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Today’s Lecture
• Gaussian filtering 

• Sharpening

• Bilateral filter

• Non-local means filter 

• RegCov smoothing

• Rolling guidance filter

Disclaimer: The material and slides for this lecture were borrowed from 
— Ioannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class

—Wojciech Jarosz’s CS 89.15/189.5 “Computational Aspects of Digital Photography” class

—Steve Marschner’s CS6640 “Computational Photography” class

—Kaiming He’s slides on Guided Image Filtering
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Filtering
• The name “filter” is borrowed from frequency domain processing

• Accept or reject certain frequency components

• Fourier (1807):
Periodic functions 
could be represented
as a weighted sum of 
sines and cosines

Image courtesy of Technology Review
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Signals
• A signal is composed of low and high frequency components

low frequency components: smooth / piecewise smooth

high frequency components: oscillatory

Neighboring pixels have similar brightness values

Neighboring pixels have different brightness values

You’re within a region

You’re either at the edges or noise points
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Image Filtering
• Idea: Use the information coming from the neighboring pixels for processing 

• Design a transformation function of the local neighborhood at each pixel in the 
image
• Function specified by a “filter” or mask saying how to combine values from 

neighbors.

• Various uses of filtering:
• Enhance an image (denoise, resize, etc)
• Extract information (texture, edges, etc)
• Detect patterns (template matching)
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Filtering
• Processing done on a function

• can be executed in continuous form (e.g. analog circuit)
• but can also be executed using sampled representation

• Simple example: smoothing by averaging

• Can be modeled mathematically by convolution
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Discrete convolution
• Simple averaging:

• every sample gets the same weight

• Convolution: same idea but with weighted average

• each sample gets its own weight (normally zero far away)

• This is all convolution is: it is a moving weighted average
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Filters
• Sequence of weights a[j] is called a filter

• Filter is nonzero over its region of support
• usually centered on zero: support radius r

• Filter is normalized so that it sums to 1.0
• this makes for a weighted average, not just any old 

weighted sum

• Most filters are symmetric about 0
• since for images we usually want to treat  left and 

right the same

a box filter
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Convolution and filtering
• Convolution applies with any sequence of weights

• Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16
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Discrete filtering in 2D
• Same equation, one more index

• now the filter is a rectangle you slide around over a grid of numbers

• Usefulness of associativity
• often apply several filters one after another: (((a *	b1)	*	b2)	*	b3)
• this is equivalent to applying one filter: a	*	(b1 *	b2 *	b3)
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Moving Average In 2D
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Moving Average In 2D
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• What values belong in the kernel H for the moving average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0
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0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0

111
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111

“box filter”

?
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depicts box filter: 
white = high value, black = low value

original filtered
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Gaussian Filtering
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• What if we want nearest neighboring pixels to have the most influence on the 
output?

• Removes high-frequency components from the image (“low-pass filter”).

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

This kernel is an 
approximation of a 2d 
Gaussian function:
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…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and 
controls the amount of smoothing.
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Strategy for Smoothing Images
• Images are not smooth because adjacent pixels are different.

• Smoothing = making adjacent pixels look more similar.

• Smoothing strategy
pixel ~ average of its neighbors

20



Sharpening
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How can we sharpen?
• Blurring was easy 

• Sharpening is not as obvious
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How can we sharpen?
• Blurring was easy 

• Sharpening is not as obvious

• Idea: amplify the stuff not in the blurry image 

• output = input + k*(input-blur(input))
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Sharpening
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Sharpening: kernel view
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• Recall

f is the input
f’ is a sharpened image
g is a blurring kernel
k is a scalar controlling the strength of sharpening

Sharpening: kernel view
Recall 

f  is the input 
f’ is a sharpened image 
g is a blurring kernel 
k is a scalar controlling the strength of sharpening

CS 89/189: Computational Photography, Fall 2015 66

f 0 = f + k ⇤ ( f � f ⌦ g)
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Sharpening: kernel view
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• Recall

• Denote δ the Dirac kernel (pure impulse)

Sharpening: kernel view
Recall 

f  is the input 
f’ is a sharpened image 
g is a blurring kernel 
k is a scalar controlling the strength of sharpening
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Sharpening: kernel view
Recall 

Denote δ the Dirac kernel (pure impulse)
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Sharpening: kernel view
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• Recall

• Sharpening is also a convolution

Sharpening: kernel view
Recall 

f  is the input 
f’ is a sharpened image 
g is a blurring kernel 
k is a scalar controlling the strength of sharpening
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f 0 = f + k ⇤ ( f � f ⌦ g)
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Sharpening: kernel view
Recall 

Sharpening is also a convolution
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f 0 = f + k ⇤ ( f � f ⌦ g)

f 0 = f ⌦ d + k ⇤ ( f ⌦ d � f ⌦ g)

f 0 = f ⌦ ((k + 1)d � g)
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Sharpening kernel
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• Note: many other sharpening kernels exist 
(just like we saw multiple blurring kernels)

• Amplify the difference between a pixel and its neighbors

Sharpening kernel
Note: many other sharpening kernels exist  
(just like we saw multiple blurring kernels) 
Amplify the difference between a pixel and its neighbors
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blue: positive 
red: negative

f 0 = f ⌦ ((k + 1)d � g)
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Alternate interpretation
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• out = input + k*(input-blur(input))
• out = (1 + k)*input - k*blur(input)
• out = lerp(blur(input), input, 1+k)

linearly extrapolate from the blurred image “past” the original input image



Sharpening
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Unsharp mask
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• Sharpening is often called “unsharp mask” because photographers used to 
sandwich a negative with a blurry positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Unsharp mask
Sharpening is often called “unsharp mask” because 
photographers used to sandwich a negative with a 
blurry positive film in order to sharpen 

CS 89/189: Computational Photography, Fall 2015 73

http://www.tech-diy.com/UnsharpMasks.htm
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Problem with excess
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• Haloes around strong edges
Problem with excess
Haloes around strong edges
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Bilateral Filter
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normalized
Gaussian function
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Idea: weighted average of pixels.

0

1
average

input

per-pixel multiplication

output*
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size of the window
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small σ large σ

input

limited smoothing strong smoothing

36

Spatial Parameter



Properties of Gaussian Blur
• Weights independent of spatial location

• linear convolution
• well-known operation
• efficient computation (recursive algorithm, FFT…)

• Does smooth images

• But smoothes too much:
edges are blurred.
• Only spatial distance matters
• No edge term

input

output

( )å
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IGIGB
q

qp qp ||||][ s
space
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*

*

*

input output

Same Gaussian kernel everywhere.
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Blur Comes from Averaging across Edges



*

*

*

input output

The kernel shape depends on the image content.

[Aurich 95, Smith 97, Tomasi 98] 39

Bilateral Filter: No Averaging across Edges



range weight

new

space weight

not new

normalization
factor

new
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Same idea: weighted average of pixels.
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Bilateral Filter: An Additional Edge Term



range weight

new

space weight

not new

normalization
factor

new
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Same idea: weighted average of pixels.

favor nearby pixels favor similar pixels
41

Bilateral Filter: An Additional Edge Term



Space and Range Parameters

• space σs : spatial extent of the kernel, size of the considered neighborhood.

• range σr : “minimum” amplitude of an edge
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Output Gaussian Filter Input

43

Gaussian filtering visualization



Output Bilateral Filter Input

Spatial range Intensity range

44

Bilateral filtering visualization



σs = 2

σs = 6

σs = 18

σr = 0.1 σr = 0.25
σr = ∞

(Gaussian blur)

input
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Exploring the Parameter Space
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For gray-level images 

For color images 

intensity difference

color difference

scalar

3D vector 
(RGB, Lab)

input

output

46

Bilateral Filtering Color Images



• Nonlinear

• Complex, spatially varying kernels

• Cannot be precomputed, no FFT…

• Brute-force implementation is slow > 10min
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qqp
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rs ss

Additional Reading: S. Paris and F. Durand, A Fast Approximation of the 
Bilateral Filter using a Signal Processing Approach, In Proc. ECCV, 2006
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Hard to Compute



noisy input bilateral filtering median filtering

48

Denoising



input sharpening based on 
bilateral filtering

sharpening based on 
Gaussian filtering

How would you use bilateral filtering for sharpening?

49

Contrast enhancement



50

Photo retouching



original digital pore removal (aka bilateral filtering)

51

Photo retouching
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Before



53

After



original digital pore removal 
(aka bilateral filtering)
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Close-up comparison



input cartoon rendition

55

Cartoonization



How would you create this effect?

56

Cartoonization



edges from bilaterally filtered image bilaterally filtered image

+ =

cartoon rendition

Note: image cartoonization and abstraction are very active research areas.
57

Cartoonization



Shift-invariant?

Linear?

58

Is the bilateral filter:



Shift-invariant?

Linear?

• No.

• No.

Does this have any bad implications?

59

Is the bilateral filter:



Data structure for fast 
edge-aware image 

processing.

60

The bilateral grid



Flash/no-flash photography
via bilateral filtering
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Red Eye
62



Unflattering Lighting
63



Motion Blur
64



Noise
65



A lot of Noise
66



Ruined Ambiance
67



No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look
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Lock Focus
& Aperture

1

time

69

Image acquisition



1/30 s
ISO 3200

No-Flash ImageLock Focus
& Aperture

21

time

70

Image acquisition



1/30 s
ISO 3200

1/125 s
ISO 200

No-Flash ImageLock Focus
& Aperture

Flash Image

2 31

time
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Image acquisition



Denoising Result
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No-Flash

73



Denoising Result
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Denoise the no-flash image while maintaining the edge structure of the flash image
• How would you do this using the image editing techniques we’ve learned about?

75

Key idea



Joint bilateral filtering
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noisy input bilateral filtering median filtering

77

Denoising with bilateral filtering



• However, results still have noise or blur (or both)

ambient

flash
Bilateral 

filter

spatial kernel

intensity kernel
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Denoising with bilateral filtering



• In the flash image there are many more details
• Use the flash image F to find edges

79

Denoising with joint bilateral filtering



Bilateral 
filter

Joint Bilateral 
filter

The difference

80

Denoising with joint bilateral filtering



Can you think of any types of edges that may exist in the flash image but 
not the ambient one?

81

Not all edges in the flash image are real



shadows

specularities

• May cause over- or under-blur in joint bilateral filter
• We need to eliminate their effect

82

Not all edges in the flash image are real



• Observation: the pixels in the flash shadow should be similar to the ambient image.

• Not identical:

1. Noise.

2. Inter-reflected flash.

• Compute a shadow mask.

• Take pixel p if 

• is manually adjusted

• Mask is smoothed and dilated

83

Detecting shadows

 

case, the extreme levels of noise forced us to use relatively wide 
Gaussians for both the domain and range kernels in the joint 
bilateral filter. Thus, when transferring back the true detail from 
the flash image, we also used relatively wide Gaussians in compu-
ting the detail layer. As a result, it is possible to see small halos 
around the edges of the bottles. Nevertheless, our approach is able 
to smooth away the noise while preserving detail like the gentle 
wrinkles on the sofa and the glazing on the bottles. Figure 7 
shows a comparison between a long exposure reference image of 
the wine cave and our detail transfer with denoising result.  

In most cases, our detail transfer algorithm improves the appear-
ance of the ambient image. However, it is important to note that 
the flash image may contain detail that looks unnatural when 
transferred to the ambient image. For example, if the light from 
the flash strikes a surfaces at a shallow angle, the flash image may 
pick up surface texture (i.e. wood grain, stucco, etc.) as detail. If 
this texture is not visible in the original ambient image, it may 
look odd. Similarly if the flash image washes out detail, the 
ambient image may be over-blurred. Our approach allows the user 
to control how much detail is transferred over the entire image. 
Automatically adjusting the amount of local detail transferred is 
an area for future work. 

4.3 Detecting Flash Shadows and Specularities 
Light from the flash can introduce shadows and specularities into 
the flash image. Within flash shadows, the image may be as dim 
as the ambient image and therefore suffer from noise. Similarly, 
within specular reflections, the flash image may be saturated and 
lose detail. Moreover, the boundaries of both these regions may 
form high-frequency edges that do not exist in the ambient image. 
To avoid using information from the flash image in these regions, 
we first detect the flash shadows and specularities.  

Flash Shadows. Since a point in a flash shadow is not illuminated 
by the flash, it should appear exactly as it appears in the ambient 
image. Ideally, we could linearize 𝐴 and 𝐹 as described in Section 
3  and then detect pixels where the luminance of the difference 
image 𝐹𝐿𝑖𝑛 − 𝐴𝐿𝑖𝑛 is zero. In practice, this approach is confound-
ed by four issues: 1) surfaces that do not reflect any light (i.e. with 
zero albedo) are detected as shadows; 2) distant surfaces not 
reached by the flash are detected as shadows; 3) noise causes non-
zero values within shadows; and 4) inter-reflection of light from 
the flash causes non-zero values within the shadow.  
The first two issues do not cause a problem since the results are 
the same in both the ambient and flash images and thus whichever 
image is chosen will give the same result. To deal with noise and 
inter-reflection, we add a threshold when computing the shadow 
mask by looking for pixels in which the difference between the 
linearized flash and ambient images is small:   

 𝑀𝑆ℎ𝑎𝑑 = � 1 when  𝐹𝐿𝑖𝑛 − 𝐴𝐿𝑖𝑛 ≤ 𝜏𝑆ℎ𝑎𝑑
0 otherwise.

 (8) 

   
No-Flash Detail Transfer 

with Denoising 
Long Exposure 

Reference 

Figure 7: We captured a long exposure image of the wine cave scene (3.2 
seconds at ISO 100) for comparison with our detail transfer with denoising 
result. We also computed average mean-square error  across the 16 bit R, 
G, B color channels between the no-flash image and the reference (1485.5 
MSE) and between our result and the reference (1109.8 MSE). However, it 
is well known that MSE is not a good measure of perceptual image 
differences. Visual comparison shows that although our result does not 
achieve the fidelity of the reference image, it is substantially less noisy 
than the original no-flash image. 

 

    
Orig. (top)      Detail Transfer (bottom) Flash No-Flash Detail Transfer with Denoising 
Figure 6: An old European lamp made of hay. The flash image captures detail, but is gray and flat. The no-flash image captures the warm illumination of the 
lamp, but is noisy and lacks the fine detail of the hay. With detail transfer and denoising we maintain the warm appearance, as well as the sharp detail. 

Flash 

No-Flash 



• Take pixels where sensor input is close to maximum (very bright).

• Over fixed threshold 

• Create a specularity mask.

• Also smoothed.

• M – the combination of shadow and specularity masks:

Where Mp=1,  we use ABase.  For other pixels we use ANR.

84

Detecting specularities



• Denoising cannot add details missing in the ambient image
• Exist in flash image because of high SNR
• We use a quotient image:

• Multiply with ANR to add the details
• Masked in the same way

Reduces the 
effect of 
noise in F 

Why does this quotient 
image make sense for 

detail?

Bilateral 
filtered

85

Detail transfer



• Denoising cannot add details missing in the ambient image
• Exist in flash image because of high SNR
• We use a quotient image: Reduces the 

effect of 
noise in F 

86

Detail transfer



87

Detail transfer  

We have developed a program that lets users interactively adjust 
the threshold value 𝜏𝑆ℎ𝑎𝑑 and visually verify that all the flash 
shadow regions are properly captured.  
Noise can contaminate the shadow mask with small speckles, 
holes and ragged edges. We clean up the shadow mask using 
image morphological operations to erode the speckles and fill the 
holes. To produce a conservative estimate that fully covers the 
shadow region, we then dilate the mask. 

Flash Specularities. We detect specular regions caused by the 
flash using a simple physically motivated heuristic. Specular 
regions should be bright in 𝐹𝐿𝑖𝑛 and should therefore saturate the 
image sensor. Hence, we look for luminance values in the flash 
image that are greater than 95% of the range of sensor output 
values. We clean, fill holes, and dilate the specular mask just as 
we did for the shadow mask.  

Final Merge. We form our final mask 𝑀 by taking the union of 
the shadow and specular masks. We then blur the mask to feather 
its edges and prevent visible seams when the mask is used to 
combine regions from different images. 

Results & Discussion. The results in Figures 1 and 6–8 were 
generated using this flash artifact detection approach. Figure 8 
(top row) illustrates how the mask corrects flash shadow artifacts 
in the detail transfer algorithm. In Figure 1 we show a failure case 
of our algorithm. It does not capture the striped specular highlight 
on the center bottle and therefore this highlight is transferred as 
detail from the flash image to our final result. 
Although both our shadow and specular detection techniques are 
based on simple heuristics, we have found that they produce good 
masks for a variety of examples. More sophisticated techniques 
developed for shadow and specular detection in single images or 
stereo pairs [Lee and Bajcsy 1992; Funka-Lea and Bajcsy 1995; 
Swaminathan et al. 2002] may provide better results and could be 
adapted for the case of flash/no-flash pairs. 

5  White Balancing 
Although preserving the original ambient illumination is often 
desirable, sometimes we may want to see how the scene would 
appear under a more “white” illuminant. This process is called 
white-balancing, and has been the subject of much study [Adams 
et al. 1998]. 
When only a single ambient image is acquired, the ambient 
illumination must be estimated based on heuristics or user input. 
Digital cameras usually provide several white-balance modes for 
different environments such as sunny outdoors and fluorescent 
lighting. Most often, pictures are taken with an “auto” mode, 
wherein the camera analyzes the image and computes an image-
wide average to infer ambient color. This is, of course, only a 
heuristic, and some researchers have considered semantic analysis 
to determine color cast [Schroeder and Moser 2001]. 
A flash/no-flash image pair enables a better approach to white 
balancing. Our work is heavily inspired by that of DiCarlo et al. 
[2001], who were the first to consider using flash/no-flash pairs 
for illumination estimation. They infer ambient illumination by 
performing a discrete search over a set of 103 illuminants to find 
the one that most closely matches the observed image pair. We 
simplify this approach by formulating it as a continuous optimiza-
tion problem that is not limited by this discrete set of illuminants. 
Thus, our approach requires less setup than theirs. 
We can think of the flash as adding a point light source of known 
color to the scene. By setting the camera white-balance mode to 
“flash” (and assuming a calibrated camera), this flash color should 
appear as reference white in the acquired images. 
The difference image Δ = 𝐹𝐿𝑖𝑛 − 𝐴𝐿𝑖𝑛 corresponds to the illumi-
nation due to the flash only, which is proportional to the surface 
albedo at each pixel 𝑝. Note that the albedo estimate Δ has un-
known scale, because both the distance and orientation of the 
surface are unknown. Here we are assuming either that the surface 
is diffuse or that its specular color matches its diffuse color. As a 
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Figure 8: (top row) The flash image does not contain true detail information in shadows and specular regions. When we naively apply our denoising and 
detail transfer algorithms, these regions generate artifacts as indicated by the white arrows. To prevent these artifacts, we revert to basic bilateral filtering 
within these regions. (bottom row). The dark brown pot on the left is extremely noisy in the no-flash image. The green pot on the right is also noisy, but as 
shown in the flash image it exhibits true texture detail. Our detail transfer technique smoothes the noise while maintaining the texture. Also note that the flash 
shadow/specularity detection algorithm properly masks out the large specular highlight on the brown pot and does not transfer that detail to the final image. 

No-Flash 
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Full pipeline



ambient-only joint bilateral and detail transfer
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Demonstration
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Result
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Result
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Joint bilateral filtering
other applications
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One of two input 
images

Depth from disparity Guided filtering

Use joint bilateral filtering, with 
the input image as guide.
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Edge-aware depth denoising
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Other applications of joint bilateral filtering



Tonemapping
via bilateral filtering
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10-6 106
image HDR image

10-6 106
display
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Display the information
• Recall our HDR class

• Match limited contrast of the medium while preserving details
low contrast

high dynamic range

Real world:

Photo/display:



10-6 106
image HDR image

10-6 106
display
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Display the information
• Recall our HDR class

• Match limited contrast of the medium while preserving details
low contrast

high dynamic range

Real world:

Photo/display:

Tonemapping



Tonemapping
• Called tone mapping operators 

• Two general categories:

• Global (spatially invariant)

• Local (spatially varying)
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Tone mapping for very HDR scenes
• sun overexposed

• foreground too dark
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Tone mapping for very HDR scenes
• Scene has >100,000:1 

dynamic range, 
JPEG has 255:1 

• How can we 
compress the scene’s 
dynamic range?
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Tone mapping for very HDR scenes
• Scene has >100,000:1 

dynamic range, 
JPEG has 255:1 

• How can we 
compress the scene’s 
dynamic range?

• Scale linearly?
• If we scaled linearly 

from 100,000:1 to 
255:1, everything but 
the sun would be 
black!

112



Tonemapping w/ Simple Gamma

• gamma correction, 
applied independently 
on R, G, B:

• global tonemapping

• colors are washed out
113
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• gamma correction:

• colors are washed out

I = I γ

Tone Mapping w/ Simple Gamma

input Gamma



Tonemapping w/ Simple Gamma

• gamma in intensity 
only!

• Intensity details lost
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intensity Gamma on intensity

color



Oppenheim 1968, Chiu et al. 1993
• Reduce contrast of low-

frequencies, preserve 
high frequencies
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Reduce low frequency

low-freq.

high-freq.

color



The halo nightmare
• For strong edges; 

because they contain 
high frequency
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Reduce low frequency

low-freq.

high-freq.

color



The halo nightmare
• Similar to unsharp mask 

of luminance in log 
domain
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Reduce low frequency

low-freq.

high-freq.

color



Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)

• Don’t blur across edges, 
decompose using 
bilateral filter
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large scale

detail

color

Durand and Dorsey 2002
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Detail

Color

Don’t blur across edges, decompose using bilateral filter
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Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)
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Input HDR

Contrast too high!



Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)
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color

Input HDR

intensity

Intensity
= 0.3R+0.6G+0.1B

R’=R/intensity
G’=G/intensity
B’=B/intensity

Important to use ratios
(makes it luminance
invariant)



Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)
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color

Input HDR

intensity

Spatial sigma: 2-5% image size
Range sigma: 0.4 (in log 10)

Bilateral
Filter

in log

large scale



Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)

122

color

Input HDR

intensity

detail = log intensity - large scale
(residual)

Bilateral
Filter

in log

large scale

detail



Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)
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Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)
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Tonemapping w/ Bilateral Filter (Durand and Dorsey, 2002)
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Durand and Dorsey 2002
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Log domain
• Very important to work in the log domain

• Recall: humans are sensitive to multiplicative contrast

• With log domain, our notion of “strong edge” always corresponds to 
the same contrast

126



Scale decomposition in log domain
• inLog = log10(intensity)

• inLogLarge = bilateralFilter(inLog)

• inLogDetail = inLog - inLogLarge

• hence:

- inLog = inLogDetail + inLogLarge, or

- intensity = 10inLogDetail * 10inLogLarge

• Now manipulate large-scale and detail separately
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Contrast reduction in log domain

• Normalize so that the biggest value is 0 in log

• Set target large-scale contrast (e.g. targetRange = log10(100))

- i.e. in linear output, we want 1:100 contrast for large scale

• Compute range of input’s large-scale layer:

- largeRange = max(inLogLarge) – min(inLogLarge)

• Scale factor k = targetRange / largeRange

128

multiplication in log 
=

γ exponent in linear

outLog = inLogDetail + k*(inLogLarge – max(inLogLarge)) 



Contrast reduction in log domain

• Normalize so that the biggest value is 0 in log

• Set target large-scale contrast (e.g. targetRange = log10(100))

- i.e. in linear output, we want 1:100 contrast for large scale

• Compute range of input’s large-scale layer:

- largeRange = max(inLogLarge) – min(inLogLarge)

• Scale factor k = targetRange / largeRange

• Optional: amplify detail by detailAmp
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outLog = detailAmp*inLogDetail + k*(inLogLarge – max(inLogLarge))



Contrast reduction in log domain

• outIntensity = 10outLog

• Recall that R’,G’,B’ is the intensity-normalized RGB color

- outR=outIntensity * R’

- outG=outIntensity * G’ 

- outB=outIntensity * B’

130

outLog = detailAmp*inLogDetail + k*(inLogLarge – max(inLogLarge))



What matters
• Spatial sigma: not very important

• Range sigma: quite important

• Use of the log domain for range: critical

- Because HDR and because perception sensitive to multiplicative 
contrast
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Lots of great examples at: https://www.inf.ufrgs.br/~eslgastal/DomainTransform/
132

Modern edge-aware filtering: domain transform
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Modern edge-aware filtering: guided filter
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Guided Image Filtering

It has been observed that these implicit filters are closely
related to the explicit ones. In [43], Elad shows that the
bilateral filter is one Jacobi iteration in solving the Gaussian
affinity matrix. The Hierarchical Local Adaptive Precondi-
tioners [41] and the Edge-Avoiding Wavelets [37] are
constructed in a similar manner. In this paper, we show
that the guided filter is closely related to the matting
Laplacian matrix [10].

2.3 Nonaverage Filters
Edge-preserving filtering can also be achieved by nonaver-
age filters. The median filter [2] is a well-known edge-aware
operator, and is a special case of local histogram filters [44].
Histogram filters have OðNÞ time implementations in a way
as the bilateral grid. The Total-Variation (TV) filters [45]
optimize an L1-regularized cost function, and are shown
equivalent to iterative median filtering [46]. The L1 cost
function can also be optimized via half-quadratic split [47],
alternating between a quadratic model and soft shrinkage
(thresholding). Recently, Paris et al. [48] proposed manip-
ulating the coefficients of the Laplacian Pyramid around
each pixel for edge-aware filtering. Xu et al. [49] propose
optimizing an L0-regularized cost function favoring piece-
wise constant solutions. The nonaverage filters are often
computationally expensive.

3 GUIDED FILTER

We first define a general linear translation-variant filtering
process, which involves a guidance image I, an filtering
input image p, and an output image q. Both I and p are
given beforehand according to the application, and they can
be identical. The filtering output at a pixel i is expressed as
a weighted average:

qi ¼
X

j

WijðIÞpj; ð1Þ

where i and j are pixel indexes. The filter kernel Wij is a
function of the guidance image I and independent of p. This
filter is linear with respect to p.

An example of such a filter is the joint bilateral filter [14]
(Fig. 1 (left)). The bilateral filtering kernel Wbf is given by

Wbf
ij ðIÞ ¼

1

Ki
exp $ k xi $ xj k2

!2
s

! "
exp $ k Ii $ Ij k

2

!2
r

! "
; ð2Þ

where x is the pixel coordinate and Ki is a normalizing
parameter to ensure that

P
j W

bf
ij ¼ 1. The parameters !s

and !r adjust the sensitivity of the spatial similarity and the
range (intensity/color) similarity, respectively. The joint
bilateral filter degrades to the original bilateral filter [1]
when I and p are identical.

The implicit weighted-average filters (in Section 2.2)
optimize a quadratic function and solve a linear system in
this form:

Aq ¼ p; ð3Þ

where q and p are N-by-1 vectors concatenating fqig and
fpig, respectively, and A is an N-by-N matrix only depends
on I. The solution to (3), i.e., q ¼ A$1p, has the same form as
(1), with Wij ¼ ðA$1Þij.

3.1 Definition

Now we define the guided filter. The key assumption of the
guided filter is a local linear model between the guidance I
and the filtering output q. We assume that q is a linear
transform of I in a window !k centered at the pixel k:

qi ¼ akIi þ bk; 8i 2 !k; ð4Þ

where ðak; bkÞ are some linear coefficients assumed to be
constant in !k. We use a square window of a radius r. This
local linear model ensures that q has an edge only if I has an
edge, because rq ¼ arI. This model has been proven
useful in image super-resolution [50], image matting [10],
and dehazing [11].

To determine the linear coefficients ðak; bkÞ, we need
constraints from the filtering input p. We model the output q
as the input p subtracting some unwanted components n
like noise/textures:

qi ¼ pi $ ni: ð5Þ

We seek a solution that minimizes the difference between q
and p while maintaining the linear model (4). Specifically,
we minimize the following cost function in the window !k:

Eðak; bkÞ ¼
X

i2!k

##
akIi þ bk $ pi

$2 þ "a2
k

$
: ð6Þ

Here, " is a regularization parameter penalizing large ak. We
will investigate its intuitive meaning in Section 3.2.
Equation (6) is the linear ridge regression model [51], [52]
and its solution is given by
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Fig. 1. Illustrations of the bilateral filtering process (left) and the guided filtering process (right).

It has been observed that these implicit filters are closely
related to the explicit ones. In [43], Elad shows that the
bilateral filter is one Jacobi iteration in solving the Gaussian
affinity matrix. The Hierarchical Local Adaptive Precondi-
tioners [41] and the Edge-Avoiding Wavelets [37] are
constructed in a similar manner. In this paper, we show
that the guided filter is closely related to the matting
Laplacian matrix [10].

2.3 Nonaverage Filters
Edge-preserving filtering can also be achieved by nonaver-
age filters. The median filter [2] is a well-known edge-aware
operator, and is a special case of local histogram filters [44].
Histogram filters have OðNÞ time implementations in a way
as the bilateral grid. The Total-Variation (TV) filters [45]
optimize an L1-regularized cost function, and are shown
equivalent to iterative median filtering [46]. The L1 cost
function can also be optimized via half-quadratic split [47],
alternating between a quadratic model and soft shrinkage
(thresholding). Recently, Paris et al. [48] proposed manip-
ulating the coefficients of the Laplacian Pyramid around
each pixel for edge-aware filtering. Xu et al. [49] propose
optimizing an L0-regularized cost function favoring piece-
wise constant solutions. The nonaverage filters are often
computationally expensive.

3 GUIDED FILTER

We first define a general linear translation-variant filtering
process, which involves a guidance image I, an filtering
input image p, and an output image q. Both I and p are
given beforehand according to the application, and they can
be identical. The filtering output at a pixel i is expressed as
a weighted average:

qi ¼
X

j

WijðIÞpj; ð1Þ

where i and j are pixel indexes. The filter kernel Wij is a
function of the guidance image I and independent of p. This
filter is linear with respect to p.

An example of such a filter is the joint bilateral filter [14]
(Fig. 1 (left)). The bilateral filtering kernel Wbf is given by
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where x is the pixel coordinate and Ki is a normalizing
parameter to ensure that
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bf
ij ¼ 1. The parameters !s

and !r adjust the sensitivity of the spatial similarity and the
range (intensity/color) similarity, respectively. The joint
bilateral filter degrades to the original bilateral filter [1]
when I and p are identical.

The implicit weighted-average filters (in Section 2.2)
optimize a quadratic function and solve a linear system in
this form:

Aq ¼ p; ð3Þ

where q and p are N-by-1 vectors concatenating fqig and
fpig, respectively, and A is an N-by-N matrix only depends
on I. The solution to (3), i.e., q ¼ A$1p, has the same form as
(1), with Wij ¼ ðA$1Þij.

3.1 Definition

Now we define the guided filter. The key assumption of the
guided filter is a local linear model between the guidance I
and the filtering output q. We assume that q is a linear
transform of I in a window !k centered at the pixel k:

qi ¼ akIi þ bk; 8i 2 !k; ð4Þ

where ðak; bkÞ are some linear coefficients assumed to be
constant in !k. We use a square window of a radius r. This
local linear model ensures that q has an edge only if I has an
edge, because rq ¼ arI. This model has been proven
useful in image super-resolution [50], image matting [10],
and dehazing [11].

To determine the linear coefficients ðak; bkÞ, we need
constraints from the filtering input p. We model the output q
as the input p subtracting some unwanted components n
like noise/textures:

qi ¼ pi $ ni: ð5Þ

We seek a solution that minimizes the difference between q
and p while maintaining the linear model (4). Specifically,
we minimize the following cost function in the window !k:
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will investigate its intuitive meaning in Section 3.2.
Equation (6) is the linear ridge regression model [51], [52]
and its solution is given by
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Fig. 1. Illustrations of the bilateral filtering process (left) and the guided filtering process (right).

ak ¼
1
j!j
P

i2!k Iipi " !k!pk

"2
k þ #

; ð7Þ

bk ¼ !pk " ak!k: ð8Þ

Here, !k and "2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and !pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X

kji2!k

ðakIi þ bkÞ: ð9Þ

Noticing that
P

kji2!k ak ¼
P

k2!i ak due to the symmetry of
the box window, we rewrite (9) by

qi ¼ !aiIi þ !bi; ð10Þ

where !ai ¼ 1
j!j
P

k2!i ak and !bi ¼ 1
j!j
P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I ( p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k ) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k

1þ ðIi " !kÞðIj " !kÞ
"2
k þ #

! "
: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain
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2. Note that we do not intend to approximate the bilateral filer, and the
bilateral filter results are not considered as “ground-truth.” So the “PSNR”
measure is just analogous to those used in the bilateral filter approximations
[18].

It has been observed that these implicit filters are closely
related to the explicit ones. In [43], Elad shows that the
bilateral filter is one Jacobi iteration in solving the Gaussian
affinity matrix. The Hierarchical Local Adaptive Precondi-
tioners [41] and the Edge-Avoiding Wavelets [37] are
constructed in a similar manner. In this paper, we show
that the guided filter is closely related to the matting
Laplacian matrix [10].

2.3 Nonaverage Filters
Edge-preserving filtering can also be achieved by nonaver-
age filters. The median filter [2] is a well-known edge-aware
operator, and is a special case of local histogram filters [44].
Histogram filters have OðNÞ time implementations in a way
as the bilateral grid. The Total-Variation (TV) filters [45]
optimize an L1-regularized cost function, and are shown
equivalent to iterative median filtering [46]. The L1 cost
function can also be optimized via half-quadratic split [47],
alternating between a quadratic model and soft shrinkage
(thresholding). Recently, Paris et al. [48] proposed manip-
ulating the coefficients of the Laplacian Pyramid around
each pixel for edge-aware filtering. Xu et al. [49] propose
optimizing an L0-regularized cost function favoring piece-
wise constant solutions. The nonaverage filters are often
computationally expensive.

3 GUIDED FILTER

We first define a general linear translation-variant filtering
process, which involves a guidance image I, an filtering
input image p, and an output image q. Both I and p are
given beforehand according to the application, and they can
be identical. The filtering output at a pixel i is expressed as
a weighted average:

qi ¼
X

j

WijðIÞpj; ð1Þ

where i and j are pixel indexes. The filter kernel Wij is a
function of the guidance image I and independent of p. This
filter is linear with respect to p.

An example of such a filter is the joint bilateral filter [14]
(Fig. 1 (left)). The bilateral filtering kernel Wbf is given by
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where x is the pixel coordinate and Ki is a normalizing
parameter to ensure that

P
j W

bf
ij ¼ 1. The parameters !s

and !r adjust the sensitivity of the spatial similarity and the
range (intensity/color) similarity, respectively. The joint
bilateral filter degrades to the original bilateral filter [1]
when I and p are identical.

The implicit weighted-average filters (in Section 2.2)
optimize a quadratic function and solve a linear system in
this form:

Aq ¼ p; ð3Þ

where q and p are N-by-1 vectors concatenating fqig and
fpig, respectively, and A is an N-by-N matrix only depends
on I. The solution to (3), i.e., q ¼ A$1p, has the same form as
(1), with Wij ¼ ðA$1Þij.

3.1 Definition

Now we define the guided filter. The key assumption of the
guided filter is a local linear model between the guidance I
and the filtering output q. We assume that q is a linear
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where ðak; bkÞ are some linear coefficients assumed to be
constant in !k. We use a square window of a radius r. This
local linear model ensures that q has an edge only if I has an
edge, because rq ¼ arI. This model has been proven
useful in image super-resolution [50], image matting [10],
and dehazing [11].

To determine the linear coefficients ðak; bkÞ, we need
constraints from the filtering input p. We model the output q
as the input p subtracting some unwanted components n
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will investigate its intuitive meaning in Section 3.2.
Equation (6) is the linear ridge regression model [51], [52]
and its solution is given by
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ak ¼
1
j!j
P

i2!k Iipi " !k!pk

"2
k þ #

; ð7Þ

bk ¼ !pk " ak!k: ð8Þ

Here, !k and "2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and !pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X

kji2!k

ðakIi þ bkÞ: ð9Þ

Noticing that
P

kji2!k ak ¼
P

k2!i ak due to the symmetry of
the box window, we rewrite (9) by

qi ¼ !aiIi þ !bi; ð10Þ

where !ai ¼ 1
j!j
P

k2!i ak and !bi ¼ 1
j!j
P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I ( p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k ) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k

1þ ðIi " !kÞðIj " !kÞ
"2
k þ #

! "
: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain
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2. Note that we do not intend to approximate the bilateral filer, and the
bilateral filter results are not considered as “ground-truth.” So the “PSNR”
measure is just analogous to those used in the bilateral filter approximations
[18].
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can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
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k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].
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because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.
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meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
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/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).
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quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
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In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
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covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering
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the filtering input p. We can see that the guided filter
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Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I ( p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k ) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k

1þ ðIi " !kÞðIj " !kÞ
"2
k þ #

! "
: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

2. Note that we do not intend to approximate the bilateral filer, and the
bilateral filter results are not considered as “ground-truth.” So the “PSNR”
measure is just analogous to those used in the bilateral filter approximations
[18].

• Edge-preserving filter
• O(1) time, fast, 

accurate
• Gradient preserving
• Parameters
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- Regularization ε
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Here, !k and "2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and !pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X

kji2!k

ðakIi þ bkÞ: ð9Þ

Noticing that
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kji2!k ak ¼
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qi ¼ !aiIi þ !bi; ð10Þ
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k2!i ak and !bi ¼ 1
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P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I ( p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k ) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k

1þ ðIi " !kÞðIj " !kÞ
"2
k þ #
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: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain
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Here, !k and "2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and !pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X

kji2!k

ðakIi þ bkÞ: ð9Þ

Noticing that
P

kji2!k ak ¼
P

k2!i ak due to the symmetry of
the box window, we rewrite (9) by

qi ¼ !aiIi þ !bi; ð10Þ

where !ai ¼ 1
j!j
P

k2!i ak and !bi ¼ 1
j!j
P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð!ai; !biÞ vary spatially. But as
ð!ai; !biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq & !arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius r,

regularization #
Output: filtering output q.

1: meanI ¼ fmeanðIÞ
meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: ' IÞ
corrIp ¼ fmeanðI: ' pÞ

2: varI ¼ corrI "meanI : 'meanI
covIp ¼ corrIp "meanI : 'meanp

3: a ¼ covIp:=ðvarI þ #Þ
b ¼ meanp " a: 'meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: ' I þmeanb
/' fmean is a mean filter with a wide variety of O(N) time
methods. '/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I ( p. In this case, ak ¼ "2

k=ð"2
k þ #Þ in (7) and

bk ¼ ð1" akÞ!k. It is clear that if # ¼ 0, then ak ¼ 1 and
bk ¼ 0. If # > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have "2

k ) #, so ak & 1 and bk & 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have "2
k * #, so ak & 0 and bk & !k.

When ak and bk are averaged to get !ai and !bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a & 1; b & 0; q & p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a & 0; b & !; q & !!).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter #. The patches with
variance ("2) much smaller than # are smoothed, whereas
those with variance much larger than # are preserved. The
effect of # in the guided filter is similar to the range variance
"2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ "s and #$ "2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR + 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1
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Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain
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Example: Edge-Preserving Smoothing

Bilateral Filter Guided Filter
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Example: Detail Enhancement

Bilateral FilterGuided FilterOriginal

GF GF BFBF
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Example: Tonemapping

Bilateral FilterGuided FilterOriginal HDR

GF BFGF BF
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Example: Flash/No-Flash Photography

Guidance I Guided Filter

Joint Bilateral FilterFilter Input p



Non-Local Means Filter
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Redundancy in natural images



NL-Means Filter (Buades 2005)

• Same goals: ‘Smooth within Similar Regions’

• KEY INSIGHT: Generalize, extend ‘Similarity’
• Bilateral: 

Averages neighbors with similar intensities;
• NL-Means:  

Averages neighbors with similar neighborhoods!
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NL-Means Method

• For each and

every pixel p: 



• For each and

every pixel p: 

• Define a small, simple 
fixed size neighborhood;

145

NL-Means Method



Vp = 

0.74
0.32
0.41
0.55
…
…
…
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NL-Means Method

• For each and

every pixel p: 

• Define a small, simple 
fixed size neighborhood;
• Define vector Vp: a list of neighboring pixel values.



‘Similar’ pixels p, q

à SMALL
vector distance;

|| Vp – Vq ||2
p

q
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NL-Means Method



‘Dissimilar’ pixels  p, q

à LARGE
vector distance;

|| Vp – Vq ||2
p

q

q

NL-Means Method
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‘Dissimilar’ pixels  p, q

à LARGE
vector distance;

Filter with this!

|| Vp – Vq ||2
p

q

NL-Means Method
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p, q neighbors define

a vector distance;

Filter with this:
No spatial term!

|| Vp – Vq ||2 p
q
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NL-Means Method
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pixels  p, q neighbors
Set a vector distance;

Vector Distance to p sets 
weight for each pixel q

|| Vp – Vq ||2 p
q
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NL-Means Method
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NL-Means Method
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NL-Means Method
• Noisy

source
image:
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NL-Means Method
• Gaussian Filter

Low noise,

Low detail
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NL-Means Method
• Anisotropic

Diffusion

Note ‘stairsteps’:
~ piecewise constant
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NL-Means Method
• Bilateral Filter

Better, but similar
‘stairsteps’: 
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NL-Means Method
• NL-Means:

Sharp,

Low noise,

Few artifacts.
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NL-Means Method



http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
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NL-Means Method



RegCov Smoothing
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A�Modern�Paradigm:�Measuring�
Similarity�Between…

Images
Patches

Pixels

Pixels

Patches
Images

Similarities can be defined at different scales..

From pixels to patches and to images
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Pixelwise similarity metrics
• To measure the similarity of two pixels, we can consider 

• Spatial distance
• Gray‐level distance

Defining�a�pointͲwise�measure

• To�measure�the�similarity�of�two�pixels,�consider
– Spatial distance

– GrayͲlevel distance

Spatial ǻ

G
ra

y-
le

ve
l ǻ

x

y

162S
lid

e 
cr

ed
it:

 P
. M

ila
nf

ar



Euclidean metrics

• Natural ways to incorporate the two Δs:
• Bilateral Kernel [Tomasi, Manduchi, ‘98] (pixelwise)
• Non‐Local Means Kernel [Buades, et al. ‘05] (patchwise)

Euclidean�measures

• Natural�ways�to�incorporate�the�two�ȴs:
– Bilateral Kernel�[Tomasi,�Manduchi,�‘98]�(pointwise)
– NonͲLocal�Means Kernel�[Buades,�et�al.�‘05]�(patchwise)

Spatial ǻ
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y “Euclidean” distance
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Bilateral�Kernel�(BL)�[Tomasi et�al.�‘98]

Pixel similarity Spatial similarity

=

Pixels

Bilateral Kernel (BL) [Tomasi et al. ‘98]
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NonͲlocal�Means�(NLM)��[Buades et�al.�‘05]

Patch similarity Spatial similarity

=

Æ Smoothing�effect

Patches

Smoothing effect
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Non-local Means (NLM) [Buades et al. ‘05]
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• Decomposing an image into structure and texture components

Input Image

166

Structure-Texture Decomposition



Structure Component

• Decomposing an image into structure and texture components
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Structure-Texture Decomposition



Texture Component

• Decomposing an image into structure and texture components
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Structure-Texture Decomposition



Structure

Texture

Input Image

• Decomposing an image into structure and texture components
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Structure-Texture Decomposition



Tuzel et al., ECCV 2006

F x, y = ϕ(I, x, y)

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y
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I
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���� x y
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(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵
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dLi if 1  i  d

�↵
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dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =
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↵
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dLi if 1  i  d
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dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
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the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵
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dLi if 1  i  d

�↵
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dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Final representation

Resulting kernel function

image pixel is represented with a 7-dimensional feature vector:
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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k (Cp)� (Cq)k
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2
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(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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• An alternative way is to use statistical similarity measures.

• A Mahalanobis-like distance measure to compare to image patches.
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image pixel is represented with a 7-dimensional feature vector:
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��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
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k (Cp)� (Cq)k

2

2�2
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(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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�
d(p,q)2
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(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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image pixel is represented with a 7-dimensional feature vector:
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4        •        L. Karacan et al.
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resulted from a discussion with Rahul Narain (Berkeley University)

• We use Kullback-Leibler(KL)-Divergence measure from probability theory.

• A KL-Divergence form  is used to calculate statistical distance between two 
multivariate normal distribution

p
q

Algorithm 1 Structure preserving image smoothing
Input: image I , scale parameter k, smoothing parameter �

1: extract visual features F via Eq. 26
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq.( 28) (Model 1), Eq.( 30) (Model 2),or

Eq.( 32) (Model 3)
8: end for
9: estimate structure component S(p) using Eq. 25

10: end for
Output: structure image S

3.5. Model 3

From the probability theory, we apply Kullback-Leibler(KL) divergence measure for two
multivariate normal distribution of 7-dimension features to determine filtering weights.

dKL(p,q) =
1

2

 
tr(Cq

�1Cp) + (µp � µq)
TCq

�1(µp � µq)� k � ln
⇣detCp

detCq

⌘!
(31)

wpq /
dKL(p,q)

2�2
(32)

Our model 2 gives better structure-texture decomposition results than Model 1 but if the
distributions have the same mean but very different covariances, distance measure we use in
Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).
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Algorithm 1 Structure preserving image smoothing
Input: image I , scale parameter k, smoothing parameter �

1: extract visual features F via Eq. 26
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq.( 28) (Model 1), Eq.( 30) (Model 2),or

Eq.( 32) (Model 3)
8: end for
9: estimate structure component S(p) using Eq. 25

10: end for
Output: structure image S

3.5. Model 3

From the probability theory, we apply Kullback-Leibler(KL) divergence measure for two
multivariate normal distribution of 7-dimension features to determine filtering weights.

dKL(p,q) =
1
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tr(Cq

�1Cp) + (µp � µq)
TCq

�1(µp � µq)� k � ln
⇣detCp

detCq

⌘!
(31)

wpq /
dKL(p,q)

2�2
(32)

Our model 2 gives better structure-texture decomposition results than Model 1 but if the
distributions have the same mean but very different covariances, distance measure we use in
Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).
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FIGURE 3.2.: Our filtering kernels consider local image geometry on calculation of filtering
weights by capturing texture information.

[�1 2 � 1], and (x, y) denotes the pixel location. Hence, the covariance descriptor of an
image patch is computed as a 7⇥ 7 matrix. Including (x, y) into the feature set is important
since it allows us to encode the correlation of other features with the spatial coordinates. The
feature set can be extended to include other features, like for example rotationally invariant
forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch similarity weights wpq

using the intensity information and taking the weighted average over the corresponding RGB
vectors rather than the intensity values in Equation 23. We empirically found that including
RGB components to the feature set does not change the results much but increases the run-
ning times.

3.3. Model 1

Using the set S defined by Equation (21), a vectorial representation of a covariance matrix
can be obtained by simply concatenating the elements of S . Moreover, first-order statistics
can be easily incorporated to this representation scheme by including the mean vector of the

17
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Image Retargeting
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Rolling Guidance Filter
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Scale-Aware Filtering

Large Scale

Small Scale
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Notion of Scale in Filtering

216

As the Gaussian kernel gets larger, more and more structures disappear. 

4 Qi Zhang, Xiaoyong Shen, Li Xu, Jiaya Jia
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Input
white dots
disappear

s = 8

textures
disappear

s = 4

the eye
disappears

s = 14

Fig. 2. Illustration of scales. As the Gaussian kernel gets larger, more and more struc-
tures disappear.

variation (RTV) regularization. RTV protects structural edges. This method
needs to solve a linear system.

Karacan et al. [14] adopted a weighted-average strategy with the covariance
of patch features. It leverages the repetition property of texture and is also
time-consuming for pixel affinity computation. Recently, Bao et al. [4] combined
bilateral weight with a tree weight defined on a minimum spanning tree. Su et
al. [24] combined low-pass filter, edge-preserving filter and L0 edge correction to
achieve the similar goal.

These texture smoothing methods basically make use of the texture repetition
property. They are different by nature from the scale-aware filters defined in this
paper. Our goal is to separate out details, even without repetitive patterns. Only
the scale metric is used in our method.

3 Problem Definition and Analysis

We first define the structure scale as the smallest Gaussian standard deviation σs

such that when this σs deviation Gaussian is applied to an image, corresponding
structure disappears. We denote the convolution process with the input image
I and Gaussian gv(x, y) of variance v = σ2

s as

Lv = gv ∗ I, (1)

where gv(x, y) =
1√
2πv

exp(−x2+y2

2v ) and ∗ denotes convolution. Lv is the result at

scale v. In scale-space theory [17], v is referred to as the scale parameter. When
the image structure scale is smaller than

√
v (i.e., σs), it will be completely

removed in Lv, as claimed in [17]. An illustration is given in Fig. 2. When
applying Gaussians with varying σs to the image, structures are suppressed
differently according to their sizes.

Note this definition of scales may not correspond to the actual size or radius
of a pattern because the latter is hard to measure given the complexity of image
structures. But it tells the relative information. If a structure gets larger, its
scale according to our definition must increase, and vice versa.

s = 0                       s = 4                                        s = 8                                       s = 14

input image 
texture

disappear
white dots
disappear

the eye
disappears



Main Idea
• Scale Space Theory [Lindeberg, 1994]:

• An object of size t, will be largely smoothed away with Gaussian filter of 
variance t2.
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RGF: A scale-aware Filter
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Step 1: Small Structures Removal

Gaussian Filter
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Step 2: Edge Recovery

• A rolling guidance

Joint Bilateral Filter
GuidanceInput

Output

Use it as new guidance

Repeat the iteration

The output of Step 1Original Input
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Rolling Guidance
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Guidance for the 1st 
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Small structures are removed.
Large structure are NOT blurred.
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Rolling Guidance Filter (RGF) has only 1 line of code

Implementation
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Fig. 5. 1D signal examples and their results in rolling guidance. (a) One small structure.
(b) One edge of a large structure.

in the t-th iteration. Initially, J1 is set as G in Eq. (2), which is the output of
Gaussian filtering. The value of J t+1 in the t-th iteration is obtained in a joint
bilateral filtering form given the input I and the value in previous iteration J t:

J t+1(p) =
1

Kp

∑

q∈N(p)

exp
(
− ∥p− q∥2

2σ2
s

− ∥J t(p)− J t(q)∥2

2σ2
r

)
I(q), (3)

where

Kp =
∑

q∈N(p)

exp
(
− ∥p− q∥2

2σ2
s

− ∥J t(p)− J t(q)∥2

2σ2
r

)

for normalization. I is the same input image used in Eq. (2). σs and σr control
the spatial and range weights respectively.

This expression can be understood as a filter that smoothes the input I guided
by the structure of J t. This process is different by nature from how previous
methods employ joint bilateral filter – we iteratively change the guidance image
in passes. It yields illuminating effects, explained below. We name this iterative
operation rolling guidance.

To demonstrate how it works, we show simple 1D examples in Fig. 5 where
one small structure and one edge of a large structure are presented. The four rows
show inputs and J t obtained by rolling guidance respectively. Since this process
uses J t to compute the affinity between pixels, it makes resulting structures
similar to J t. Put differently, it yields structure transform from J to I.

Small Structure In the first example (Fig. 5(a)), since the edges of the small
structure are completely removed in J1 by Gaussian filter, J1 is mostly flat. In
Eq. (3), the term ∥J t(p)−J t(q)∥ is almost zero for any (p, q) pairs, which makes
the joint bilateral filter behave like a Gaussian filter due to the inoperative range
weight. Therefore, the output J2 remains flat. All following iterations cannot add
the detail back.

Small Structure

Guidance  (output of step 1)Input 

Joint Bilateral Filter

It becomes a Gaussian filter

Same
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Large Structure

Input Image

Result of Step 1

Due to this range weight
It generates sharper results than Gaussian!

Rolling Guidance Filter (RGF) 7

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

(a) (b)

J
1

I

J
2

J
4

J
1

I

J
2

J
4

Fig. 5. 1D signal examples and their results in rolling guidance. (a) One small structure.
(b) One edge of a large structure.

in the t-th iteration. Initially, J1 is set as G in Eq. (2), which is the output of
Gaussian filtering. The value of J t+1 in the t-th iteration is obtained in a joint
bilateral filtering form given the input I and the value in previous iteration J t:

J t+1(p) =
1

Kp

∑

q∈N(p)

exp
(
− ∥p− q∥2

2σ2
s

− ∥J t(p)− J t(q)∥2

2σ2
r

)
I(q), (3)

where

Kp =
∑

q∈N(p)

exp
(
− ∥p− q∥2

2σ2
s

− ∥J t(p)− J t(q)∥2

2σ2
r

)

for normalization. I is the same input image used in Eq. (2). σs and σr control
the spatial and range weights respectively.

This expression can be understood as a filter that smoothes the input I guided
by the structure of J t. This process is different by nature from how previous
methods employ joint bilateral filter – we iteratively change the guidance image
in passes. It yields illuminating effects, explained below. We name this iterative
operation rolling guidance.

To demonstrate how it works, we show simple 1D examples in Fig. 5 where
one small structure and one edge of a large structure are presented. The four rows
show inputs and J t obtained by rolling guidance respectively. Since this process
uses J t to compute the affinity between pixels, it makes resulting structures
similar to J t. Put differently, it yields structure transform from J to I.

Small Structure In the first example (Fig. 5(a)), since the edges of the small
structure are completely removed in J1 by Gaussian filter, J1 is mostly flat. In
Eq. (3), the term ∥J t(p)−J t(q)∥ is almost zero for any (p, q) pairs, which makes
the joint bilateral filter behave like a Gaussian filter due to the inoperative range
weight. Therefore, the output J2 remains flat. All following iterations cannot add
the detail back.
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Large Structure

Recovered

Take-home message

Rolling guidance recovers an edge as long as 
it still exists in the blurred image after Gaussian smoothing.
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Rolling Guidance Filter
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Result Comparison

Input [Subr et al.] [Karacan et al.] [Xu et al.] RGF
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Performance Comparison

Input [Subr et al., 2009][Karacan et al., 
2013]

478 
seconds

1044 
seconds

58
seconds

2 
seconds

[Xu et al., 2012]RGF

For 4 Megapixel Image
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Performance Comparison

Algorithms Time (seconds/Megapixel)

Local Extrema [Subr et al., 2009] 95

RTV [Xu et al., 2012] 14

Region Covariance [Karacan et al., 2013] 240

RGF 0.05(Real-time)
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Texture Removal
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Texture Removal
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Halftone Image
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Halftone Image
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Boundary DetectionInput Boundary DetectionFiltered Input

Boundary detection
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Multi-Scale Filtering

Input= 2= 3= 4= 6= 10= 30

determine the scale. 
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Limitations
• Sharp corners could be rounded

• It is because sharp corner presents high frequency change.
• In other words, sharp corners are small-scale structures.
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Recap
• Filtering plays a key role for many applications.

• Filtering by taking into account image content generally gives better 
results.
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Next Lecture: 
Gradient-domain image 

processing
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