonemapping



We got nice color and contrast, but now we’ve run into the halo plague

Can you think of a way to deal with this?
146

Comparison



Separate base and detail using 
edge-preserving filtering 
(e.g., bilateral filtering).

More in later lecture.
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Edge-aware filtering and tonemapping



We fixed the halos without losing contrast

148

Comparison



149



Compute gradients, scale and merge them, then integrate (solve Poisson problem).
• More in later lecture.
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Gradient-domain processing and tonemapping



photographic bilateral filtering gradient-domain
151

Comparison (which one do you like better?)



bilateral filtering gradient-domainphotographic
152

Comparison (which one do you like better?)



bilateral filtering gradient-domainphotographic

There is no ground-truth: which one looks better is entirely subjective
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Comparison (which one do you like better?)



result from image 
processing pipeline 

(basic tone 
reproduction)

tonemapping using 
bilateral filtering 

(I think)

Modern DSLR sensors capture about 3 stops of dynamic range.
• Tonemap single RAW file instead of using camera’s default rendering.
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Tonemapping for a single image



Careful not to “tonemap” noise.

Modern DSLR sensors capture about 3 stops of dynamic range.
• Tonemap single RAW file instead of using camera’s default rendering.
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Tonemapping for a single image



Some notes about HDR imaging and tonemapping
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• 10:1 photographic print (higher for glossy paper)

• 20:1 artist's paints

• 200:1 slide film

• 500:1 negative film

• 1000:1 LCD display

• 2000:1 digital SLR (at 12 bits)

• 100000:1 real world

Tonemapping compensates for display limitations

HDR imaging compensates for sensor limitations

HDR imaging and tonemapping are distinct 
techniques with different goals

157

Our devices do not match the real world

Two challenges:

1. HDR imaging – which parts of the world do we measure in the 8-14 bits available to our sensor?

2. Tonemapping – which parts of the world do we show in the 4-10 bits available to our display?



“High-dynamic-range imaging” is used to refer to a lot of different things:

1. Using single RAW images.
2. Performing radiometric calibration.
3. Merging an exposure stack.
4. Tonemapping an image (linear or non-linear, HDR or LDR).
5. Some or all of the above.

Technically, HDR imaging and tonemapping are distinct processes: 
• HDR imaging is the process of creating a radiometrically linear image, free of 

overexposure and underexposure artifacts. This is achieved using some combination of 
1-3, depending on the imaging scenario. 

• Tonemapping (step 4) process of mapping the intensity values in an image (linear or non-
linear, HDR or LDR) to the range of tones available in a display.

But:
• In consumer photography, “HDR photography” is often used to refer to both HDR 

imaging (steps 1-3) and tonemapping (step 4).
158

A note about terminology



Tonemapping is just another form of tone reproduction.
• Many ISPs implement the tonemapping algorithms we discussed for tone 

reproduction.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicingdenoising

color 
transforms

tone 
reproduction compression

final RGB 
image (non-
linear, 8-bit)
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Another note about terminology



• HDR photography can produce very visually compelling results.
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A note of caution
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• HDR photography can produce very visually compelling results.

• It is also a very routinely abused technique, resulting in awful results.
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A note of caution
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• HDR photography can produce very visually compelling results.

• It is also a very routinely abused technique, resulting in awful results.

• The problem typically is tonemapping, not HDR imaging itself.
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A note of caution



• Most cameras (even phone cameras) 
have automatic HDR modes/apps.

• Popular-enough feature that phone 
manufacturers are actively competing 
about which one has the best HDR.

• The technology behind some of those apps 
(e.g., Google’s HDR+) is published in 
SIGGRAPH and SIGGRAPH Asia 
conferences.
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A note about HDR today



Optimal weights for HDR merging

171



1. Calibrate response curve

2. Linearize images

For each pixel:

3. Find “valid” images

4. Weight valid pixel values appropriately

5. Form a new pixel value as the weighted average of valid pixel values

(noise) 0.05 < pixel < 0.95 (clipping)

(pixel value) / ti

Same steps as in the RAW case.

Note: many possible weighting schemes
172

Merging non-linear exposure stacks



“Confidence” that pixel is noisy/clipped

• What are the optimal weights for 
merging an exposure stack?

173

Many possible weighting schemes



Exposure time:
t5 t4 t3 t2 t1

(Weighted) radiant flux for image pixel (x,y):  α	⋅	Φ(x,	y)

What weights should we use to merge these 
images, so that the resulting HDR image is an 
optimal estimator of the weighted radiant flux?

Different images in the 
exposure stack will have 

different noise characteristics
174

RAW (linear) image formation model



We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel 
intensity) with variance σ[x]2 and σ[y]2.
What does unbiased mean?
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Simple estimation example



Assume we form a new estimator from the convex combination of the other two:

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel 
intensity) with variance σ[x]2 and σ[y]2.

z	=	a	⋅	x	+	(1	– a)	⋅	y

What does unbiased mean?

E[x] = E[y]	=	I

Is the new estimator z unbiased?

176

Simple estimation example



Assume we form a new estimator from the convex combination of the other two:

How should we select a?

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel 
intensity) with variance σ[x]2 and σ[y]2.

z	=	a	⋅	x	+	(1	– a)	⋅	y

What does unbiased mean?

E[x] = E[y]	=	I

Is the new estimator z unbiased? → Yes, convex combination preserves unbiasedness.

E[z] = E[a	⋅	x	+	(1	– a)	⋅	y]	=	a	⋅	E[x]	+	(1	– a)	⋅	E[y]	=	I
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Simple estimation example



Assume we form a new estimator from the convex combination of the other two:

How should we select a? → Minimize variance (= expected squared error for unbiased 
estimators).

What is the variance of z as a function of a?

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel 
intensity) with variance σ[x]2 and σ[y]2.

z	=	a	⋅	x	+	(1	– a)	⋅	y

What does unbiased mean?

E[x] = E[y]	=	I

Is the new estimator z unbiased? → Yes, convex combination preserves unbiasedness.

E[z] = E[a	⋅	x	+	(1	– a)	⋅	y]	=	a	⋅	E[x]	+	(1	– a)	⋅	E[y]	=	I

E[(z – I)2] = E[z2] – 2	⋅	E[z]	⋅	I	+	I2=	E[z2] – E[z]2=	σ[z]2
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Simple estimation example



Assume we form a new estimator from the convex combination of the other two:

How should we select a? → Minimize variance (= expected squared error for unbiased 
estimators).

What is the variance of z as a function of a?

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel 
intensity) with variance σ[x]2 and σ[y]2.

z	=	a	⋅	x	+	(1	– a)	⋅	y

What does unbiased mean?

E[x] = E[y]	=	I

Is the new estimator z unbiased? → Yes, convex combination preserves unbiasedness.

E[z] = E[a	⋅	x	+	(1	– a)	⋅	y]	=	a	⋅	E[x]	+	(1	– a)	⋅	E[y]	=	I

E[(z – I)2] = E[z2] – 2	⋅	E[z]	⋅	I	+	I2=	E[z2] – E[z]2=	σ[z]2
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Simple estimation example

σ[z]2=	a2 ⋅	σ[x]2+	(1	– a)2 ⋅	σ[y]2

What value of a minimizes σ[z]2?



Simple optimization problem:

𝜕σ[z]2

𝜕𝑎
= 0

𝜕(𝑎2 ⋅ σ[x]2 + (1 –𝑎)2 ⋅ σ[y]2)
𝜕𝑎

= 0

2 ⋅ 𝑎 ⋅ σ[x]2 − 2 ⋅ (1 –𝑎) ⋅ σ[y]2= 0

𝑎 =
σ[y]2

σ[x]2+σ[y]2 1 − 𝑎 =
σ[x]2

σ[x]2+σ[y]2and

⇒

⇒

⇒
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Simple estimation example



Putting it all together, the optimal linear combination of the two estimators is

normalization 
factor

weights inversely 
proportional to variance

𝑧 =
σ[x]2σ[y]2
σ[x]2+ σ[y]2

⋅
1

σ[x]2
𝑥 +

1
σ[y]2

𝑦
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Simple estimation example



Putting it all together, the optimal linear combination of the two estimators is

weights inversely 
proportional to variance

This is weighting scheme is called Fisher weighting and is a BLUE estimator.

More generally, for more than two estimators,

𝑧 =
1

∑!"#$ 1
σ[𝑥!]2

⋅=
!"#

$
1

σ[𝑥!]2
𝑥!

𝑧 =
σ[x]2σ[y]2
σ[x]2+ σ[y]2

⋅
1

σ[x]2
𝑥 +

1
σ[y]2

𝑦

normalization 
factor
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Simple estimation example



Given unclipped and dark-frame-corrected intensity measurements Ii[x,	y]	at pixel [x,	y]	and 
exposures ti, we can merge them optimally into a single HDR intensity I[x,	y]	as

𝐼 𝑥, 𝑦 =
1

∑!"#$ 𝑤𝑖 𝑥, 𝑦
⋅=
!"#

$

𝑤𝑖 𝑥, 𝑦
1
𝑡i
𝐼𝑖 𝑥, 𝑦 =

1

∑!"#$ 1
σ[ 1𝑡i

𝐼𝑖[𝑥, 𝑦]]2

⋅=
!"#

$
1

σ[ 1𝑡i
𝐼𝑖[𝑥, 𝑦]]2

1
𝑡i
𝐼𝑖 𝑥, 𝑦
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Back to HDR



Given unclipped and dark-frame-corrected intensity measurements Ii[x,	y]	at pixel [x,	y]	and 
exposures ti, we can merge them optimally into a single HDR intensity I[x,	y]	as

The per-pixel weights wi x, y should be selected to be inversely proportional to the variance 
σ[ $

%!
Ii[x, y]]2 at each image in the exposure stack.

• How do we compute this variance?

𝐼 𝑥, 𝑦 =
1

∑!"#$ 𝑤𝑖 𝑥, 𝑦
⋅=
!"#

$

𝑤𝑖 𝑥, 𝑦
1
𝑡i
𝐼𝑖 𝑥, 𝑦 =

1

∑!"#$ 1
σ[ 1𝑡i

𝐼𝑖[𝑥, 𝑦]]2

⋅=
!"#

$
1

σ[ 1𝑡i
𝐼𝑖[𝑥, 𝑦]]2

1
𝑡i
𝐼𝑖 𝑥, 𝑦
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Back to HDR



Pixel noise and variance

185

• Recall: noise is characterized by its variance
• i.e. each pixel value comes from a true value plus some noise added

• We can calibrate this noise by taking multiple exposures, or we can 
derive variance equations using pen and paper



Sources of noise

186

• Photon noise
• variance proportional to signal

• dominates for dark pixels

• Read noise
• constant variance

• dominates for dark pixels

• Affine noise model: 

• For a pixel value 𝐼 : 𝜎 𝐼 ! = 𝑡 ⋅ 𝑎 ⋅ Φ + 𝐷 ⋅ 𝑔! + 𝜎"##
!

• where 𝜎%&&' = 𝜎()%&' ⋅ 𝑔' + 𝜎*+,' , 𝑎 and 𝜎-./0' depend on the camera and ISO

𝐼 = 𝐿 ⋅ 𝑔 + 𝑛"## 𝑛"## = 𝑛$%"# ⋅ 𝑔 + 𝑛&'(where



Given unclipped and dark-frame-corrected intensity measurements Ii[x,	y]	at pixel [x,	y]	and 
exposures ti, we can merge them optimally into a single HDR intensity I[x,	y]	as

The per-pixel weights wi x, y should be selected to be inversely proportional to the variance 
σ[ $

%!
Ii[x, y]]2 at each image in the exposure stack.

• How do we compute this variance?

𝐼 𝑥, 𝑦 =
1

∑!"#$ 𝑤𝑖 𝑥, 𝑦
⋅=
!"#

$

𝑤𝑖 𝑥, 𝑦
1
𝑡i
𝐼𝑖 𝑥, 𝑦 =

1

∑!"#$ 1
σ[ 1𝑡i

𝐼𝑖[𝑥, 𝑦]]2

⋅=
!"#

$
1

σ[ 1𝑡i
𝐼𝑖[𝑥, 𝑦]]2

1
𝑡i
𝐼𝑖 𝑥, 𝑦
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Back to HDR



The per-pixel weights wi x, y should be selected to be inversely proportional to the variance 
σ[ $

%!
Ii[x, y]]2 at each image in the exposure stack.

• How do we compute this variance?   → Use affine noise model.

Given unclipped and dark-frame-corrected intensity measurements Ii[x,	y]	at pixel [x,	y]	and 
exposures ti, we can merge them optimally into a single HDR intensity I[x,	y]	as

σ[#1!
𝐼𝑖[𝑥, 𝑦]]2= ?

𝐼 𝑥, 𝑦 =
1

∑!"#$ 𝑤𝑖 𝑥, 𝑦
⋅=
!"#

$

𝑤𝑖 𝑥, 𝑦
1
𝑡i
𝐼𝑖 𝑥, 𝑦 =

1

∑!"#$ 1
σ[ 1𝑡i

𝐼𝑖[𝑥, 𝑦]]2

⋅=
!"#

$
1

σ[ 1𝑡i
𝐼𝑖[𝑥, 𝑦]]2

1
𝑡i
𝐼𝑖 𝑥, 𝑦
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Back to HDR



σ[#1!
𝐼𝑖[𝑥, 𝑦]]2=

#
1!!
σ[𝐼𝑖[𝑥, 𝑦]]2

⇒ σ[#
1!
𝐼𝑖[𝑥, 𝑦]]2= ?

Given unclipped and dark-frame-corrected intensity measurements Ii[x,	y]	at pixel [x,	y]	and 
exposures ti, we can merge them optimally into a single HDR intensity I[x,	y]	as

𝐼 𝑥, 𝑦 =
1

∑!"#$ 𝑤𝑖 𝑥, 𝑦
⋅=
!"#

$

𝑤𝑖 𝑥, 𝑦
1
𝑡i
𝐼𝑖 𝑥, 𝑦 =

1

∑!"#$ 1
σ[ 1𝑡i

𝐼𝑖[𝑥, 𝑦]]2

⋅=
!"#

$
1

σ[ 1𝑡i
𝐼𝑖[𝑥, 𝑦]]2

1
𝑡i
𝐼𝑖 𝑥, 𝑦

The per-pixel weights wi x, y should be selected to be inversely proportional to the variance 
σ[ $

%!
Ii[x, y]]2 at each image in the exposure stack.

• How do we compute this variance?   → Use affine noise model.

189

Back to HDR



σ[#1!
𝐼𝑖[𝑥, 𝑦]]2=

#
1!!
σ[𝐼𝑖[𝑥, 𝑦]]2

⇒ σ[#
1!
𝐼𝑖[𝑥, 𝑦]]2=

#
1!!

𝑡i ⋅ 𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'+ σadd2

Computing the optimal weights 
requires:
1. calibrated noise characteristics.
2. knowing the radiant flux α ⋅ Φ[x, y].

Given unclipped and dark-frame-corrected intensity measurements Ii[x,	y]	at pixel [x,	y]	and 
exposures ti, we can merge them optimally into a single HDR intensity I[x,	y]	as

𝐼 𝑥, 𝑦 =
1

∑!"#$ 𝑤𝑖 𝑥, 𝑦
⋅=
!"#

$

𝑤𝑖 𝑥, 𝑦
1
𝑡i
𝐼𝑖 𝑥, 𝑦 =

1

∑!"#$ 1
σ[ 1𝑡i

𝐼𝑖[𝑥, 𝑦]]2

⋅=
!"#

$
1

σ[ 1𝑡i
𝐼𝑖[𝑥, 𝑦]]2

1
𝑡i
𝐼𝑖 𝑥, 𝑦

The per-pixel weights wi x, y should be selected to be inversely proportional to the variance 
σ[ $

%!
Ii[x, y]]2 at each image in the exposure stack.

• How do we compute this variance?   → Use affine noise model.
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Back to HDR



𝐼 𝑥, 𝑦 =
1

∑!"#$ 𝑤𝑖 𝑥, 𝑦
⋅=
!"#

$

𝑤𝑖 𝑥, 𝑦
1
𝑡i
𝐼𝑖 𝑥, 𝑦 =

1

∑!"#$ 1
σ[ 1𝑡i

𝐼𝑖[𝑥, 𝑦]]2

⋅=
!"#

$
1

σ[ 1𝑡i
𝐼𝑖[𝑥, 𝑦]]2

1
𝑡i
𝐼𝑖 𝑥, 𝑦

σ[#1!
𝐼𝑖[𝑥, 𝑦]]2=

#
1!!
σ[𝐼𝑖[𝑥, 𝑦]]2

⇒ σ[#
1!
𝐼𝑖[𝑥, 𝑦]]2=

#
1!!

𝑡i ⋅ 𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'+ σadd2

Computing the optimal weights 
requires:
1. calibrated noise characteristics.
2. knowing the radiant flux α ⋅ Φ[x, y].

Given unclipped and dark-frame-corrected intensity measurements Ii[x,	y]	at pixel [x,	y]	and 
exposures ti, we can merge them optimally into a single HDR intensity I[x,	y]	as

This is what we wanted to estimate!

The per-pixel weights wi x, y should be selected to be inversely proportional to the variance 
σ[ $

%!
Ii[x, y]]2 at each image in the exposure stack.

• How do we compute this variance?   → Use affine noise model.
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Back to HDR



σ[#1!
𝐼𝑖[𝑥, 𝑦]]2=

#
1!!

𝑡i ⋅ 𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'+ σadd2 ≃ ?

If we assume that our measurements are dominated by photon noise, the variance 
becomes:
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Simplification: only photon noise



If we assume that our measurements are dominated by photon noise, the variance 
becomes:

By replacing in the merging formula and assuming only valid pixels, the HDR estimate 
becomes:

σ[#1!
𝐼𝑖[𝑥, 𝑦]]2=

#
1!!

𝑡i ⋅ 𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'+ σadd2 ≃ #
1!
𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'

𝐼 𝑥, 𝑦 =
1

∑!"#$ 1
1
𝑡i
𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'

⋅=
!"#

$
1

1
𝑡i
𝛼 ⋅ Φ 𝑥, 𝑦 ⋅ 𝑔'

1
𝑡i
𝐼𝑖 𝑥, 𝑦 =

1
∑!"#$ 𝑡𝑖

⋅=
!"#

$

𝐼𝑖[𝑥, 𝑦]
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Simplification: only photon noise



If we assume that our measurements are dominated by photon noise, the variance 
becomes:

By replacing in the merging formula and assuming only valid pixels, the HDR estimate 
becomes:

σ[#1!
𝐼𝑖[𝑥, 𝑦]]2=

#
1!!

𝑡i ⋅ 𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'+ σadd2 ≃ #
1!
𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'

𝐼 𝑥, 𝑦 =
1

∑!"#$ 1
1
𝑡i
𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'

⋅=
!"#

$
1

1
𝑡i
𝛼 ⋅ Φ 𝑥, 𝑦 ⋅ 𝑔'

1
𝑡i
𝐼𝑖 𝑥, 𝑦 =

1
∑!"#$ 𝑡𝑖

⋅=
!"#

$

𝐼𝑖[𝑥, 𝑦]
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Simplification: only photon noise



If we assume that our measurements are dominated by photon noise, the variance 
becomes:

By replacing in the merging formula and assuming only valid pixels, the HDR estimate 
becomes:

Notice that we no longer weight each image in the exposure stack by its exposure time!

σ[#1!
𝐼𝑖[𝑥, 𝑦]]2=

#
1!!

𝑡i ⋅ 𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'+ σadd2 ≃ #
1!
𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'

𝐼 𝑥, 𝑦 =
1

∑!"#$ 1
1
𝑡i
𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'

⋅=
!"#

$
1

1
𝑡i
𝛼 ⋅ Φ 𝑥, 𝑦 ⋅ 𝑔'

1
𝑡i
𝐼𝑖 𝑥, 𝑦 =

1
∑!"#$ 𝑡𝑖

⋅=
!"#

$

𝐼𝑖[𝑥, 𝑦]

195

Simplification: only photon noise



original weights optimal weights assuming 
only photon noise
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Some comparisons



Where does this approximation come from?

If we cannot assume that our measurements are dominated by photon noise, we can 
approximate the variance as:

σ[#1!
𝐼𝑖[𝑥, 𝑦]]2=

#
1!!

𝑡i ⋅ 𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'+ σadd2 ≃ #
1!!

𝐼𝑖[𝑥, 𝑦] ⋅ 𝑔 + σadd2
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More general case



Where does this approximation come from?
• We use the fact that each pixel intensity (after dark frame subtraction) is an unbiased 

estimate of the radiant flux, weighted by exposure and gain:

E[𝐼𝑖[𝑥, 𝑦]] = 𝑡i ⋅ 𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ g

If we cannot assume that our measurements are dominated by photon noise, we can 
approximate the variance as:

σ[#1!
𝐼𝑖[𝑥, 𝑦]]2=

#
1!!

𝑡i ⋅ 𝛼 ⋅ Φ[𝑥, 𝑦] ⋅ 𝑔'+ σadd2 ≃ #
1!!

𝐼𝑖[𝑥, 𝑦] ⋅ 𝑔 + σadd2
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More general case
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Some 
comparisons



• We need to separately account for 
read and ADC noise, as read noise 
is gain-dependent.

• We can optimize our exposure 
bracket by varying both shutter 
speed and ISO
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What about ISO?
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Recap
• High dynamic range (HDR) imaging is useful, and a new aesthetic

• but is not necessary in all photographic situations

• Low dynamic range (LDR) tone mapping methods can also be applied 
to HDR scenes
• but reducing very HDR scenes to 8 bits for JPEG using only global 

methods is hard

• Local methods reduce large-scale luminance changes (across the 
image) while preserving local contrast (across edges)

• use edge-preserving filters to avoid halos
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Next Lecture: 
Edge-aware filtering
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