
Images filtered by Karacan et al., 2013

Lecture #05 – Edge-Aware Filtering
Erkut Erdem // Hacettepe University // Spring 2024

BBM444
FUNDAMENTALS OF
COMPUTATIONAL
PHOTOGRAPHY

Today’s Lecture
• Gaussian filtering

• Sharpening

• Bilateral filter

• Non-local means filter

• RegCov smoothing

• Rolling guidance filter

Disclaimer: The material and slides for this lecture were borrowed from
— Ioannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class

—Wojciech Jarosz’s CS 89.15/189.5 “Computational Aspects of Digital Photography” class

—Steve Marschner’s CS6640 “Computational Photography” class

—Kaiming He’s slides on Guided Image Filtering
2

Filtering
• The name “filter” is borrowed from frequency domain processing

• Accept or reject certain frequency components

• Fourier (1807):
Periodic functions
could be represented
as a weighted sum of
sines and cosines

Image courtesy of Technology Review

3

Signals
• A signal is composed of low and high frequency components

low frequency components: smooth / piecewise smooth

high frequency components: oscillatory

Neighboring pixels have similar brightness values

Neighboring pixels have different brightness values

You’re within a region

You’re either at the edges or noise points

4

Image Filtering
• Idea: Use the information coming from the neighboring pixels for processing

• Design a transformation function of the local neighborhood at each pixel in the
image
• Function specified by a “filter” or mask saying how to combine values from

neighbors.

• Various uses of filtering:
• Enhance an image (denoise, resize, etc)
• Extract information (texture, edges, etc)
• Detect patterns (template matching)

S
lid

e
ad

ap
te

d
fr

om
 K

. G
ra

um
an

5

Filtering
• Processing done on a function

• can be executed in continuous form (e.g. analog circuit)
• but can also be executed using sampled representation

• Simple example: smoothing by averaging

• Can be modeled mathematically by convolution

6

Discrete convolution
• Simple averaging:

• every sample gets the same weight

• Convolution: same idea but with weighted average

• each sample gets its own weight (normally zero far away)

• This is all convolution is: it is a moving weighted average

7

Filters
• Sequence of weights a[j] is called a filter

• Filter is nonzero over its region of support
• usually centered on zero: support radius r

• Filter is normalized so that it sums to 1.0
• this makes for a weighted average, not just any old

weighted sum

• Most filters are symmetric about 0
• since for images we usually want to treat left and

right the same

a box filter

8

Convolution and filtering
• Convolution applies with any sequence of weights

• Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16

9

Discrete filtering in 2D
• Same equation, one more index

• now the filter is a rectangle you slide around over a grid of numbers

• Usefulness of associativity
• often apply several filters one after another: (((a *	b1)	*	b2)	*	b3)
• this is equivalent to applying one filter: a	*	(b1 *	b2 *	b3)

10

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

11S
lid

e
cr

ed
it:

 S
. S

ei
tz

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

12S
lid

e
cr

ed
it:

 S
. S

ei
tz

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

13S
lid

e
cr

ed
it:

 S
. S

ei
tz

Moving Average In 2D

• What values belong in the kernel H for the moving average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

“box filter”

?

14S
lid

e
ad

ap
te

d
fr

om
 K

. G
ra

um
an

Averaging Filter

depicts box filter:
white = high value, black = low value

original filtered

15S
lid

e
ad

ap
te

d
fr

om
 K

. G
ra

um
an

Smoothing by averaging

Gaussian Filtering

16

• What if we want nearest neighboring pixels to have the most influence on the
output?

• Removes high-frequency components from the image (“low-pass filter”).

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

This kernel is an
approximation of a 2d
Gaussian function:

17S
lid

e
cr

ed
it:

 S
. S

ei
tz

Gaussian Filter

18S
lid

e
ad

ap
te

d
fr

om
 K

. G
ra

um
an

Smoothing with a Gaussian

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and
controls the amount of smoothing.

19S
lid

e
ad

ap
te

d
fr

om
 K

. G
ra

um
an

Smoothing with a Gaussian

Strategy for Smoothing Images
• Images are not smooth because adjacent pixels are different.

• Smoothing = making adjacent pixels look more similar.

• Smoothing strategy
pixel ~ average of its neighbors

20

Sharpening

21

How can we sharpen?
• Blurring was easy

• Sharpening is not as obvious

22S
lid

e
ad

ap
te

d
fr

om
 F

. D
ur

an
d

How can we sharpen?
• Blurring was easy

• Sharpening is not as obvious

• Idea: amplify the stuff not in the blurry image

• output = input + k*(input-blur(input))

23S
lid

e
ad

ap
te

d
fr

om
 F

. D
ur

an
d

Sharpening

24S
lid

e
ad

ap
te

d
fr

om
 F

. D
ur

an
d

high pass

sharpened
image

+k* =

=-

Sharpening: kernel view

25S
lid

e
ad

ap
te

d
fr

om
 F

. D
ur

an
d

• Recall

f is the input
f’ is a sharpened image
g is a blurring kernel
k is a scalar controlling the strength of sharpening

Sharpening: kernel view
Recall

f is the input
f’ is a sharpened image
g is a blurring kernel
k is a scalar controlling the strength of sharpening

CS 89/189: Computational Photography, Fall 2015 66

f 0 = f + k ⇤ (f � f ⌦ g)

Af
te

r a
 sl

id
e

by
 Fr

éd
o

Du
ra

nd

Sharpening: kernel view

26S
lid

e
ad

ap
te

d
fr

om
 F

. D
ur

an
d

• Recall

• Denote δ the Dirac kernel (pure impulse)

Sharpening: kernel view
Recall

f is the input
f’ is a sharpened image
g is a blurring kernel
k is a scalar controlling the strength of sharpening

CS 89/189: Computational Photography, Fall 2015 66

f 0 = f + k ⇤ (f � f ⌦ g)

Af
te

r a
 sl

id
e

by
 Fr

éd
o

Du
ra

nd
Sharpening: kernel view
Recall

Denote δ the Dirac kernel (pure impulse)

CS 89/189: Computational Photography, Fall 2015 67

f 0 = f + k ⇤ (f � f ⌦ g)

Af
te

r a
 sl

id
e

by
 Fr

éd
o

Du
ra

nd f = f ⌦ d

Sharpening: kernel view

27S
lid

e
ad

ap
te

d
fr

om
 F

. D
ur

an
d

• Recall

• Sharpening is also a convolution

Sharpening: kernel view
Recall

f is the input
f’ is a sharpened image
g is a blurring kernel
k is a scalar controlling the strength of sharpening

CS 89/189: Computational Photography, Fall 2015 66

f 0 = f + k ⇤ (f � f ⌦ g)

Af
te

r a
 sl

id
e

by
 Fr

éd
o

Du
ra

nd
Sharpening: kernel view
Recall

Sharpening is also a convolution

CS 89/189: Computational Photography, Fall 2015 68

f 0 = f + k ⇤ (f � f ⌦ g)

f 0 = f ⌦ d + k ⇤ (f ⌦ d � f ⌦ g)

f 0 = f ⌦ ((k + 1)d � g)

Af
te

r a
 sl

id
e

by
 Fr

éd
o

Du
ra

nd

Sharpening kernel

28S
lid

e
ad

ap
te

d
fr

om
 F

. D
ur

an
d

• Note: many other sharpening kernels exist
(just like we saw multiple blurring kernels)

• Amplify the difference between a pixel and its neighbors

Sharpening kernel
Note: many other sharpening kernels exist  
(just like we saw multiple blurring kernels)
Amplify the difference between a pixel and its neighbors

CS 89/189: Computational Photography, Fall 2015 69

blue: positive 
red: negative

f 0 = f ⌦ ((k + 1)d � g)

Af
te

r a
 sl

id
e

by
 Fr

éd
o

Du
ra

nd

blue: positive
red: negative

Alternate interpretation

29S
lid

e
ad

ap
te

d
fr

om
 F

. D
ur

an
d

• out = input + k*(input-blur(input))
• out = (1 + k)*input - k*blur(input)
• out = lerp(blur(input), input, 1+k)

linearly extrapolate from the blurred image “past” the original input image

Sharpening

30S
lid

e
ad

ap
te

d
fr

om
 F

. D
ur

an
d

high pass

sharpened
image

+k* =

=-

Unsharp mask

31S
lid

e
ad

ap
te

d
fr

om
 F

. D
ur

an
d

• Sharpening is often called “unsharp mask” because photographers used to
sandwich a negative with a blurry positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Unsharp mask
Sharpening is often called “unsharp mask” because
photographers used to sandwich a negative with a
blurry positive film in order to sharpen

CS 89/189: Computational Photography, Fall 2015 73

http://www.tech-diy.com/UnsharpMasks.htm
Af

te
r a

 sl
id

e
by

 Fr
éd

o
Du

ra
nd

32

CS 89/189: Computational Photography, Fall 2015 74

ht
tp

://
ww

w.
te

ch
-d

iy.
co

m
/im

ag
es

/u
ns

ha
rp

2.
jp

g

Af
te

r a
 sl

id
e

by
 Fr

éd
o

Du
ra

nd

Unsharp
mask

Problem with excess

33S
lid

e
ad

ap
te

d
fr

om
 F

. D
ur

an
d

• Haloes around strong edges
Problem with excess
Haloes around strong edges

CS 89/189: Computational Photography, Fall 2015 77

Af
te

r a
 sl

id
e

by
 Fr

éd
o

Du
ra

nd

Bilateral Filter

34

normalized
Gaussian function

()å
Î

-=
S

IGIGB
q

qp qp ||||][s

Idea: weighted average of pixels.

0

1
average

input

per-pixel multiplication

output*

35

Gaussian Filter

size of the window

()å
Î

-=
S

IGIGB
q

qp qp ||||][s

small σ large σ

input

limited smoothing strong smoothing

36

Spatial Parameter

Properties of Gaussian Blur
• Weights independent of spatial location

• linear convolution
• well-known operation
• efficient computation (recursive algorithm, FFT…)

• Does smooth images

• But smoothes too much:
edges are blurred.
• Only spatial distance matters
• No edge term

input

output

()å
Î

-=
S

IGIGB
q

qp qp ||||][s
space

37

*

*

*

input output

Same Gaussian kernel everywhere.

38

Blur Comes from Averaging across Edges

*

*

*

input output

The kernel shape depends on the image content.

[Aurich 95, Smith 97, Tomasi 98] 39

Bilateral Filter: No Averaging across Edges

range weight

new

space weight

not new

normalization
factor

new

() ()å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

Same idea: weighted average of pixels.

40

Bilateral Filter: An Additional Edge Term

range weight

new

space weight

not new

normalization
factor

new

() ()å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

Same idea: weighted average of pixels.

favor nearby pixels favor similar pixels
41

Bilateral Filter: An Additional Edge Term

Space and Range Parameters

• space σs : spatial extent of the kernel, size of the considered neighborhood.

• range σr : “minimum” amplitude of an edge

() ()å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

42

Output Gaussian Filter Input

43

Gaussian filtering visualization

Output Bilateral Filter Input

Spatial range Intensity range

44

Bilateral filtering visualization

σs = 2

σs = 6

σs = 18

σr = 0.1 σr = 0.25
σr = ∞

(Gaussian blur)

input

45

Exploring the Parameter Space

() ()å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

() ()å
Î

--=
S

GG
W

IBF
q

qqp
p

p CCCqp ||||||||1][
rs ss

For gray-level images

For color images

intensity difference

color difference

scalar

3D vector
(RGB, Lab)

input

output

46

Bilateral Filtering Color Images

• Nonlinear

• Complex, spatially varying kernels

• Cannot be precomputed, no FFT…

• Brute-force implementation is slow > 10min

() ()å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

Additional Reading: S. Paris and F. Durand, A Fast Approximation of the
Bilateral Filter using a Signal Processing Approach, In Proc. ECCV, 2006

47

Hard to Compute

noisy input bilateral filtering median filtering

48

Denoising

input sharpening based on
bilateral filtering

sharpening based on
Gaussian filtering

How would you use bilateral filtering for sharpening?

49

Contrast enhancement

50

Photo retouching

original digital pore removal (aka bilateral filtering)

51

Photo retouching

52

Before

53

After

original digital pore removal
(aka bilateral filtering)

54

Close-up comparison

input cartoon rendition

55

Cartoonization

How would you create this effect?

56

Cartoonization

edges from bilaterally filtered image bilaterally filtered image

+ =

cartoon rendition

Note: image cartoonization and abstraction are very active research areas.
57

Cartoonization

Shift-invariant?

Linear?

58

Is the bilateral filter:

Shift-invariant?

Linear?

• No.

• No.

Does this have any bad implications?

59

Is the bilateral filter:

Data structure for fast
edge-aware image

processing.

60

The bilateral grid

Flash/no-flash photography
via bilateral filtering

61

Red Eye
62

Unflattering Lighting
63

Motion Blur
64

Noise
65

A lot of Noise
66

Ruined Ambiance
67

No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look

68

Lock Focus
& Aperture

1

time

69

Image acquisition

1/30 s
ISO 3200

No-Flash ImageLock Focus
& Aperture

21

time

70

Image acquisition

1/30 s
ISO 3200

1/125 s
ISO 200

No-Flash ImageLock Focus
& Aperture

Flash Image

2 31

time

71

Image acquisition

Denoising Result

72

No-Flash

73

Denoising Result

74

Denoise the no-flash image while maintaining the edge structure of the flash image
• How would you do this using the image editing techniques we’ve learned about?

75

Key idea

Joint bilateral filtering

76

noisy input bilateral filtering median filtering

77

Denoising with bilateral filtering

• However, results still have noise or blur (or both)

ambient

flash
Bilateral

filter

spatial kernel

intensity kernel

78

Denoising with bilateral filtering

• In the flash image there are many more details
• Use the flash image F to find edges

79

Denoising with joint bilateral filtering

Bilateral
filter

Joint Bilateral
filter

The difference

80

Denoising with joint bilateral filtering

Can you think of any types of edges that may exist in the flash image but
not the ambient one?

81

Not all edges in the flash image are real

shadows

specularities

• May cause over- or under-blur in joint bilateral filter
• We need to eliminate their effect

82

Not all edges in the flash image are real

• Observation: the pixels in the flash shadow should be similar to the ambient image.

• Not identical:

1. Noise.

2. Inter-reflected flash.

• Compute a shadow mask.

• Take pixel p if

• is manually adjusted

• Mask is smoothed and dilated

83

Detecting shadows

case, the extreme levels of noise forced us to use relatively wide
Gaussians for both the domain and range kernels in the joint
bilateral filter. Thus, when transferring back the true detail from
the flash image, we also used relatively wide Gaussians in compu-
ting the detail layer. As a result, it is possible to see small halos
around the edges of the bottles. Nevertheless, our approach is able
to smooth away the noise while preserving detail like the gentle
wrinkles on the sofa and the glazing on the bottles. Figure 7
shows a comparison between a long exposure reference image of
the wine cave and our detail transfer with denoising result.

In most cases, our detail transfer algorithm improves the appear-
ance of the ambient image. However, it is important to note that
the flash image may contain detail that looks unnatural when
transferred to the ambient image. For example, if the light from
the flash strikes a surfaces at a shallow angle, the flash image may
pick up surface texture (i.e. wood grain, stucco, etc.) as detail. If
this texture is not visible in the original ambient image, it may
look odd. Similarly if the flash image washes out detail, the
ambient image may be over-blurred. Our approach allows the user
to control how much detail is transferred over the entire image.
Automatically adjusting the amount of local detail transferred is
an area for future work.

4.3 Detecting Flash Shadows and Specularities
Light from the flash can introduce shadows and specularities into
the flash image. Within flash shadows, the image may be as dim
as the ambient image and therefore suffer from noise. Similarly,
within specular reflections, the flash image may be saturated and
lose detail. Moreover, the boundaries of both these regions may
form high-frequency edges that do not exist in the ambient image.
To avoid using information from the flash image in these regions,
we first detect the flash shadows and specularities.

Flash Shadows. Since a point in a flash shadow is not illuminated
by the flash, it should appear exactly as it appears in the ambient
image. Ideally, we could linearize 𝐴 and 𝐹 as described in Section
3 and then detect pixels where the luminance of the difference
image 𝐹𝐿𝑖𝑛 − 𝐴𝐿𝑖𝑛 is zero. In practice, this approach is confound-
ed by four issues: 1) surfaces that do not reflect any light (i.e. with
zero albedo) are detected as shadows; 2) distant surfaces not
reached by the flash are detected as shadows; 3) noise causes non-
zero values within shadows; and 4) inter-reflection of light from
the flash causes non-zero values within the shadow.
The first two issues do not cause a problem since the results are
the same in both the ambient and flash images and thus whichever
image is chosen will give the same result. To deal with noise and
inter-reflection, we add a threshold when computing the shadow
mask by looking for pixels in which the difference between the
linearized flash and ambient images is small:

 𝑀𝑆ℎ𝑎𝑑 = � 1 when 𝐹𝐿𝑖𝑛 − 𝐴𝐿𝑖𝑛 ≤ 𝜏𝑆ℎ𝑎𝑑
0 otherwise.

 (8)

No-Flash Detail Transfer

with Denoising
Long Exposure

Reference

Figure 7: We captured a long exposure image of the wine cave scene (3.2
seconds at ISO 100) for comparison with our detail transfer with denoising
result. We also computed average mean-square error across the 16 bit R,
G, B color channels between the no-flash image and the reference (1485.5
MSE) and between our result and the reference (1109.8 MSE). However, it
is well known that MSE is not a good measure of perceptual image
differences. Visual comparison shows that although our result does not
achieve the fidelity of the reference image, it is substantially less noisy
than the original no-flash image.

Orig. (top) Detail Transfer (bottom) Flash No-Flash Detail Transfer with Denoising
Figure 6: An old European lamp made of hay. The flash image captures detail, but is gray and flat. The no-flash image captures the warm illumination of the
lamp, but is noisy and lacks the fine detail of the hay. With detail transfer and denoising we maintain the warm appearance, as well as the sharp detail.

Flash

No-Flash

• Take pixels where sensor input is close to maximum (very bright).

• Over fixed threshold

• Create a specularity mask.

• Also smoothed.

• M – the combination of shadow and specularity masks:

Where Mp=1, we use ABase. For other pixels we use ANR.

84

Detecting specularities

• Denoising cannot add details missing in the ambient image
• Exist in flash image because of high SNR
• We use a quotient image:

• Multiply with ANR to add the details
• Masked in the same way

Reduces the
effect of
noise in F

Why does this quotient
image make sense for

detail?

Bilateral
filtered

85

Detail transfer

• Denoising cannot add details missing in the ambient image
• Exist in flash image because of high SNR
• We use a quotient image: Reduces the

effect of
noise in F

86

Detail transfer

87

Detail transfer

We have developed a program that lets users interactively adjust
the threshold value 𝜏𝑆ℎ𝑎𝑑 and visually verify that all the flash
shadow regions are properly captured.
Noise can contaminate the shadow mask with small speckles,
holes and ragged edges. We clean up the shadow mask using
image morphological operations to erode the speckles and fill the
holes. To produce a conservative estimate that fully covers the
shadow region, we then dilate the mask.

Flash Specularities. We detect specular regions caused by the
flash using a simple physically motivated heuristic. Specular
regions should be bright in 𝐹𝐿𝑖𝑛 and should therefore saturate the
image sensor. Hence, we look for luminance values in the flash
image that are greater than 95% of the range of sensor output
values. We clean, fill holes, and dilate the specular mask just as
we did for the shadow mask.

Final Merge. We form our final mask 𝑀 by taking the union of
the shadow and specular masks. We then blur the mask to feather
its edges and prevent visible seams when the mask is used to
combine regions from different images.

Results & Discussion. The results in Figures 1 and 6–8 were
generated using this flash artifact detection approach. Figure 8
(top row) illustrates how the mask corrects flash shadow artifacts
in the detail transfer algorithm. In Figure 1 we show a failure case
of our algorithm. It does not capture the striped specular highlight
on the center bottle and therefore this highlight is transferred as
detail from the flash image to our final result.
Although both our shadow and specular detection techniques are
based on simple heuristics, we have found that they produce good
masks for a variety of examples. More sophisticated techniques
developed for shadow and specular detection in single images or
stereo pairs [Lee and Bajcsy 1992; Funka-Lea and Bajcsy 1995;
Swaminathan et al. 2002] may provide better results and could be
adapted for the case of flash/no-flash pairs.

5 White Balancing
Although preserving the original ambient illumination is often
desirable, sometimes we may want to see how the scene would
appear under a more “white” illuminant. This process is called
white-balancing, and has been the subject of much study [Adams
et al. 1998].
When only a single ambient image is acquired, the ambient
illumination must be estimated based on heuristics or user input.
Digital cameras usually provide several white-balance modes for
different environments such as sunny outdoors and fluorescent
lighting. Most often, pictures are taken with an “auto” mode,
wherein the camera analyzes the image and computes an image-
wide average to infer ambient color. This is, of course, only a
heuristic, and some researchers have considered semantic analysis
to determine color cast [Schroeder and Moser 2001].
A flash/no-flash image pair enables a better approach to white
balancing. Our work is heavily inspired by that of DiCarlo et al.
[2001], who were the first to consider using flash/no-flash pairs
for illumination estimation. They infer ambient illumination by
performing a discrete search over a set of 103 illuminants to find
the one that most closely matches the observed image pair. We
simplify this approach by formulating it as a continuous optimiza-
tion problem that is not limited by this discrete set of illuminants.
Thus, our approach requires less setup than theirs.
We can think of the flash as adding a point light source of known
color to the scene. By setting the camera white-balance mode to
“flash” (and assuming a calibrated camera), this flash color should
appear as reference white in the acquired images.
The difference image Δ = 𝐹𝐿𝑖𝑛 − 𝐴𝐿𝑖𝑛 corresponds to the illumi-
nation due to the flash only, which is proportional to the surface
albedo at each pixel 𝑝. Note that the albedo estimate Δ has un-
known scale, because both the distance and orientation of the
surface are unknown. Here we are assuming either that the surface
is diffuse or that its specular color matches its diffuse color. As a

Orig. (top) Detail Transfer (bottom) Detail Transfer without Mask Shadow and Specularity Mask Detail Transfer using Mask

Flash No-Flash Detail Transfer with Denoising

Figure 8: (top row) The flash image does not contain true detail information in shadows and specular regions. When we naively apply our denoising and
detail transfer algorithms, these regions generate artifacts as indicated by the white arrows. To prevent these artifacts, we revert to basic bilateral filtering
within these regions. (bottom row). The dark brown pot on the left is extremely noisy in the no-flash image. The green pot on the right is also noisy, but as
shown in the flash image it exhibits true texture detail. Our detail transfer technique smoothes the noise while maintaining the texture. Also note that the flash
shadow/specularity detection algorithm properly masks out the large specular highlight on the brown pot and does not transfer that detail to the final image.

No-Flash

Flash

Orig. (top) Detail Transfer (bottom) Detail Transfer w/o Mask Shadow and Specularity Mask Detail Transfer w/ Mask.

Flash No-Flash Detail Transfer w/ Denoising

88

Full pipeline

ambient-only joint bilateral and detail transfer

89

Demonstration

Flash

90

No-Flash

91

No-Flash

92

Result

93

Flash

94

No-Flash

95

No-Flash

96

Result

97

Flash

98

No-Flash

99

Flash

100

No-Flash

101

Result

102

Joint bilateral filtering
other applications

103

One of two input
images

Depth from disparity Guided filtering

Use joint bilateral filtering, with
the input image as guide.

104

Edge-aware depth denoising

105

Other applications of joint bilateral filtering

Tonemapping
via bilateral filtering

106

10-6 106
image HDR image

10-6 106
display

107

Display the information
• Recall our HDR class

• Match limited contrast of the medium while preserving details
low contrast

high dynamic range

Real world:

Photo/display:

10-6 106
image HDR image

10-6 106
display

108

Display the information
• Recall our HDR class

• Match limited contrast of the medium while preserving details
low contrast

high dynamic range

Real world:

Photo/display:

Tonemapping

Tonemapping
• Called tone mapping operators

• Two general categories:

• Global (spatially invariant)

• Local (spatially varying)

109

Tone mapping for very HDR scenes
• sun overexposed

• foreground too dark

110

Tone mapping for very HDR scenes
• Scene has >100,000:1

dynamic range,
JPEG has 255:1

• How can we
compress the scene’s
dynamic range?

111

Tone mapping for very HDR scenes
• Scene has >100,000:1

dynamic range,
JPEG has 255:1

• How can we
compress the scene’s
dynamic range?

• Scale linearly?
• If we scaled linearly

from 100,000:1 to
255:1, everything but
the sun would be
black!

112

Tonemapping w/ Simple Gamma

• gamma correction,
applied independently
on R, G, B:

• global tonemapping

• colors are washed out
113

[D
ur

an
d

an
d

D
or

se
y,

 2
00

2]

• gamma correction:

• colors are washed out

I = I γ

Tone Mapping w/ Simple Gamma

input Gamma

Tonemapping w/ Simple Gamma

• gamma in intensity
only!

• Intensity details lost

114

intensity Gamma on intensity

color

Oppenheim 1968, Chiu et al. 1993
• Reduce contrast of low-

frequencies, preserve
high frequencies

115

Reduce low frequency

low-freq.

high-freq.

color

The halo nightmare
• For strong edges;

because they contain
high frequency

116

Reduce low frequency

low-freq.

high-freq.

color

The halo nightmare
• Similar to unsharp mask

of luminance in log
domain

117

Reduce low frequency

low-freq.

high-freq.

color

Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)

• Don’t blur across edges,
decompose using
bilateral filter

118

large scale

detail

color

Durand and Dorsey 2002

Reduce large scaleLarge-scale

Detail

Color

Don’t blur across edges, decompose using bilateral filter

CS 73/273: Computational Photography 83

Af
te

r a
 sl

id
e

by
 Fr

éd
o

Du
ra

nd

Reduce large scale

Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)

119

Input HDR

Contrast too high!

Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)

120

color

Input HDR

intensity

Intensity
= 0.3R+0.6G+0.1B

R’=R/intensity
G’=G/intensity
B’=B/intensity

Important to use ratios
(makes it luminance
invariant)

Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)

121

color

Input HDR

intensity

Spatial sigma: 2-5% image size
Range sigma: 0.4 (in log 10)

Bilateral
Filter

in log

large scale

Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)

122

color

Input HDR

intensity

detail = log intensity - large scale
(residual)

Bilateral
Filter

in log

large scale

detail

Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)

123

color

Input HDR

intensity

Bilateral
Filter

in log

large scale

detail

large scale

Reduce
contrast

Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)

124

color

Input HDR

intensity

Bilateral
Filter

in log

large scale

detail

Reduce
contrast

large scale

detail
Preserve!

Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)

125

color

Input HDR

intensity

Bilateral
Filter

in log

large scale

detail

large scale

detail

Durand and Dorsey 2002

Reduce large scaleLarge-scale

Detail

Color

Don’t blur across edges, decompose using bilateral filter

CS 73/273: Computational Photography 83

Af
te

r a
 sl

id
e

by
 Fr

éd
o

Du
ra

nd

output

color

Preserve!

Reduce
contrast

Log domain
• Very important to work in the log domain

• Recall: humans are sensitive to multiplicative contrast

• With log domain, our notion of “strong edge” always corresponds to
the same contrast

126

Scale decomposition in log domain
• inLog = log10(intensity)

• inLogLarge = bilateralFilter(inLog)

• inLogDetail = inLog - inLogLarge

• hence:

- inLog = inLogDetail + inLogLarge, or

- intensity = 10inLogDetail * 10inLogLarge

• Now manipulate large-scale and detail separately

127

Contrast reduction in log domain

• Normalize so that the biggest value is 0 in log

• Set target large-scale contrast (e.g. targetRange = log10(100))

- i.e. in linear output, we want 1:100 contrast for large scale

• Compute range of input’s large-scale layer:

- largeRange = max(inLogLarge) – min(inLogLarge)

• Scale factor k = targetRange / largeRange

128

multiplication in log
=

γ exponent in linear

outLog = inLogDetail + k*(inLogLarge – max(inLogLarge))

Contrast reduction in log domain

• Normalize so that the biggest value is 0 in log

• Set target large-scale contrast (e.g. targetRange = log10(100))

- i.e. in linear output, we want 1:100 contrast for large scale

• Compute range of input’s large-scale layer:

- largeRange = max(inLogLarge) – min(inLogLarge)

• Scale factor k = targetRange / largeRange

• Optional: amplify detail by detailAmp

129

outLog = detailAmp*inLogDetail + k*(inLogLarge – max(inLogLarge))

Contrast reduction in log domain

• outIntensity = 10outLog

• Recall that R’,G’,B’ is the intensity-normalized RGB color

- outR=outIntensity * R’

- outG=outIntensity * G’

- outB=outIntensity * B’

130

outLog = detailAmp*inLogDetail + k*(inLogLarge – max(inLogLarge))

What matters
• Spatial sigma: not very important

• Range sigma: quite important

• Use of the log domain for range: critical

- Because HDR and because perception sensitive to multiplicative
contrast

131

Lots of great examples at: https://www.inf.ufrgs.br/~eslgastal/DomainTransform/
132

Modern edge-aware filtering: domain transform

133

Modern edge-aware filtering: guided filter

134

Guided Image Filtering

It has been observed that these implicit filters are closely
related to the explicit ones. In [43], Elad shows that the
bilateral filter is one Jacobi iteration in solving the Gaussian
affinity matrix. The Hierarchical Local Adaptive Precondi-
tioners [41] and the Edge-Avoiding Wavelets [37] are
constructed in a similar manner. In this paper, we show
that the guided filter is closely related to the matting
Laplacian matrix [10].

2.3 Nonaverage Filters
Edge-preserving filtering can also be achieved by nonaver-
age filters. The median filter [2] is a well-known edge-aware
operator, and is a special case of local histogram filters [44].
Histogram filters have OðNÞ time implementations in a way
as the bilateral grid. The Total-Variation (TV) filters [45]
optimize an L1-regularized cost function, and are shown
equivalent to iterative median filtering [46]. The L1 cost
function can also be optimized via half-quadratic split [47],
alternating between a quadratic model and soft shrinkage
(thresholding). Recently, Paris et al. [48] proposed manip-
ulating the coefficients of the Laplacian Pyramid around
each pixel for edge-aware filtering. Xu et al. [49] propose
optimizing an L0-regularized cost function favoring piece-
wise constant solutions. The nonaverage filters are often
computationally expensive.

3 GUIDED FILTER

We first define a general linear translation-variant filtering
process, which involves a guidance image I, an filtering
input image p, and an output image q. Both I and p are
given beforehand according to the application, and they can
be identical. The filtering output at a pixel i is expressed as
a weighted average:

qi ¼
X

j

WijðIÞpj; ð1Þ

where i and j are pixel indexes. The filter kernel Wij is a
function of the guidance image I and independent of p. This
filter is linear with respect to p.

An example of such a filter is the joint bilateral filter [14]
(Fig. 1 (left)). The bilateral filtering kernel Wbf is given by

Wbf
ij ðIÞ ¼

1

Ki
exp $ k xi $ xj k2

!2
s

! "
exp $ k Ii $ Ij k

2

!2
r

! "
; ð2Þ

where x is the pixel coordinate and Ki is a normalizing
parameter to ensure that

P
j W

bf
ij ¼ 1. The parameters !s

and !r adjust the sensitivity of the spatial similarity and the
range (intensity/color) similarity, respectively. The joint
bilateral filter degrades to the original bilateral filter [1]
when I and p are identical.

The implicit weighted-average filters (in Section 2.2)
optimize a quadratic function and solve a linear system in
this form:

Aq ¼ p; ð3Þ

where q and p are N-by-1 vectors concatenating fqig and
fpig, respectively, and A is an N-by-N matrix only depends
on I. The solution to (3), i.e., q ¼ A$1p, has the same form as
(1), with Wij ¼ ðA$1Þij.

3.1 Definition

Now we define the guided filter. The key assumption of the
guided filter is a local linear model between the guidance I
and the filtering output q. We assume that q is a linear
transform of I in a window !k centered at the pixel k:

qi ¼ akIi þ bk; 8i 2 !k; ð4Þ

where ðak; bkÞ are some linear coefficients assumed to be
constant in !k. We use a square window of a radius r. This
local linear model ensures that q has an edge only if I has an
edge, because rq ¼ arI. This model has been proven
useful in image super-resolution [50], image matting [10],
and dehazing [11].

To determine the linear coefficients ðak; bkÞ, we need
constraints from the filtering input p. We model the output q
as the input p subtracting some unwanted components n
like noise/textures:

qi ¼ pi $ ni: ð5Þ

We seek a solution that minimizes the difference between q
and p while maintaining the linear model (4). Specifically,
we minimize the following cost function in the window !k:

Eðak; bkÞ ¼
X

i2!k

##
akIi þ bk $ pi

$2 þ "a2
k

$
: ð6Þ

Here, " is a regularization parameter penalizing large ak. We
will investigate its intuitive meaning in Section 3.2.
Equation (6) is the linear ridge regression model [51], [52]
and its solution is given by

HE ET AL.: GUIDED IMAGE FILTERING 3

Fig. 1. Illustrations of the bilateral filtering process (left) and the guided filtering process (right).

It has been observed that these implicit filters are closely
related to the explicit ones. In [43], Elad shows that the
bilateral filter is one Jacobi iteration in solving the Gaussian
affinity matrix. The Hierarchical Local Adaptive Precondi-
tioners [41] and the Edge-Avoiding Wavelets [37] are
constructed in a similar manner. In this paper, we show
that the guided filter is closely related to the matting
Laplacian matrix [10].

2.3 Nonaverage Filters
Edge-preserving filtering can also be achieved by nonaver-
age filters. The median filter [2] is a well-known edge-aware
operator, and is a special case of local histogram filters [44].
Histogram filters have OðNÞ time implementations in a way
as the bilateral grid. The Total-Variation (TV) filters [45]
optimize an L1-regularized cost function, and are shown
equivalent to iterative median filtering [46]. The L1 cost
function can also be optimized via half-quadratic split [47],
alternating between a quadratic model and soft shrinkage
(thresholding). Recently, Paris et al. [48] proposed manip-
ulating the coefficients of the Laplacian Pyramid around
each pixel for edge-aware filtering. Xu et al. [49] propose
optimizing an L0-regularized cost function favoring piece-
wise constant solutions. The nonaverage filters are often
computationally expensive.

3 GUIDED FILTER

We first define a general linear translation-variant filtering
process, which involves a guidance image I, an filtering
input image p, and an output image q. Both I and p are
given beforehand according to the application, and they can
be identical. The filtering output at a pixel i is expressed as
a weighted average:

qi ¼
X

j

WijðIÞpj; ð1Þ

where i and j are pixel indexes. The filter kernel Wij is a
function of the guidance image I and independent of p. This
filter is linear with respect to p.

An example of such a filter is the joint bilateral filter [14]
(Fig. 1 (left)). The bilateral filtering kernel Wbf is given by

Wbf
ij ðIÞ ¼

1

Ki
exp $ k xi $ xj k2

!2
s

! "
exp $ k Ii $ Ij k

2

!2
r

! "
; ð2Þ

where x is the pixel coordinate and Ki is a normalizing
parameter to ensure that

P
j W

bf
ij ¼ 1. The parameters !s

and !r adjust the sensitivity of the spatial similarity and the
range (intensity/color) similarity, respectively. The joint
bilateral filter degrades to the original bilateral filter [1]
when I and p are identical.

The implicit weighted-average filters (in Section 2.2)
optimize a quadratic function and solve a linear system in
this form:

Aq ¼ p; ð3Þ

where q and p are N-by-1 vectors concatenating fqig and
fpig, respectively, and A is an N-by-N matrix only depends
on I. The solution to (3), i.e., q ¼ A$1p, has the same form as
(1), with Wij ¼ ðA$1Þij.

3.1 Definition

Now we define the guided filter. The key assumption of the
guided filter is a local linear model between the guidance I
and the filtering output q. We assume that q is a linear
transform of I in a window !k centered at the pixel k:

qi ¼ akIi þ bk; 8i 2 !k; ð4Þ

where ðak; bkÞ are some linear coefficients assumed to be
constant in !k. We use a square window of a radius r. This
local linear model ensures that q has an edge only if I has an
edge, because rq ¼ arI. This model has been proven
useful in image super-resolution [50], image matting [10],
and dehazing [11].

To determine the linear coefficients ðak; bkÞ, we need
constraints from the filtering input p. We model the output q
as the input p subtracting some unwanted components n
like noise/textures:

qi ¼ pi $ ni: ð5Þ

We seek a solution that minimizes the difference between q
and p while maintaining the linear model (4). Specifically,
we minimize the following cost function in the window !k:

Eðak; bkÞ ¼
X

i2!k

##
akIi þ bk $ pi

$2 þ "a2
k

$
: ð6Þ

Here, " is a regularization parameter penalizing large ak. We
will investigate its intuitive meaning in Section 3.2.
Equation (6) is the linear ridge regression model [51], [52]
and its solution is given by

HE ET AL.: GUIDED IMAGE FILTERING 3

Fig. 1. Illustrations of the bilateral filtering process (left) and the guided filtering process (right).

ak ¼
1
j!j
P

i2!k Iipi " !k!pk

"2
k þ #

; ð7Þ

bk ¼ !pk " ak!k: ð8Þ

Here, !k and "2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and !pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X

kji2!k

ðakIi þ bkÞ: ð9Þ

Noticing that
P

kji2!k ak ¼
P

k2!i ak due to the symmetry of
the box window, we rewrite (9) by

qi ¼ !aiIi þ !bi; ð10Þ

where !ai ¼ 1
j!j
P

k2!i ak and !bi ¼ 1
j!j
P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I (p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k

1þ ðIi " !kÞðIj " !kÞ
"2
k þ #

! "
: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

2. Note that we do not intend to approximate the bilateral filer, and the
bilateral filter results are not considered as “ground-truth.” So the “PSNR”
measure is just analogous to those used in the bilateral filter approximations
[18].

It has been observed that these implicit filters are closely
related to the explicit ones. In [43], Elad shows that the
bilateral filter is one Jacobi iteration in solving the Gaussian
affinity matrix. The Hierarchical Local Adaptive Precondi-
tioners [41] and the Edge-Avoiding Wavelets [37] are
constructed in a similar manner. In this paper, we show
that the guided filter is closely related to the matting
Laplacian matrix [10].

2.3 Nonaverage Filters
Edge-preserving filtering can also be achieved by nonaver-
age filters. The median filter [2] is a well-known edge-aware
operator, and is a special case of local histogram filters [44].
Histogram filters have OðNÞ time implementations in a way
as the bilateral grid. The Total-Variation (TV) filters [45]
optimize an L1-regularized cost function, and are shown
equivalent to iterative median filtering [46]. The L1 cost
function can also be optimized via half-quadratic split [47],
alternating between a quadratic model and soft shrinkage
(thresholding). Recently, Paris et al. [48] proposed manip-
ulating the coefficients of the Laplacian Pyramid around
each pixel for edge-aware filtering. Xu et al. [49] propose
optimizing an L0-regularized cost function favoring piece-
wise constant solutions. The nonaverage filters are often
computationally expensive.

3 GUIDED FILTER

We first define a general linear translation-variant filtering
process, which involves a guidance image I, an filtering
input image p, and an output image q. Both I and p are
given beforehand according to the application, and they can
be identical. The filtering output at a pixel i is expressed as
a weighted average:

qi ¼
X

j

WijðIÞpj; ð1Þ

where i and j are pixel indexes. The filter kernel Wij is a
function of the guidance image I and independent of p. This
filter is linear with respect to p.

An example of such a filter is the joint bilateral filter [14]
(Fig. 1 (left)). The bilateral filtering kernel Wbf is given by

Wbf
ij ðIÞ ¼

1

Ki
exp $ k xi $ xj k2

!2
s

! "
exp $ k Ii $ Ij k

2

!2
r

! "
; ð2Þ

where x is the pixel coordinate and Ki is a normalizing
parameter to ensure that

P
j W

bf
ij ¼ 1. The parameters !s

and !r adjust the sensitivity of the spatial similarity and the
range (intensity/color) similarity, respectively. The joint
bilateral filter degrades to the original bilateral filter [1]
when I and p are identical.

The implicit weighted-average filters (in Section 2.2)
optimize a quadratic function and solve a linear system in
this form:

Aq ¼ p; ð3Þ

where q and p are N-by-1 vectors concatenating fqig and
fpig, respectively, and A is an N-by-N matrix only depends
on I. The solution to (3), i.e., q ¼ A$1p, has the same form as
(1), with Wij ¼ ðA$1Þij.

3.1 Definition

Now we define the guided filter. The key assumption of the
guided filter is a local linear model between the guidance I
and the filtering output q. We assume that q is a linear
transform of I in a window !k centered at the pixel k:

qi ¼ akIi þ bk; 8i 2 !k; ð4Þ

where ðak; bkÞ are some linear coefficients assumed to be
constant in !k. We use a square window of a radius r. This
local linear model ensures that q has an edge only if I has an
edge, because rq ¼ arI. This model has been proven
useful in image super-resolution [50], image matting [10],
and dehazing [11].

To determine the linear coefficients ðak; bkÞ, we need
constraints from the filtering input p. We model the output q
as the input p subtracting some unwanted components n
like noise/textures:

qi ¼ pi $ ni: ð5Þ

We seek a solution that minimizes the difference between q
and p while maintaining the linear model (4). Specifically,
we minimize the following cost function in the window !k:

Eðak; bkÞ ¼
X

i2!k

##
akIi þ bk $ pi

$2 þ "a2
k

$
: ð6Þ

Here, " is a regularization parameter penalizing large ak. We
will investigate its intuitive meaning in Section 3.2.
Equation (6) is the linear ridge regression model [51], [52]
and its solution is given by

HE ET AL.: GUIDED IMAGE FILTERING 3

Fig. 1. Illustrations of the bilateral filtering process (left) and the guided filtering process (right).

It has been observed that these implicit filters are closely
related to the explicit ones. In [43], Elad shows that the
bilateral filter is one Jacobi iteration in solving the Gaussian
affinity matrix. The Hierarchical Local Adaptive Precondi-
tioners [41] and the Edge-Avoiding Wavelets [37] are
constructed in a similar manner. In this paper, we show
that the guided filter is closely related to the matting
Laplacian matrix [10].

2.3 Nonaverage Filters
Edge-preserving filtering can also be achieved by nonaver-
age filters. The median filter [2] is a well-known edge-aware
operator, and is a special case of local histogram filters [44].
Histogram filters have OðNÞ time implementations in a way
as the bilateral grid. The Total-Variation (TV) filters [45]
optimize an L1-regularized cost function, and are shown
equivalent to iterative median filtering [46]. The L1 cost
function can also be optimized via half-quadratic split [47],
alternating between a quadratic model and soft shrinkage
(thresholding). Recently, Paris et al. [48] proposed manip-
ulating the coefficients of the Laplacian Pyramid around
each pixel for edge-aware filtering. Xu et al. [49] propose
optimizing an L0-regularized cost function favoring piece-
wise constant solutions. The nonaverage filters are often
computationally expensive.

3 GUIDED FILTER

We first define a general linear translation-variant filtering
process, which involves a guidance image I, an filtering
input image p, and an output image q. Both I and p are
given beforehand according to the application, and they can
be identical. The filtering output at a pixel i is expressed as
a weighted average:

qi ¼
X

j

WijðIÞpj; ð1Þ

where i and j are pixel indexes. The filter kernel Wij is a
function of the guidance image I and independent of p. This
filter is linear with respect to p.

An example of such a filter is the joint bilateral filter [14]
(Fig. 1 (left)). The bilateral filtering kernel Wbf is given by

Wbf
ij ðIÞ ¼

1

Ki
exp $ k xi $ xj k2

!2
s

! "
exp $ k Ii $ Ij k

2

!2
r

! "
; ð2Þ

where x is the pixel coordinate and Ki is a normalizing
parameter to ensure that

P
j W

bf
ij ¼ 1. The parameters !s

and !r adjust the sensitivity of the spatial similarity and the
range (intensity/color) similarity, respectively. The joint
bilateral filter degrades to the original bilateral filter [1]
when I and p are identical.

The implicit weighted-average filters (in Section 2.2)
optimize a quadratic function and solve a linear system in
this form:

Aq ¼ p; ð3Þ

where q and p are N-by-1 vectors concatenating fqig and
fpig, respectively, and A is an N-by-N matrix only depends
on I. The solution to (3), i.e., q ¼ A$1p, has the same form as
(1), with Wij ¼ ðA$1Þij.

3.1 Definition

Now we define the guided filter. The key assumption of the
guided filter is a local linear model between the guidance I
and the filtering output q. We assume that q is a linear
transform of I in a window !k centered at the pixel k:

qi ¼ akIi þ bk; 8i 2 !k; ð4Þ

where ðak; bkÞ are some linear coefficients assumed to be
constant in !k. We use a square window of a radius r. This
local linear model ensures that q has an edge only if I has an
edge, because rq ¼ arI. This model has been proven
useful in image super-resolution [50], image matting [10],
and dehazing [11].

To determine the linear coefficients ðak; bkÞ, we need
constraints from the filtering input p. We model the output q
as the input p subtracting some unwanted components n
like noise/textures:

qi ¼ pi $ ni: ð5Þ

We seek a solution that minimizes the difference between q
and p while maintaining the linear model (4). Specifically,
we minimize the following cost function in the window !k:

Eðak; bkÞ ¼
X

i2!k

##
akIi þ bk $ pi

$2 þ "a2
k

$
: ð6Þ

Here, " is a regularization parameter penalizing large ak. We
will investigate its intuitive meaning in Section 3.2.
Equation (6) is the linear ridge regression model [51], [52]
and its solution is given by

HE ET AL.: GUIDED IMAGE FILTERING 3

Fig. 1. Illustrations of the bilateral filtering process (left) and the guided filtering process (right).

: noise / texture

minimize

Linear regression

Bilateral/joint bilateral filter does
not have this linear model

135

Guided Image Filtering

ak ¼
1
j!j
P

i2!k Iipi " !k!pk

"2
k þ #

; ð7Þ

bk ¼ !pk " ak!k: ð8Þ

Here, !k and "2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and !pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X

kji2!k

ðakIi þ bkÞ: ð9Þ

Noticing that
P

kji2!k ak ¼
P

k2!i ak due to the symmetry of
the box window, we rewrite (9) by

qi ¼ !aiIi þ !bi; ð10Þ

where !ai ¼ 1
j!j
P

k2!i ak and !bi ¼ 1
j!j
P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I (p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k

1þ ðIi " !kÞðIj " !kÞ
"2
k þ #

! "
: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

2. Note that we do not intend to approximate the bilateral filer, and the
bilateral filter results are not considered as “ground-truth.” So the “PSNR”
measure is just analogous to those used in the bilateral filter approximations
[18].

• Extend to the entire
image
- In all local windows ωk,

compute the linear
coefficients

- Compute the average
of akIi+bk in all ωk that
covers pixel qi

Definition

ak ¼
1
j!j
P

i2!k Iipi " !k!pk

"2
k þ #

; ð7Þ

bk ¼ !pk " ak!k: ð8Þ

Here, !k and "2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and !pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X

kji2!k

ðakIi þ bkÞ: ð9Þ

Noticing that
P

kji2!k ak ¼
P

k2!i ak due to the symmetry of
the box window, we rewrite (9) by

qi ¼ !aiIi þ !bi; ð10Þ

where !ai ¼ 1
j!j
P

k2!i ak and !bi ¼ 1
j!j
P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I (p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k

1þ ðIi " !kÞðIj " !kÞ
"2
k þ #

! "
: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

2. Note that we do not intend to approximate the bilateral filer, and the
bilateral filter results are not considered as “ground-truth.” So the “PSNR”
measure is just analogous to those used in the bilateral filter approximations
[18].

ak ¼
1
j!j
P

i2!k Iipi " !k!pk

"2
k þ #

; ð7Þ

bk ¼ !pk " ak!k: ð8Þ

Here, !k and "2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and !pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X

kji2!k

ðakIi þ bkÞ: ð9Þ

Noticing that
P

kji2!k ak ¼
P

k2!i ak due to the symmetry of
the box window, we rewrite (9) by

qi ¼ !aiIi þ !bi; ð10Þ

where !ai ¼ 1
j!j
P

k2!i ak and !bi ¼ 1
j!j
P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I (p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k

1þ ðIi " !kÞðIj " !kÞ
"2
k þ #

! "
: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

2. Note that we do not intend to approximate the bilateral filer, and the
bilateral filter results are not considered as “ground-truth.” So the “PSNR”
measure is just analogous to those used in the bilateral filter approximations
[18].

ω1

ω3

ω2
qi

2r

136

Guided Image Filtering

ak ¼
1
j!j
P

i2!k Iipi " !k!pk

"2
k þ #

; ð7Þ

bk ¼ !pk " ak!k: ð8Þ

Here, !k and "2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and !pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X

kji2!k

ðakIi þ bkÞ: ð9Þ

Noticing that
P

kji2!k ak ¼
P

k2!i ak due to the symmetry of
the box window, we rewrite (9) by

qi ¼ !aiIi þ !bi; ð10Þ

where !ai ¼ 1
j!j
P

k2!i ak and !bi ¼ 1
j!j
P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I (p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k

1þ ðIi " !kÞðIj " !kÞ
"2
k þ #

! "
: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

2. Note that we do not intend to approximate the bilateral filer, and the
bilateral filter results are not considered as “ground-truth.” So the “PSNR”
measure is just analogous to those used in the bilateral filter approximations
[18].

• Edge-preserving filter
• O(1) time, fast,

accurate
• Gradient preserving
• Parameters
- Window radius r
- Regularization ε

Definition

ak ¼
1
j!j
P

i2!k Iipi " !k!pk

"2
k þ #

; ð7Þ

bk ¼ !pk " ak!k: ð8Þ

Here, !k and "2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and !pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X

kji2!k

ðakIi þ bkÞ: ð9Þ

Noticing that
P

kji2!k ak ¼
P

k2!i ak due to the symmetry of
the box window, we rewrite (9) by

qi ¼ !aiIi þ !bi; ð10Þ

where !ai ¼ 1
j!j
P

k2!i ak and !bi ¼ 1
j!j
P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I (p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k

1þ ðIi " !kÞðIj " !kÞ
"2
k þ #

! "
: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

2. Note that we do not intend to approximate the bilateral filer, and the
bilateral filter results are not considered as “ground-truth.” So the “PSNR”
measure is just analogous to those used in the bilateral filter approximations
[18].

ak ¼
1
j!j
P

i2!k Iipi " !k!pk

"2
k þ #

; ð7Þ

bk ¼ !pk " ak!k: ð8Þ

Here, !k and "2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and !pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X

kji2!k

ðakIi þ bkÞ: ð9Þ

Noticing that
P

kji2!k ak ¼
P

k2!i ak due to the symmetry of
the box window, we rewrite (9) by

qi ¼ !aiIi þ !bi; ð10Þ

where !ai ¼ 1
j!j
P

k2!i ak and !bi ¼ 1
j!j
P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I (p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k

1þ ðIi " !kÞðIj " !kÞ
"2
k þ #

! "
: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

2. Note that we do not intend to approximate the bilateral filer, and the
bilateral filter results are not considered as “ground-truth.” So the “PSNR”
measure is just analogous to those used in the bilateral filter approximations
[18].

ω1

ω3

ω2
qi

2r

137

Example: Edge-Preserving Smoothing

Bilateral Filter Guided Filter

138

Example: Detail Enhancement

Bilateral FilterGuided FilterOriginal

GF GF BFBF

139

Example: Tonemapping

Bilateral FilterGuided FilterOriginal HDR

GF BFGF BF

140

Example: Flash/No-Flash Photography

Guidance I Guided Filter

Joint Bilateral FilterFilter Input p

Non-Local Means Filter

141

142

Redundancy in natural images

NL-Means Filter (Buades 2005)

• Same goals: ‘Smooth within Similar Regions’

• KEY INSIGHT: Generalize, extend ‘Similarity’
• Bilateral:

Averages neighbors with similar intensities;
• NL-Means:

Averages neighbors with similar neighborhoods!

143

144

NL-Means Method

• For each and

every pixel p:

• For each and

every pixel p:

• Define a small, simple
fixed size neighborhood;

145

NL-Means Method

Vp =

0.74
0.32
0.41
0.55
…
…
…

146

NL-Means Method

• For each and

every pixel p:

• Define a small, simple
fixed size neighborhood;
• Define vector Vp: a list of neighboring pixel values.

‘Similar’ pixels p, q

à SMALL
vector distance;

|| Vp – Vq ||2
p

q

147

NL-Means Method

‘Dissimilar’ pixels p, q

à LARGE
vector distance;

|| Vp – Vq ||2
p

q

q

NL-Means Method

148

‘Dissimilar’ pixels p, q

à LARGE
vector distance;

Filter with this!

|| Vp – Vq ||2
p

q

NL-Means Method

149

p, q neighbors define

a vector distance;

Filter with this:
No spatial term!

|| Vp – Vq ||2 p
q

() ()å
Î

--=
S

IVVGG
W

INLMF
q

qqp
p

p qp 2||||||||1][
rs

ss

NL-Means Method

150

pixels p, q neighbors
Set a vector distance;

Vector Distance to p sets
weight for each pixel q

|| Vp – Vq ||2 p
q

()å
Î

-=
S

IVVG
W

INLMF
q

qqp
p

p
2||||1][

r

s

NL-Means Method

151

NL-Means Method

152

NL-Means Method
• Noisy

source
image:

153

NL-Means Method
• Gaussian Filter

Low noise,

Low detail

154

NL-Means Method
• Anisotropic

Diffusion

Note ‘stairsteps’:
~ piecewise constant

155

NL-Means Method
• Bilateral Filter

Better, but similar
‘stairsteps’:

156

NL-Means Method
• NL-Means:

Sharp,

Low noise,

Few artifacts.

157

158

NL-Means Method

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/

159

NL-Means Method

RegCov Smoothing

160

A�Modern�Paradigm:�Measuring�
Similarity�Between…

Images
Patches

Pixels

Pixels

Patches
Images

Similarities can be defined at different scales..

From pixels to patches and to images

161S
lid

e
cr

ed
it:

 P
. M

ila
nf

ar

Pixelwise similarity metrics
• To measure the similarity of two pixels, we can consider

• Spatial distance
• Gray‐level distance

Defining�a�pointͲwise�measure

• To�measure�the�similarity�of�two�pixels,�consider
– Spatial distance

– GrayͲlevel distance

Spatial ǻ

G
ra

y-
le

ve
l ǻ

x

y

162S
lid

e
cr

ed
it:

 P
. M

ila
nf

ar

Euclidean metrics

• Natural ways to incorporate the two Δs:
• Bilateral Kernel [Tomasi, Manduchi, ‘98] (pixelwise)
• Non‐Local Means Kernel [Buades, et al. ‘05] (patchwise)

Euclidean�measures

• Natural�ways�to�incorporate�the�two�ȴs:
– Bilateral Kernel�[Tomasi,�Manduchi,�‘98]�(pointwise)
– NonͲLocal�Means Kernel�[Buades,�et�al.�‘05]�(patchwise)

Spatial ǻ

G
ra

y-
le

ve
lǻ

x

y “Euclidean” distance

163S
lid

e
cr

ed
it:

 P
. M

ila
nf

ar

Bilateral�Kernel�(BL)�[Tomasi et�al.�‘98]

Pixel similarity Spatial similarity

=

Pixels

Bilateral Kernel (BL) [Tomasi et al. ‘98]

164S
lid

e
cr

ed
it:

 P
. M

ila
nf

ar

NonͲlocal�Means�(NLM)��[Buades et�al.�‘05]

Patch similarity Spatial similarity

=

Æ Smoothing�effect

Patches

Smoothing effect

165

Non-local Means (NLM) [Buades et al. ‘05]
S

lid
e

cr
ed

it:
 P

. M
ila

nf
ar

• Decomposing an image into structure and texture components

Input Image

166

Structure-Texture Decomposition

Structure Component

• Decomposing an image into structure and texture components

167

Structure-Texture Decomposition

Texture Component

• Decomposing an image into structure and texture components

168

Structure-Texture Decomposition

Structure

Texture

Input Image

• Decomposing an image into structure and texture components

169

Structure-Texture Decomposition

Tuzel et al., ECCV 2006

F x, y = ϕ(I, x, y)

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1 i d

�↵
p
dLi if d+ 1 i 2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

170

Structure-Texture Decomposition

1
7

• Region covariances capture local structure
and texture information.

• Similar regions have similar statistics.

171

Structure-Texture Decomposition

• Structure-texture decomposition via
smoothing

• Smoothing as weighted averaging

• Different kernels (wpq) result in different
types of filters.

• Three novel patch-based kernels for structure
texture decomposition.

• L. Karacan, A. Erdem, E. Erdem, “Structure
Preserving Image Smoothing via Region
Covariances”, ACM TOG 2013
(SIGGRAPH Asia 2013)

p
q

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1 i d

�↵
p
dLi if d+ 1 i 2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1 i d

�↵
p
dLi if d+ 1 i 2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

wpq

173

RegCov Smoothing - Formulation

• Depends on sigma-points representation of covariance matrices
(Hong et al.,CVPR’09)

p
q

wpq

Cholesky Decomposition

Sigma Points

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1 i d

�↵
p
dLi if d+ 1 i 2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1 i d

�↵
p
dLi if d+ 1 i 2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1 i d

�↵
p
dLi if d+ 1 i 2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

Final representation

Resulting kernel function

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

174

RegCov Smoothing – Model 1

• An alternative way is to use statistical similarity measures.

• A Mahalanobis-like distance measure to compare to image patches.

p
q

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

Resulting kernel

175

RegCov Smoothing – Model 2

resulted from a discussion with Rahul Narain (Berkeley University)

• We use Kullback-Leibler(KL)-Divergence measure from probability theory.

• A KL-Divergence form is used to calculate statistical distance between two
multivariate normal distribution

p
q

Algorithm 1 Structure preserving image smoothing
Input: image I , scale parameter k, smoothing parameter �

1: extract visual features F via Eq. 26
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq.(28) (Model 1), Eq.(30) (Model 2),or

Eq.(32) (Model 3)
8: end for
9: estimate structure component S(p) using Eq. 25

10: end for
Output: structure image S

3.5. Model 3

From the probability theory, we apply Kullback-Leibler(KL) divergence measure for two
multivariate normal distribution of 7-dimension features to determine filtering weights.

dKL(p,q) =
1

2

tr(Cq

�1Cp) + (µp � µq)
TCq

�1(µp � µq)� k � ln
⇣detCp

detCq

⌘!
(31)

wpq /
dKL(p,q)

2�2
(32)

Our model 2 gives better structure-texture decomposition results than Model 1 but if the
distributions have the same mean but very different covariances, distance measure we use in
Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).

22

Algorithm 1 Structure preserving image smoothing
Input: image I , scale parameter k, smoothing parameter �

1: extract visual features F via Eq. 26
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq.(28) (Model 1), Eq.(30) (Model 2),or

Eq.(32) (Model 3)
8: end for
9: estimate structure component S(p) using Eq. 25

10: end for
Output: structure image S

3.5. Model 3

From the probability theory, we apply Kullback-Leibler(KL) divergence measure for two
multivariate normal distribution of 7-dimension features to determine filtering weights.

dKL(p,q) =
1

2

tr(Cq

�1Cp) + (µp � µq)
TCq

�1(µp � µq)� k � ln
⇣detCp

detCq

⌘!
(31)

wpq /
dKL(p,q)

2�2
(32)

Our model 2 gives better structure-texture decomposition results than Model 1 but if the
distributions have the same mean but very different covariances, distance measure we use in
Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).

22

Resulting kernel

176

RegCov Smoothing – Model 3

N
ei

gh
bo

rh
oo

d
B

LF
N

LM
M

od
el

2

FIGURE 3.2.: Our filtering kernels consider local image geometry on calculation of filtering
weights by capturing texture information.

[�1 2 � 1], and (x, y) denotes the pixel location. Hence, the covariance descriptor of an
image patch is computed as a 7⇥ 7 matrix. Including (x, y) into the feature set is important
since it allows us to encode the correlation of other features with the spatial coordinates. The
feature set can be extended to include other features, like for example rotationally invariant
forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch similarity weights wpq

using the intensity information and taking the weighted average over the corresponding RGB
vectors rather than the intensity values in Equation 23. We empirically found that including
RGB components to the feature set does not change the results much but increases the run-
ning times.

3.3. Model 1

Using the set S defined by Equation (21), a vectorial representation of a covariance matrix
can be obtained by simply concatenating the elements of S . Moreover, first-order statistics
can be easily incorporated to this representation scheme by including the mean vector of the

17

177

RegCov Smoothing – Smoothing Kernels

Input
178

Results

Model1 Model2 Model3

179

Results

/home/levent/Dropbox/acmsiggraph_Date2April_Time1108/barbara_original.png

Input

Input

181

181

/home/levent/Dropbox/acmsiggraph_Date2April_Time1108/barbara_original.
png

Model2 Structure

Input

Structure

182

182

/home/levent/Dropbox/acmsiggraph_Date2April_Time1108/barbara_original.png

Model2 Texture

Input

Structure

Texture

183

183

Model2 Model3Input

184

Results

Input

185

Experimental evaluation

TV
Rudin et al. 1992

186

Experimental evaluation

Bilateral
Filter

187

Experimental evaluation

Envelope
Extraction
Subr et al. 2009

188

Experimental evaluation

RTV
Xu et al. 2012

189

Experimental evaluation

Model 1

190

Experimental evaluation

Model 2

191

Experimental evaluation

Model 3

192

Experimental evaluation

Input Local Exrema RTV

Model1 Model2

Shading preserved No unintuitive edgeStructure preserved

Model3

193

Experimental evaluation

194

Multiscale decomposition

S1(k = 5)

195

Multiscale decomposition

S2(k = 7)

196

Multiscale decomposition

S3(k = 9)

197

Multiscale decomposition

Model2Input

198

Challenging cases

Model2+Model1Input Model2 Texture

199

Challenging cases

200

Edge detection

201

Edge detection

Canny edges of original image Canny edges of smoothed image

202

Edge detection

203

Image abstraction

204

Image abstraction

205

Detail boosting

206

Image composition

207

Inverse Halftoning

Input
halftone image

208

Inverse Halftoning

Smoothed image
(Model 2)

209

Inverse Halftoning

Smoothed image
(Model 2 + Shock filter)

210

Inverse Halftoning

Model2+Shock Filter Kopf and Lischinski 2012Input halftone image

211

Image Retargeting

Input image Smoothed image

212

Image Retargeting

Input image
Extracted Seams

Smoothed image
Extracted Seams

Seam Carving, Avidan and Shamir 2007

213

Image Retargeting

Input image
Retargeting result

Smoothed image
Retargeting result

Seam Carving, Avidan and Shamir 2007

Rolling Guidance Filter

214

Scale-Aware Filtering

Large Scale

Small Scale

215

Notion of Scale in Filtering

216

As the Gaussian kernel gets larger, more and more structures disappear.

4 Qi Zhang, Xiaoyong Shen, Li Xu, Jiaya Jia

s = 0

Input
white dots
disappear

s = 8

textures
disappear

s = 4

the eye
disappears

s = 14

Fig. 2. Illustration of scales. As the Gaussian kernel gets larger, more and more struc-
tures disappear.

variation (RTV) regularization. RTV protects structural edges. This method
needs to solve a linear system.

Karacan et al. [14] adopted a weighted-average strategy with the covariance
of patch features. It leverages the repetition property of texture and is also
time-consuming for pixel affinity computation. Recently, Bao et al. [4] combined
bilateral weight with a tree weight defined on a minimum spanning tree. Su et
al. [24] combined low-pass filter, edge-preserving filter and L0 edge correction to
achieve the similar goal.

These texture smoothing methods basically make use of the texture repetition
property. They are different by nature from the scale-aware filters defined in this
paper. Our goal is to separate out details, even without repetitive patterns. Only
the scale metric is used in our method.

3 Problem Definition and Analysis

We first define the structure scale as the smallest Gaussian standard deviation σs

such that when this σs deviation Gaussian is applied to an image, corresponding
structure disappears. We denote the convolution process with the input image
I and Gaussian gv(x, y) of variance v = σ2

s as

Lv = gv ∗ I, (1)

where gv(x, y) =
1√
2πv

exp(−x2+y2

2v) and ∗ denotes convolution. Lv is the result at

scale v. In scale-space theory [17], v is referred to as the scale parameter. When
the image structure scale is smaller than

√
v (i.e., σs), it will be completely

removed in Lv, as claimed in [17]. An illustration is given in Fig. 2. When
applying Gaussians with varying σs to the image, structures are suppressed
differently according to their sizes.

Note this definition of scales may not correspond to the actual size or radius
of a pattern because the latter is hard to measure given the complexity of image
structures. But it tells the relative information. If a structure gets larger, its
scale according to our definition must increase, and vice versa.

s = 0 s = 4 s = 8 s = 14

input image
texture

disappear
white dots
disappear

the eye
disappears

Main Idea
• Scale Space Theory [Lindeberg, 1994]:

• An object of size t, will be largely smoothed away with Gaussian filter of
variance t2.

217

RGF: A scale-aware Filter

Step 1
Small

Structures
Removal

Step 2
Edge Recovery

218

Step 1: Small Structures Removal

Gaussian Filter

219

Step 2: Edge Recovery

• A rolling guidance

Joint Bilateral Filter
GuidanceInput

Output

Use it as new guidance

Repeat the iteration

The output of Step 1Original Input

220

Rolling Guidance

Joint Bilateral Filter
GuidanceInput

Rolling Guidance

Unchanged
Changing

221

Guidance for the 1st
iteration

222

Rolling Guidance

Guidance for the 2nd
iteration

223

Rolling Guidance

Guidance for the 3rd
iteration

224

Rolling Guidance

Guidance for the 5th
iteration

225

Rolling Guidance

OutputInput

Small structures are removed.
Large structure are NOT blurred.

226

Rolling Guidance

Rolling Guidance Filter (RGF) has only 1 line of code

Implementation

227

Rolling Guidance Filter (RGF) 7

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

(a) (b)

J
1

I

J
2

J
4

J
1

I

J
2

J
4

Fig. 5. 1D signal examples and their results in rolling guidance. (a) One small structure.
(b) One edge of a large structure.

in the t-th iteration. Initially, J1 is set as G in Eq. (2), which is the output of
Gaussian filtering. The value of J t+1 in the t-th iteration is obtained in a joint
bilateral filtering form given the input I and the value in previous iteration J t:

J t+1(p) =
1

Kp

∑

q∈N(p)

exp
(
− ∥p− q∥2

2σ2
s

− ∥J t(p)− J t(q)∥2

2σ2
r

)
I(q), (3)

where

Kp =
∑

q∈N(p)

exp
(
− ∥p− q∥2

2σ2
s

− ∥J t(p)− J t(q)∥2

2σ2
r

)

for normalization. I is the same input image used in Eq. (2). σs and σr control
the spatial and range weights respectively.

This expression can be understood as a filter that smoothes the input I guided
by the structure of J t. This process is different by nature from how previous
methods employ joint bilateral filter – we iteratively change the guidance image
in passes. It yields illuminating effects, explained below. We name this iterative
operation rolling guidance.

To demonstrate how it works, we show simple 1D examples in Fig. 5 where
one small structure and one edge of a large structure are presented. The four rows
show inputs and J t obtained by rolling guidance respectively. Since this process
uses J t to compute the affinity between pixels, it makes resulting structures
similar to J t. Put differently, it yields structure transform from J to I.

Small Structure In the first example (Fig. 5(a)), since the edges of the small
structure are completely removed in J1 by Gaussian filter, J1 is mostly flat. In
Eq. (3), the term ∥J t(p)−J t(q)∥ is almost zero for any (p, q) pairs, which makes
the joint bilateral filter behave like a Gaussian filter due to the inoperative range
weight. Therefore, the output J2 remains flat. All following iterations cannot add
the detail back.

Small Structure

Guidance (output of step 1)Input

Joint Bilateral Filter

It becomes a Gaussian filter

Same

228

Large Structure

Input Image

Result of Step 1

Due to this range weight
It generates sharper results than Gaussian!

Rolling Guidance Filter (RGF) 7

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

(a) (b)

J
1

I

J
2

J
4

J
1

I

J
2

J
4

Fig. 5. 1D signal examples and their results in rolling guidance. (a) One small structure.
(b) One edge of a large structure.

in the t-th iteration. Initially, J1 is set as G in Eq. (2), which is the output of
Gaussian filtering. The value of J t+1 in the t-th iteration is obtained in a joint
bilateral filtering form given the input I and the value in previous iteration J t:

J t+1(p) =
1

Kp

∑

q∈N(p)

exp
(
− ∥p− q∥2

2σ2
s

− ∥J t(p)− J t(q)∥2

2σ2
r

)
I(q), (3)

where

Kp =
∑

q∈N(p)

exp
(
− ∥p− q∥2

2σ2
s

− ∥J t(p)− J t(q)∥2

2σ2
r

)

for normalization. I is the same input image used in Eq. (2). σs and σr control
the spatial and range weights respectively.

This expression can be understood as a filter that smoothes the input I guided
by the structure of J t. This process is different by nature from how previous
methods employ joint bilateral filter – we iteratively change the guidance image
in passes. It yields illuminating effects, explained below. We name this iterative
operation rolling guidance.

To demonstrate how it works, we show simple 1D examples in Fig. 5 where
one small structure and one edge of a large structure are presented. The four rows
show inputs and J t obtained by rolling guidance respectively. Since this process
uses J t to compute the affinity between pixels, it makes resulting structures
similar to J t. Put differently, it yields structure transform from J to I.

Small Structure In the first example (Fig. 5(a)), since the edges of the small
structure are completely removed in J1 by Gaussian filter, J1 is mostly flat. In
Eq. (3), the term ∥J t(p)−J t(q)∥ is almost zero for any (p, q) pairs, which makes
the joint bilateral filter behave like a Gaussian filter due to the inoperative range
weight. Therefore, the output J2 remains flat. All following iterations cannot add
the detail back.

229

Guidance ImageInput Image

Previous guidance imageInput < <

Smoothing Range weight

Joint Bilateral Filter

Intermediate iterations

230

Processing

Input Image

Guidance Image

1st Iteration2nd Iteration3rd Iteration

231

Processing

Large Structure

Recovered

Take-home message

Rolling guidance recovers an edge as long as
it still exists in the blurred image after Gaussian smoothing.

232

Rolling Guidance Filter

Large Structure

Small Structure

Step 1
Gaussian

Step 2
Rolling

Guidance

Remove
Small

Structures

Edge
Recovery

233

Result Comparison

Input [Subr et al.] [Karacan et al.] [Xu et al.] RGF

234

Performance Comparison

Input [Subr et al., 2009][Karacan et al.,
2013]

478
seconds

1044
seconds

58
seconds

2
seconds

[Xu et al., 2012]RGF

For 4 Megapixel Image

235

Performance Comparison

Algorithms Time (seconds/Megapixel)

Local Extrema [Subr et al., 2009] 95

RTV [Xu et al., 2012] 14

Region Covariance [Karacan et al., 2013] 240

RGF 0.05(Real-time)

236

Texture Removal

237

Texture Removal

238

Halftone Image

239

Halftone Image

240

Boundary DetectionInput Boundary DetectionFiltered Input

Boundary detection

241

Multi-Scale Filtering

Input= 2= 3= 4= 6= 10= 30

determine the scale.
242

Limitations
• Sharp corners could be rounded

• It is because sharp corner presents high frequency change.
• In other words, sharp corners are small-scale structures.

243

Recap
• Filtering plays a key role for many applications.

• Filtering by taking into account image content generally gives better
results.

244

Next Lecture:
Gradient-domain image

processing

245

