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Today’s Lecture
• Gradient-domain image processing

• Basics on images and gradients

• Integrable vector fields

• Poisson blending

• Flash/no-flash photography

• Gradient-domain rendering and cameras

Disclaimer: The material and slides for this lecture were borrowed from 
—Ioannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class

—Amit Agrawal’s slides on “Gradient-Domain Based Flash/No-flash Photography”

—Adrien Gruson’s slides on “Gradient-Domain Rendering”

—Davide Scaramuzza’s tutorial on “Event-based Cameras”
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Gradient-domain image processing
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originals copy-paste Poisson blending
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Application: Poisson blending



Removing Glass Reflections

Seamless Image Stitching
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More applications



Tonemapping

Fusing day and night photos
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Yet more applications
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Entire suite of image editing tools



Estimation of 
Gradients

Manipulation of 
Gradients

Edited 
Gradient Fields

Integration of 
Gradient Fields Edited ImagesOriginal Images
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Main pipeline



Basics of gradients and fields
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Scalar field: a function assigning a scalar to every point in space.

𝐼 𝑥, 𝑦 : ℝ! → ℝ

Vector field: a function assigning a vector to every point in space.

𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 :ℝ! → ℝ!

Can you think of examples of scalar fields and vector fields?
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Some vector calculus definitions in 2D



Scalar field: a function assigning a scalar to every point in space.

Vector field: a function assigning a vector to every point in space.

Can you think of examples of scalar fields and vector fields?
• A grayscale image is a scalar field.
• A two-channel image is a vector field.
• A three-channel (e.g., RGB) image is also a vector field, but of higher-dimensional range 

than what we will consider here.

𝐼 𝑥, 𝑦 : ℝ! → ℝ

𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 :ℝ! → ℝ!
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Some vector calculus definitions in 2D



Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Think of this as 
a 2D vector.
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Some vector calculus definitions in 2D



Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field. 

Curl: cross product of nabla with a vector field.

∇𝐼 𝑥, 𝑦 = ?

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 = ?

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 = ?

Think of this as 
a 2D vector.
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Some vector calculus definitions in 2D



Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field. 

∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑢
𝜕𝑥

𝑥, 𝑦 +
𝜕𝑣
𝜕𝑦

𝑥, 𝑦

Curl: cross product of nabla with a vector field.

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦 −
𝜕𝑢
𝜕𝑦

𝑥, 𝑦 2𝑘

What is the 
dimension of this?

Think of this as 
a 2D vector.

What is the 
dimension of this?

What is the 
dimension of this?
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Some vector calculus definitions in 2D



Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field. 

∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑢
𝜕𝑥

𝑥, 𝑦 +
𝜕𝑣
𝜕𝑦

𝑥, 𝑦

Curl: cross product of nabla with a vector field.

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦 −
𝜕𝑢
𝜕𝑦

𝑥, 𝑦 2𝑘

This is a 
vector field.

Think of this as 
a 2D vector.

This is a 
scalar field.

This is a vector field.
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Some vector calculus definitions in 2D



Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field. 

∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑢
𝜕𝑥

𝑥, 𝑦 +
𝜕𝑣
𝜕𝑦

𝑥, 𝑦

Curl: cross product of nabla with a vector field.

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦 −
𝜕𝑢
𝜕𝑦

𝑥, 𝑦 2𝑘

This is a 
vector field.

Think of this as 
a 2D vector.

This is a 
scalar field.

This is a vector field.
This is a scalar field.
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Some vector calculus definitions in 2D



Divergence of the gradient:

Curl of the gradient:

∇ . ∇𝐼 𝑥, 𝑦 = ?

∇×∇𝐼 𝑥, 𝑦 = ?
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Combinations



Divergence of the gradient:

Curl of the gradient:

∇ . ∇𝐼 𝑥, 𝑦 =
𝜕!

𝜕𝑥!
𝐼 𝑥, 𝑦 +

𝜕!

𝜕𝑦!
𝐼 𝑥, 𝑦 ≡ ∆𝐼 𝑥, 𝑦

∇×∇𝐼 𝑥, 𝑦 =
𝜕!

𝜕𝑦𝜕𝑥
𝐼 𝑥, 𝑦 −

𝜕!

𝜕𝑥𝜕𝑦
𝐼 𝑥, 𝑦

Laplacian: scalar differential operator.

∆ ≡ ∇ . ∇ =
𝜕!

𝜕𝑥!
+
𝜕!

𝜕𝑦!
Inner product of 
del with itself!
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Combinations



Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

Gradient (grad): product of nabla with a scalar field. 

Curl: cross product of nabla with a vector field.

This is a 
vector field.

Think of this as 
a 2D vector.

This is a 
scalar field.

This is a vector field.
This is a scalar field.

∇ = " #

∇𝐼 = 𝐼" 𝐼#

∇ . 𝑢 𝑣 = 𝑢" + 𝑣#

∇× 𝑢 𝑣 = 𝑣" − 𝑢# 2𝑘
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Simplified notation



Divergence of the gradient:

Curl of the gradient:

∇ . ∇𝐼 = 𝐼"" + 𝐼## ≡ ∆𝐼

∇×∇𝐼 = 𝐼#" − 𝐼"#

Laplacian: scalar differential operator.

∆ ≡ ∇ . ∇ =
𝜕!

𝜕𝑥!
+
𝜕!

𝜕𝑦!
Inner product of 
del with itself!
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Simplified notation



We can treat grayscale images as scalar fields (i.e., two dimensional functions)

𝐼 𝑥, 𝑦 : ℝ! → ℝ
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Image representation



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦
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Image gradients



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

• How do we do this differentiation in real discrete images?
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Image gradients



What convolution kernel 
does this correspond to?

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦
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Finite differences



?
?

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦 1 -1

-1 1
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Finite differences



High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

partial-x derivative filter

Note: common to use central difference, but we will not use it in this lecture.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 =
𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥 − 1, 𝑦

2

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦 1 -1
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Finite differences



High-school reminder: definition of a derivative using forward difference.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

For discrete scalar fields: remove limit and set h = 1.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦 1 -1

partial-x derivative filter

Similarly for partial-y derivative.

𝜕𝐼
𝜕𝑦

𝑥, 𝑦 = 𝐼 𝑥, 𝑦 + ℎ − 𝐼 𝑥, 𝑦 1
-1

partial-y derivative filter
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Finite differences



How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦
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Discrete Laplacian



How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * = ?

What is this? What is this?
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Discrete Laplacian



How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * =

0 1 0
1 -4 1
0 1 0

Laplacian filter

𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦
30

Discrete Laplacian



How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * =

0 1 0
1 -4 1
0 1 0

Laplacian filter

𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Very important to: 
• use consistent 

derivative and Laplacian 
filters.

• account for boundary 
shifting and padding 
from convolution.
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Discrete Laplacian



Very important for the techniques discussed in this lecture to: 
• use consistent derivative and Laplacian filters.
• account for boundary shifting and padding from convolution.
A correct implementation of differential operators should pass the following test:

Equality holds at all pixels except boundary 
(first and last row, first and last column).

=∇ " ∇

Laplacian operatorgradient operator

divergence operator

∆

Typically requires implementing derivatives 
in various differential operators differently.
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Warning!



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦
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Image gradients



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

• Image gradients are very informative!
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Image gradients
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Application - Seam Carving
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[Shai & Avidan, SIGGRAPH 2007]



36

Application - Seam Carving

[Shai & Avidan, SIGGRAPH 2007]
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Content-aware resizing

Traditional resizing



37

Application - Seam Carving
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Seam Carving: Main idea
S
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Content-aware resizing
Intuition: 
• Preserve the most “interesting/important” content

à Prefer to remove pixels with low gradient energy

• To reduce or increase size in one dimension, remove 
irregularly shaped “seams”
à Optimal solution via dynamic programming.
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Seam Carving: Main idea
S
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=)( fEnergy

• Want to remove seams where they won’t be very noticeable:
• Measure “energy” as gradient magnitude
• Choose seam based on minimum total energy path across image, subject to 

8-connectedness.
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Seam Carving: Algorithm
S
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• Let a vertical seam s consist of h positions that form an 8-connected  path.

• Let the cost of a seam be:

• Optimal seam minimizes this cost.

• Compute it efficiently with dynamic programming:

å
=

=
h

i
isfEnergyCost

1
))(()(s

)(min* ss
s
Cost=

s1

s2

s3

s4

s5

=)( fEnergy



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦
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Image gradients



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

• How do we do this differentiation in real discrete images?

• Can we go in the opposite direction, from gradients to images?
42

Image gradients



Two fundamental questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed? 

43

Vector field integration



Integrable vector fields

44



Given an arbitrary vector field (u,	v), can we always integrate it into a scalar field I?

such that 

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ! → ℝ 𝑣 𝑥, 𝑦 : ℝ! → ℝ𝑢 𝑥, 𝑦 : ℝ! → ℝ

𝜕𝐼
𝜕𝑦

𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?
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Integrable fields



Curl of the gradient field should be zero:

What does that mean intuitively?

∇×∇𝐼 = 𝐼#" − 𝐼"# = 0

46

Property of twice-differentiable functions



Curl of the gradient field should be zero:

What does that mean intuitively?
• Same result independent of order of differentiation.

∇×∇𝐼 = 𝐼#" − 𝐼"# = 0

𝐼#" = 𝐼"#

47

Property of twice-differentiable functions



=

∇×∇𝐼∆𝐼

𝐼" 𝐼#

𝐼"# 𝐼#"

image 𝐼
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Demonstration



Curl of the gradient field should be zero:

What does that mean intuitively?
• Same result independent of order of differentiation.

∇×∇𝐼 = 𝐼#" − 𝐼"# = 0

𝐼#" = 𝐼"#

Can you use this property to derive an integrability condition?
49

Property of twice-differentiable functions



Given an arbitrary vector field (u,	v), can we always integrate it into a scalar field I?

such that 

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ! → ℝ 𝑣 𝑥, 𝑦 : ℝ! → ℝ𝑢 𝑥, 𝑦 : ℝ! → ℝ

𝜕𝐼
𝜕𝑦

𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?

∇× 𝑢 𝑥, 𝑦
𝑣 𝑥, 𝑦 = 0 ⇒

𝜕𝑢
𝜕𝑦

𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦

Only if:
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Integrable fields



Two fundamental questions:

• When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed? 

51

Vector field integration



• Reconstructing height fields from gradients
Applications: shape from shading, photometric stereo

• Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

• Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
• Integration must be done approximately.
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Different types of integration problems



A prototypical integration problem: 
Poisson blending

53



originals copy-paste Poisson blending
54

Application: Poisson blending



When blending, retain the gradient information as best as possible

5
5

source destination copy-paste Poisson blending
55

Key idea

sources destinations cloning seamless cloning

sources/destinations
cloning seamless cloning

Figure 3: Insertion. The power of the method is fully expressed
when inserting objects with complex outlines into a new back-
ground. Because of the drastic differences between the source and
the destination, standard image cloning cannot be used in this case.

source/destination cloning seamless cloning

swapped textures

Figure 4: Feature exchange. Seamless cloning allows the user to
replace easily certain features of one object by alternative features.
In the second example of texture swapping multiple broad strokes
(not shown) were used.

The discrete counterpart of this guidance field is:

vpq =
{

f ∗p − f ∗q if | f ∗p − f ∗q | > |gp −gq|,
gp −gq otherwise, (13)

for all ⟨p,q⟩. The effect of this guidance field is demonstrated in

source/destination

color transfer monochrome transfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Figs. 6 and 7.

(a) color-based cutout and paste (b) seamless cloning

(c) seamless cloning and destination av-
eraged (d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.

source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure is the more salient
at each location.

This mixed seamless cloning is also useful when adding one ob-
ject from a source image very close to another object in the desti-
nation image, see Fig. 8.
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add image 
here

Which one is the unknown?

𝑔: source function

Ω: destination domain

𝑓: interpolant function

𝑓∗: destination function

Notation

𝑆: destination

56

Definitions and notation



add image 
here

𝑔: source function

Ω: destination domain

𝑓: interpolant function

𝑓∗: destination function

Notation

𝑆: destination

How should we determine 𝑓?
• Should it be similar to 𝑔?
• Should it be similar to 𝑓∗?

57

Definitions and notation



add image 
here

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.

𝑆: destination

𝑔: source function

Ω: destination domain

𝑓: interpolant function

𝑓∗: destination function

Notation

Poisson blending: integrate
vector field ∇𝑔 with Dirichlet 

boundary conditions 𝑓∗.
58

Definitions and notation



Least-squares integration 
and the Poisson problem
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Variational problem

what does this 
term do?

what does this 
term do?

Nabla operator definition

Recall ...

is this known?

“Variational” means 
optimization where 
the unknown is an 

entire function

60

Least-squares integration



Variational problem

gradient of f looks 
like vector field v

f is equivalent to 
f* at the 

boundaries

Yes, this is the vector 
field we are integrating

“Variational” means 
optimization where 
the unknown is an 

entire function

61

Nabla operator definition

Recall ...

Why do we need 
boundary conditions 

for least-squares 
integration?

Least-squares integration



Laplacian

Divergence

what does this term do?
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Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:
This can be 

derived 
using the 

Euler-
Lagrange 
equation.

Equivalently

Poisson equation (with Dirichlet boundary conditions)



Laplacian

Divergence

Laplacian of f same as 
divergence of vector field v
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Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:
This can be 

derived 
using the 

Euler-
Lagrange 
equation.

Equivalently

Poisson equation (with Dirichlet boundary conditions)
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What does the input vector field equal 
in Poisson blending?

The stationary point of the variational loss is the solution to the:

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)
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What does the input vector field equal 
in Poisson blending?

The stationary point of the variational loss is the solution to the:

What does the divergence of the input 
vector field equal in Poisson blending?

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.



66

What does the input vector field equal 
in Poisson blending?

The stationary point of the variational loss is the solution to the:

What does the divergence of the input 
vector field equal in Poisson blending?

so make these ...

equal

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.



Laplacian

Divergence

67

Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:

How do we solve the Poisson equation?

Equivalently

Poisson equation (with Dirichlet boundary conditions)



∆𝑓 𝑥, 𝑦 = ∇ . 𝐯 𝑥, 𝑦

So for each pixel, do:

Or for discrete images:
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1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x 
derivative filter

Recall ...

partial-y 
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)



∆𝑓 𝑥, 𝑦 = ∇ . 𝐯 𝑥, 𝑦

So for each pixel, do:

Or for discrete images:
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−4𝑓 𝑥, 𝑦 + 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦
+𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1

= 𝑢 𝑥 + 1, 𝑦 − 𝑢 𝑥, 𝑦 + 𝑣 𝑥, 𝑦 + 1
− 𝑣 𝑥, 𝑦

1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x 
derivative filter

Recall ...

partial-y 
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)



∆𝑓 ' = ∇ . 𝐯 '

So for each pixel, do (more compact notation):

Or for discrete images (more compact notation):

70

−4𝑓' +C
(∈*!

𝑓( = 𝑢" ' + 𝑣# '
1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x 
derivative filter

Recall ...

partial-y 
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)



In vector form:

linear equation 
of P variables

one for each 
pixel p = 1, …, P
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−4𝑓' +C
(∈*!

𝑓( = 𝑢" ' + 𝑣# '

⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ " 𝐯 !
⋮

∇ " 𝐯 "!
⋮

∇ " 𝐯 ""
∇ " 𝐯 #
∇ " 𝐯 "#
⋮

∇ " 𝐯 "$
⋮

∇ " 𝐯 $

𝐴 𝑓 𝑏

(each pixel adds another ‘sparse’ row here)

We can rewrite this as



⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ " 𝐯 !
⋮

∇ " 𝐯 "!
⋮

∇ " 𝐯 ""
∇ " 𝐯 #
∇ " 𝐯 "#
⋮

∇ " 𝐯 "$
⋮

∇ " 𝐯 $

𝐴 𝑓 𝑏

In vector form:

linear equation 
of P variables

one for each 
pixel p = 1, …, P

what is 
this?
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−4𝑓' +C
(∈*!

𝑓( = 𝑢" ' + 𝑣# '

what are the sizes of these?

(each pixel adds another ‘sparse’ row here)

We can rewrite this as



⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ " 𝐯 !
⋮

∇ " 𝐯 "!
⋮

∇ " 𝐯 ""
∇ " 𝐯 #
∇ " 𝐯 "#
⋮

∇ " 𝐯 "$
⋮

∇ " 𝐯 $

𝐴 𝑓 𝑏

In vector form:

linear equation 
of P variables

one for each 
pixel p = 1, …, P
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−4𝑓' +C
(∈*!

𝑓( = 𝑢" ' + 𝑣# '

We call this the 
Laplacian matrix

(each pixel adds another ‘sparse’ row here)

We can rewrite this as



𝐷+×+ =

−4 1 0 0 0 ⋯ 0
1 −4 1 0 0 ⋯ 0
0 1 −4 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 1 −4 1 0
0 ⋯ ⋯ 0 1 −4 1
0 ⋯ ⋯ ⋯ 0 1 −474

For a𝑚×𝑛 image, we can re-organize this matrix into block tridiagonal form as: 

𝐴+-×+- =

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

This requires ordering pixels in 
column-major order.

𝐼+×+ is the 𝑚×𝑚
identity matrix

Laplacian matrix
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𝐴𝑓 = 𝑏

WARNING: requires special treatment at the borders
(target boundary values are same as source )

After discretization, equivalent to:

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Linear system of equations:

How would you solve this?

Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)



Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

In Matlab:

f = A \ b

Note: You almost never want to 
compute the inverse of a matrix.

76

Solving the linear system
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𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:

What is the size of this matrix?

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Discrete Poisson equation

WARNING: requires special treatment at the borders
(target boundary values are same as source )

Poisson equation (with Dirichlet boundary conditions)
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𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Matrix is 𝑃×𝑃 → billions of entries

Discrete Poisson equation

WARNING: requires special treatment at the borders
(target boundary values are same as source )

Poisson equation (with Dirichlet boundary conditions)



• Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

• Acceleration techniques: 
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.
…

• Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.
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Integration procedures



A more efficient Poisson solver

80



Variational problem

gradient of f looks 
like vector field v

f is equivalent to f* 
at the boundaries

Nabla operator definition

Recall ...

Input vector field:

81

Let’s look again at our optimization problem



Variational problem

gradient of f looks 
like vector field v

Nabla operator definition

Recall ...

1 -1

1
-1

partial-x 
derivative filter

partial-y 
derivative filter

And for discrete images:

Input vector field:
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Let’s look again at our optimization problem

f is equivalent to f* 
at the boundaries



Discrete problem
What are G, f, and v?

We can use the 
gradient 

approximation to 
discretize the 

variational problem

We will ignore the 
boundary conditions 

for now.min
!

𝐺𝑓 − 𝑣 "
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1 -1

1
-1

partial-x 
derivative filter

partial-y 
derivative filter

And for discrete images:

Nabla operator definition

Recall ...

Let’s look again at our optimization problem



Discrete problem
matrix G formed by stacking 
together discrete gradients

We can use the 
gradient 

approximation to 
discretize the 

variational problem

We will ignore the 
boundary conditions 

for now.min
!

𝐺𝑓 − 𝑣 "

vectorized version of 
the unknown image

vectorized version of the 
target gradient field

Image gradient

Recall ...
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1 -1

1
-1

partial-x 
derivative filter

partial-y 
derivative filter

And for discrete images:

Let’s look again at our optimization problem



Discrete problem
matrix G formed by stacking 
together discrete gradients

We can use the 
gradient 

approximation to 
discretize the 

variational problem

min
!

𝐺𝑓 − 𝑣 "

vectorized version of 
the unknown image

vectorized version of the 
target gradient field

Image gradient

Recall ...
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1 -1

1
-1

partial-x 
derivative filter

partial-y 
derivative filter

And for discrete images:

How do we solve 
this optimization 

problem?

Let’s look again at our optimization problem



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

=?

86

Approach 1: Compute stationary points



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we do what with it?

87

Approach 1: Compute stationary points



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we set that to zero:

𝜕𝐸
𝜕𝑓

= 0 ⇒ 𝐺#𝐺𝑓 = 𝐺#𝑣
What is this matrix?

What is this vector?

88

Approach 1: Compute stationary points



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we set that to zero:

𝜕𝐸
𝜕𝑓

= 0 ⇒ 𝐺#𝐺𝑓 = 𝐺#𝑣
It is equal to the 

Laplacian matrix A we 
derived previously!

It is equal to the vector 
b we derived 
previously!

89

Approach 1: Compute stationary points
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𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:

We arrive at the same system, no matter whether we discretize the 
continuous Poisson equation or the variational optimization problem.

Same system as:

𝐺#𝐺𝑓 = 𝐺#𝑣

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we set that to zero:

𝜕𝐸
𝜕𝑓

= 0 ⇒ 𝐺#𝐺𝑓 = 𝐺#𝑣
Solving this is exactly as 
expensive as what we 

had before.
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Approach 1: Compute stationary points



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣 = 𝐴𝑓 − 𝑏 ≡ −𝑟 We call this term 
the residual

92

Approach 2: Use gradient descent



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣 = 𝐴𝑓 − 𝑏 ≡ −𝑟

… and then we iteratively compute a solution:

𝑓$%& = 𝑓$ + η$𝑟$
are positive step sizesη$

for i =	0,	1,	…,	N, where

93

We call this term 
the residual

Approach 2: Use gradient descent



Make derivative of loss function with respect to equal to zero:η$

𝐸 𝑓$%& = 𝐺 𝑓$ + η$𝑟$ − 𝑣
"

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

94

Selecting optimal step sizes



𝐸 𝑓$%& = 𝐺 𝑓$ + η$𝑟$ − 𝑣
"

𝜕𝐸 𝑓$%&

𝜕η$
= 𝑏 − 𝐴 𝑓$ + η$𝑟$ #𝑟$ = 0 ⇒ η$ =

𝑟$
#
𝑟$

𝑟$ #𝐴𝑟$

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "
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Selecting optimal step sizes
Make derivative of loss function with respect to equal to zero:η$



Minimize by iteratively computing:

𝑟$ = 𝑏 − 𝐴𝑓$,     η$ = '!
"
'!

'!
"
('!

,     𝑓$%& = 𝑓$ + η$𝑟$,     𝑖 = 0,… , 𝑁

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

Is this cheaper than the pseudo-inverse approach?
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Gradient descent



𝑟$ = 𝑏 − 𝐴𝑓$,     η$ = '!
"
'!

'!
"
('!

,     𝑓$%& = 𝑓$ + η$𝑟$,     𝑖 = 0,… , 𝑁

Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "
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Gradient descent



Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "
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𝑟$ = 𝑏 − 𝐴𝑓$,     η$ = '!
"
'!

'!
"
('!

,     𝑓$%& = 𝑓$ + η$𝑟$,     𝑖 = 0,… , 𝑁

Gradient descent



Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.
• Because A is the Laplacian matrix, these matrix-vector products can be efficiently 

computed using convolutions with the Laplacian kernel.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "
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𝑟$ = 𝑏 − 𝐴𝑓$,     η$ = '!
"
'!

'!
"
('!

,     𝑓$%& = 𝑓$ + η$𝑟$,     𝑖 = 0,… , 𝑁

Gradient descent



Minimize by iteratively computing:

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

100

𝑑$ = 𝑟$ + 𝛽$𝑑$,     η$ = '!
"
'!

)!
"
()!

,     𝑓$%& = 𝑓$ + η$𝑑$,     𝑖 = 0,… , 𝑁

𝑟$%& = 𝑟$ − η$𝐴𝑑$,     𝛽$ = '!#$
"
'!#$

'!
"
'!

• Smarter way for selecting 
update directions

• Everything can still be done 
using convolutions

• Only one convolution needed 
per iteration

In practice: conjugate gradient descent



Does the initialization f0 matter?

101

Note: initialization



Does the initialization f0 matter?

• It doesn’t matter in terms of what final fwe converge to, because the loss function is 
convex. 

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "
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Note: initialization



Does the initialization f0 matter?

• It doesn’t matter in terms of what final fwe converge to, because the loss function is 
convex. 

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

• It does matter in terms of convergence speed.
• We can use a multi-resolution approach: 

- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

…
- Use the solution to initialize gradient descent for an f with the original resolution PxP.

• Multi-grid algorithms alternative between higher and lower resolutions during the 
(conjugate) gradient descent iterative procedure.

103

Note: initialization
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𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:

Remember that what we are 
doing is equivalent to solving 

this linear system.

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)



We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?
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Note: preconditioning



We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But 

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more 

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
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Note: preconditioning



We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But 

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more 

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
• Standard preconditioners like Jacobi.
• More effective preconditioners. Active area of research. 
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𝑃+,-./0 = diag 𝐴

Note: preconditioning



We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But 

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more 

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
• Standard preconditioners like Jacobi.
• More effective preconditioners. Active area of research. 
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𝑃+,-./0 = diag 𝐴

Preconditioning can be 
incorporated in the conjugate 
gradient descent algorithm.

Is this effective for Poisson solvers?

Note: preconditioning
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𝐴𝑓 = 𝑏

WARNING: requires special treatment at the borders
(target boundary values are same as source )

After discretization, equivalent to:

Linear system of equations:𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Matrix is 𝑃×𝑃 → billions of entries

x

Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)



• Form a mask B that is 0 for pixels that should not 
be updated (pixels on S-Ω and 𝜕Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over 
the entire image.

• Use (conjugate) gradient descent rules to only 
update pixels for which the mask is 1. Equivalently,
change the update rules to:

𝑓$%& = 𝑓$ + 𝐵η$𝑟$

𝑓$%& = 𝑓$ + 𝐵η$𝑑$
(gradient descent)

(conjugate gradient descent)
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Note: handling (Dirichlet) boundary conditions



𝑓$%& = 𝑓$ + 𝐵η$𝑟$

𝑓$%& = 𝑓$ + 𝐵η$𝑑$

In practice, masking is also required 
at other steps of (conjugate) 

gradient descent, to deal with 
invalid boundaries (e.g., from 

convolutions). 
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Note: handling (Dirichlet) boundary conditions

• Form a mask B that is 0 for pixels that should not 
be updated (pixels on S-Ω and 𝜕Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over 
the entire image.

• Use (conjugate) gradient descent rules to only 
update pixels for which the mask is 1. Equivalently,
change the update rules to:

(gradient descent)

(conjugate gradient descent)



Poisson image editing examples
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Slightly more advanced version 
of what we covered here:
• Uses higher-order derivatives

113

Photoshop’s “healing brush”



Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.
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Contrast problem



Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.
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Contrast problem



copy-paste Poisson blendingoriginals
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More blending

sources destinations cloning seamless cloning

sources/destinations
cloning seamless cloning

Figure 3: Insertion. The power of the method is fully expressed
when inserting objects with complex outlines into a new back-
ground. Because of the drastic differences between the source and
the destination, standard image cloning cannot be used in this case.

source/destination cloning seamless cloning

swapped textures

Figure 4: Feature exchange. Seamless cloning allows the user to
replace easily certain features of one object by alternative features.
In the second example of texture swapping multiple broad strokes
(not shown) were used.

The discrete counterpart of this guidance field is:

vpq =
{

f ∗p − f ∗q if | f ∗p − f ∗q | > |gp −gq|,
gp −gq otherwise, (13)

for all ⟨p,q⟩. The effect of this guidance field is demonstrated in

source/destination

color transfer monochrome transfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Figs. 6 and 7.

(a) color-based cutout and paste (b) seamless cloning

(c) seamless cloning and destination av-
eraged (d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.

source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure is the more salient
at each location.

This mixed seamless cloning is also useful when adding one ob-
ject from a source image very close to another object in the desti-
nation image, see Fig. 8.
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Blending transparent objects

sources destinations cloning seamless cloning

sources/destinations
cloning seamless cloning

Figure 3: Insertion. The power of the method is fully expressed
when inserting objects with complex outlines into a new back-
ground. Because of the drastic differences between the source and
the destination, standard image cloning cannot be used in this case.

source/destination cloning seamless cloning

swapped textures

Figure 4: Feature exchange. Seamless cloning allows the user to
replace easily certain features of one object by alternative features.
In the second example of texture swapping multiple broad strokes
(not shown) were used.

The discrete counterpart of this guidance field is:

vpq =
{

f ∗p − f ∗q if | f ∗p − f ∗q | > |gp −gq|,
gp −gq otherwise, (13)

for all ⟨p,q⟩. The effect of this guidance field is demonstrated in

source/destination

color transfer monochrome transfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Figs. 6 and 7.

(a) color-based cutout and paste (b) seamless cloning

(c) seamless cloning and destination av-
eraged (d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.

source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure is the more salient
at each location.

This mixed seamless cloning is also useful when adding one ob-
ject from a source image very close to another object in the desti-
nation image, see Fig. 8.
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Blending objects with holes

sources destinations cloning seamless cloning

sources/destinations
cloning seamless cloning

Figure 3: Insertion. The power of the method is fully expressed
when inserting objects with complex outlines into a new back-
ground. Because of the drastic differences between the source and
the destination, standard image cloning cannot be used in this case.

source/destination cloning seamless cloning

swapped textures

Figure 4: Feature exchange. Seamless cloning allows the user to
replace easily certain features of one object by alternative features.
In the second example of texture swapping multiple broad strokes
(not shown) were used.

The discrete counterpart of this guidance field is:

vpq =
{

f ∗p − f ∗q if | f ∗p − f ∗q | > |gp −gq|,
gp −gq otherwise, (13)

for all ⟨p,q⟩. The effect of this guidance field is demonstrated in

source/destination

color transfer monochrome transfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Figs. 6 and 7.

(a) color-based cutout and paste (b) seamless cloning

(c) seamless cloning and destination av-
eraged (d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.

source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure is the more salient
at each location.

This mixed seamless cloning is also useful when adding one ob-
ject from a source image very close to another object in the desti-
nation image, see Fig. 8.
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Editing

Figure 11: Local color changes. Left: original image showing
selection Ω surrounding loosely an object of interest; center: back-
ground decolorization done by setting g to the original color image
and f ∗ to the luminance of g; right: recoloring the object of interest
by multiplying the RGB channels of the original image by 1.5, 0.5,
and 0.5 respectively to form the source image.

Figure 12: Seamless tiling. Setting periodic boundary values on the
border of a rectangular region before integrating with the Poisson
solver yields a tileable image.

performed by precisely selecting an object and then setting its com-
plement to monochrome. In contrast, Poisson editing frees the user
from the tedium of precise selection: given a source color image g,
(a) the destination image f ∗ is set to be the luminance channel from
g, (b) the user selects a region Ω containing the object, and this
may be somewhat bigger than the actual object, and (c) the Pois-
son equation (10) is solved in each color channel. An example is
presented in Fig. 11. Note that, although the result seems to offer
also a precise segmentation of the object for free, this is not actually
the case as there is some residual contamination of the destination
image outside the object.

Conversely Poisson image editing can be used to modify the
color of a loosely selected object. Before solving the Poisson equa-
tion (10), the original image is copied to the destination f ∗ and a
version with modified colors is copied to the source g, see Fig. 11.

Seamless tiling When the domain Ω is rectangular, its content
can be made tileable by enforcing periodic boundary conditions
with the Poisson solver. The source image g is the original im-
age, and the boundary conditions are derived from the boundary
values of g, such that opposite sides of the rectangular domain cor-
respond to identical Dirichlet conditions. In Fig. 12, we have cho-
sen f ∗north = f ∗south = 0.5(gnorth + gsouth), and similarly for the east
and west borders.

5 Conclusion

Using the generic framework of guided interpolation, we have in-
troduced a variety of tools to edit in a seamless and effortless
manner the contents of an image selection. The extent of possi-
ble changes ranges from replacement by, or mixing with, another
source image region, to alterations of some aspects of the original

image inside the selection, such as texture, illumination, or color.
An important common characteristic of all these tools is that there
is no need for precise object delineation, in contrast with the classic
tools that address similar tasks. This is a valuable feature, whether
one is interested in small touch-up operations or in complex photo-
montages.

Although not illustrated in this paper, it is clear that the cloning
facilities described in Section 3 can be combined with the editing
ones introduced in Section 4. It is for instance possible to insert
an object while flattening its texture to make it match the style of a
texture-free destination.

Finally, it is worth noting that the range of editing facilities de-
rived in this paper from the same generic framework could prob-
ably be extended further. Appearance changes could for instance
also deal with the sharpness of objects of interest, thus allowing the
user to make apparent changes of focus.

Image credits Two landscapes and swimming bear in Fig. 3,
flower in Fig.11: from Corel Professional Photos, copyright c⃝2003
Microsoft Research and its licensors, all rights reserved; rainbow in
Fig. 7 courtesy Professor James B. Kaler, University of Illinois.
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How would you do this 
with Poisson blending?
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Concealment
Therefore, inside Ω, the additive correction f̃ is a membrane inter-
polant of the mismatch ( f ∗− g) between the source and the desti-
nation along the boundary ∂Ω. This particular instance of guided
interpolation is used for seamless cloning in Section 3.

Discrete Poisson solver The variational problem (3), and the
associated Poisson equation with Dirichlet boundary conditions (4),
can be discretized and solved in a number of ways.

For discrete images the problem can be discretized naturally us-
ing the underlying discrete pixel grid. Without loss of generality,
we will keep the same notations for the continuous objects and their
discrete counterparts: S, Ω now become finite point sets defined on
an infinite discrete grid. Note that S can include all the pixels of an
image or only a subset of them. For each pixel p in S, let Np be
the set of its 4-connected neighbors which are in S, and let ⟨p,q⟩
denote a pixel pair such that q ∈ Np. The boundary of Ω is now
∂Ω = {p ∈ S\Ω : Np ∩Ω ̸= /0}. Let fp be the value of f at p. The
task is to compute the set of intensities f |Ω =

{
fp, p ∈ Ω

}
.

For Dirichlet boundary conditions defined on a boundary of ar-
bitrary shape, it is best to discretize the variational problem (3) di-
rectly, rather than the Poisson equation (4). The finite difference
discretization of (3) yields the following discrete, quadratic opti-
mization problem:

min
f |Ω

∑
⟨p,q⟩∩Ω̸= /0

( fp − fq − vpq)2, with fp = f ∗p , for all p ∈ ∂Ω, (6)

where vpq is the projection of v( p+q
2 ) on the oriented edge [p,q],

i.e., vpq = v( p+q
2 ) · p⃗q. Its solution satisfies the following simulta-

neous linear equations:

for all p ∈ Ω, |Np| fp − ∑
q∈Np∩Ω

fq = ∑
q∈Np∩∂Ω

f ∗q + ∑
q∈Np

vpq. (7)

When Ω contains pixels on the border of S, which happens for in-
stance when Ω extends to the edge of the pixel grid, these pixels
have a truncated neighborhood such that |Np| < 4. Note that for
pixels p interior to Ω, that is, Np ⊂ Ω, there are no boundary terms
in the right hand side of (7), which reads:

|Np| fp − ∑
q∈Np

fq = ∑
q∈Np

vpq. (8)

Equations (7) form a classical, sparse (banded), symmetric,
positive-definite system. Because of the arbitrary shape of bound-
ary ∂Ω, we must use well-known iterative solvers. Results shown in
this paper have been computed using either Gauss-Seidel iteration
with successive overrelaxation or V-cycle multigrid. Both methods
are fast enough for interactive editing of medium size color image
regions, e.g., 0.4 s. per system on a Pentium 4 for a disk-shaped re-
gion of 60,000 pixels. As demonstrated in [Bolz et al. 2003], multi-
grid implementation on a GPU will provide a solution for much
larger regions.

3 Seamless cloning

Importing gradients The basic choice for the guidance field v
is a gradient field taken directly from a source image. Denoting
by g this source image, the interpolation is performed under the
guidance of

v = ∇g, (9)

and (4) now reads

∆ f = ∆g over Ω, with f |∂Ω = f ∗|∂Ω. (10)

Figure 2: Concealment. By importing seamlessly a piece of the
background, complete objects, parts of objects, and undesirable ar-
tifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.

As for the numerical implementation, the continuous specifica-
tion (9) translates into

for all ⟨p,q⟩, vpq = gp −gq, (11)

which is to be plugged into (7).
The seamless cloning tool thus obtained ensures the compliance

of source and destination boundaries. It can be used to conceal un-
desirable image features or to insert new elements in an image, but
with much more flexibility and ease than with conventional cloning,
as illustrated in Figs. 2-4. From the perspective of user input, most
tasks will simply require very loose lasso selections, as shown for
instance in Fig. 3. However, when features of the source have to
be aligned with corresponding features in the destination, as in the
fence example in Fig. 2 (bottom row) or the face example in Fig.
4 (top row), the positioning of the source and destination regions
must be more precise. Finally, in situations where seamless cloning
involves mostly pieces of texture, as in the face touch-up example
in Fig. 2 (top row) the texture swap example in Fig. 4 (bottom row)
applying repeatedly broad brush strokes is the more effective way.

Up to global changes induced by the interpolation process, the
full content of the source image is retained . In some circumstances,
it is desirable to transfer only part of the source content. The most
common instance of this problem is the transfer of the intensity
pattern from the source, not the color. A simple solution is to turn
the source image monochrome beforehand, see Fig. 5.

Mixing gradients With the tool described in the previous sec-
tion, no trace of the destination image f ∗ is kept inside Ω. However,
there are situations where it is desirable to combine properties of f ∗
with those of g, for example to add objects with holes, or partially
transparent ones, on top of a textured or cluttered background.

An example is shown in Fig.6, in which a text layer is to be
peeled off the source image and applied to the destination image,
without the need for complex selection operations. One possible
approach is to define the guidance field v as a linear combination
of source and destination gradient fields but this has the effect of
washing out the textures, see Fig. 6.

However, the Poisson methodology allows non-conservative
guidance fields to be used, which gives scope to more compelling
effect. At each point of Ω, we retain the stronger of the variations
in f ∗ or in g, using the following guidance field:

for all x ∈ Ω, v(x) =
{

∇ f ∗(x) if |∇ f ∗(x)| > |∇g(x)|,
∇g(x) otherwise. (12)
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How would you do this 
with Poisson blending?

• Insert a copy of the 
background.
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Concealment
Therefore, inside Ω, the additive correction f̃ is a membrane inter-
polant of the mismatch ( f ∗− g) between the source and the desti-
nation along the boundary ∂Ω. This particular instance of guided
interpolation is used for seamless cloning in Section 3.

Discrete Poisson solver The variational problem (3), and the
associated Poisson equation with Dirichlet boundary conditions (4),
can be discretized and solved in a number of ways.

For discrete images the problem can be discretized naturally us-
ing the underlying discrete pixel grid. Without loss of generality,
we will keep the same notations for the continuous objects and their
discrete counterparts: S, Ω now become finite point sets defined on
an infinite discrete grid. Note that S can include all the pixels of an
image or only a subset of them. For each pixel p in S, let Np be
the set of its 4-connected neighbors which are in S, and let ⟨p,q⟩
denote a pixel pair such that q ∈ Np. The boundary of Ω is now
∂Ω = {p ∈ S\Ω : Np ∩Ω ̸= /0}. Let fp be the value of f at p. The
task is to compute the set of intensities f |Ω =

{
fp, p ∈ Ω

}
.

For Dirichlet boundary conditions defined on a boundary of ar-
bitrary shape, it is best to discretize the variational problem (3) di-
rectly, rather than the Poisson equation (4). The finite difference
discretization of (3) yields the following discrete, quadratic opti-
mization problem:

min
f |Ω

∑
⟨p,q⟩∩Ω̸= /0

( fp − fq − vpq)2, with fp = f ∗p , for all p ∈ ∂Ω, (6)

where vpq is the projection of v( p+q
2 ) on the oriented edge [p,q],

i.e., vpq = v( p+q
2 ) · p⃗q. Its solution satisfies the following simulta-

neous linear equations:

for all p ∈ Ω, |Np| fp − ∑
q∈Np∩Ω

fq = ∑
q∈Np∩∂Ω

f ∗q + ∑
q∈Np

vpq. (7)

When Ω contains pixels on the border of S, which happens for in-
stance when Ω extends to the edge of the pixel grid, these pixels
have a truncated neighborhood such that |Np| < 4. Note that for
pixels p interior to Ω, that is, Np ⊂ Ω, there are no boundary terms
in the right hand side of (7), which reads:

|Np| fp − ∑
q∈Np

fq = ∑
q∈Np

vpq. (8)

Equations (7) form a classical, sparse (banded), symmetric,
positive-definite system. Because of the arbitrary shape of bound-
ary ∂Ω, we must use well-known iterative solvers. Results shown in
this paper have been computed using either Gauss-Seidel iteration
with successive overrelaxation or V-cycle multigrid. Both methods
are fast enough for interactive editing of medium size color image
regions, e.g., 0.4 s. per system on a Pentium 4 for a disk-shaped re-
gion of 60,000 pixels. As demonstrated in [Bolz et al. 2003], multi-
grid implementation on a GPU will provide a solution for much
larger regions.

3 Seamless cloning

Importing gradients The basic choice for the guidance field v
is a gradient field taken directly from a source image. Denoting
by g this source image, the interpolation is performed under the
guidance of

v = ∇g, (9)

and (4) now reads

∆ f = ∆g over Ω, with f |∂Ω = f ∗|∂Ω. (10)

Figure 2: Concealment. By importing seamlessly a piece of the
background, complete objects, parts of objects, and undesirable ar-
tifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.

As for the numerical implementation, the continuous specifica-
tion (9) translates into

for all ⟨p,q⟩, vpq = gp −gq, (11)

which is to be plugged into (7).
The seamless cloning tool thus obtained ensures the compliance

of source and destination boundaries. It can be used to conceal un-
desirable image features or to insert new elements in an image, but
with much more flexibility and ease than with conventional cloning,
as illustrated in Figs. 2-4. From the perspective of user input, most
tasks will simply require very loose lasso selections, as shown for
instance in Fig. 3. However, when features of the source have to
be aligned with corresponding features in the destination, as in the
fence example in Fig. 2 (bottom row) or the face example in Fig.
4 (top row), the positioning of the source and destination regions
must be more precise. Finally, in situations where seamless cloning
involves mostly pieces of texture, as in the face touch-up example
in Fig. 2 (top row) the texture swap example in Fig. 4 (bottom row)
applying repeatedly broad brush strokes is the more effective way.

Up to global changes induced by the interpolation process, the
full content of the source image is retained . In some circumstances,
it is desirable to transfer only part of the source content. The most
common instance of this problem is the transfer of the intensity
pattern from the source, not the color. A simple solution is to turn
the source image monochrome beforehand, see Fig. 5.

Mixing gradients With the tool described in the previous sec-
tion, no trace of the destination image f ∗ is kept inside Ω. However,
there are situations where it is desirable to combine properties of f ∗
with those of g, for example to add objects with holes, or partially
transparent ones, on top of a textured or cluttered background.

An example is shown in Fig.6, in which a text layer is to be
peeled off the source image and applied to the destination image,
without the need for complex selection operations. One possible
approach is to define the guidance field v as a linear combination
of source and destination gradient fields but this has the effect of
washing out the textures, see Fig. 6.

However, the Poisson methodology allows non-conservative
guidance fields to be used, which gives scope to more compelling
effect. At each point of Ω, we retain the stronger of the variations
in f ∗ or in g, using the following guidance field:

for all x ∈ Ω, v(x) =
{

∇ f ∗(x) if |∇ f ∗(x)| > |∇g(x)|,
∇g(x) otherwise. (12)
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Texture swapping

sources destinations cloning seamless cloning

sources/destinations
cloning seamless cloning

Figure 3: Insertion. The power of the method is fully expressed
when inserting objects with complex outlines into a new back-
ground. Because of the drastic differences between the source and
the destination, standard image cloning cannot be used in this case.

source/destination cloning seamless cloning

swapped textures

Figure 4: Feature exchange. Seamless cloning allows the user to
replace easily certain features of one object by alternative features.
In the second example of texture swapping multiple broad strokes
(not shown) were used.

The discrete counterpart of this guidance field is:

vpq =
{

f ∗p − f ∗q if | f ∗p − f ∗q | > |gp −gq|,
gp −gq otherwise, (13)

for all ⟨p,q⟩. The effect of this guidance field is demonstrated in

source/destination

color transfer monochrome transfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Figs. 6 and 7.

(a) color-based cutout and paste (b) seamless cloning

(c) seamless cloning and destination av-
eraged (d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.

source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure is the more salient
at each location.

This mixed seamless cloning is also useful when adding one ob-
ject from a source image very close to another object in the desti-
nation image, see Fig. 8.
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How would you do this?
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Special case: membrane interpolation



How would you do this?

Poisson problem

Laplacian problem

124

Special case: membrane interpolation



125

Entire suite of image editing tools



Flash/no-flash photography

126



No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look
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Denoising Result

128



No-Flash

129



Denoising Result

130



Denoise the no-flash image while maintaining the edge structure of the flash image.

131

Key idea

Can we do similar flash/no-flash fusion tasks with gradient-domain processing?
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Photography Artifacts: Flash Hotspot
Ambient Flash

Flash Hotspot
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Reflections due to Flash
Underexposed Reflections 

Ambient Flash
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Distance Dependance
Flash

Distant people 
underexposed



Ambient Flash

135

Removing self-reflections and hot-spots



Ambient Flash

Hands

Face

Tripod

136

Removing self-reflections and hot-spots



Result
Ambient

Flash

Reflection Layer

137

Removing self-reflections and hot-spots



Same gradient vector 
direction

Flash Gradient Vector

Ambient Gradient Vector

Ambient Flash

No reflections
138

Idea: look at how gradients are affected



Reflection Ambient Gradient Vector
Different gradient 
vector direction

With reflections

Ambient Flash

Flash Gradient Vector
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Idea: look at how gradients are affected



Residual 
Gradient 
Vector

Result Gradient Vector

Result Residual

Flash Gradient Vector
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Gradient projections

Ambient Flash

• Image gradients in flash and 
ambient images should be 
aligned.

• Ambient gradient direction is 
refined by projecting onto the 
flash gradient.

• "Result" image is formed by 
2D integration of the refined 
gradient.

• Residual gradients after 
projection create the "reflection 
layer".

• Gradient projection splits an 
image into reflection-free and 
reflection layers.
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• Projection ensures the 
gradient direction is 
preserved, even with a 
new magnitude.

• Orthogonal gradients holds 
minimal visual information.

• Rotating gradients by 90°
yields zero divergence.

• 90° rotation results in no 
image detail.

• 180° rotation creates a 
negative image.

Why projections?

Gx

Gy

Reconstruction

0 p/6 p/3 p/2 p
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Flash/no-flash with gradient-domain processing

Flash Ambient

Checkerboard 
outside glass 
window

Reflections on 
glass window



2D 

Integration

Flash

Ambient

X

Y

X

Y

Intensity Gradient 

Vector Projection

Result X

Result Y

Result

2D Integration

143

Flash/no-flash with gradient-domain processing



144

Invariance of Gradient Vectors Orientation
(Gradient Orientation Coherency)

ü Reflectance Edge

• ¯ Geometric Edge

× Illumination Edge

Ambient Flash

?
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Removing Reflections due to Flash
Ambient Flash Ambient + Flash

Result

Intensity Gradient 

Vector Projection

Reflections
removed
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Removing Flash Hotspot

Linearly combine flash and ambient image 
gradients using Ws and Gradient Coherency

Saturation Weights Ws

Ambient Flash

Result
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Depth Compensation
FlashAmbient

Scale flash gradients using the ratio of flash and ambient images

22

1
*)(
cos

distancedistanceAmbientAmbient
Flash

µ
´

=
qr

Result

Distant 
Persons 
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Limitations
• Difficult Scenarios
• Dynamic scenes 
• Co-located artifacts
• Strong ambient illumination edges

• Issues
• Lack of reliable gradients

• Homogeneous or dark regions

• Color coherency



Gradient-domain rendering

149
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Rendering Equation

Mirror Light
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Rendering Equation

𝐼! = #
"
𝑓! �̅� d𝜇 �̅�

Mirror Light

[V
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ch
98

]
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Rendering Equation

𝐼! = #
"
𝑓! �̅� d𝜇 �̅�

Mirror Light
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Rendering Equation
[V

ea
ch

98
]

𝐼! = #
"
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Mirror Light
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Rendering Equation
[V

ea
ch

98
]

𝐼! = #
"
𝑓! �̅� d𝜇 �̅�

Mirror Light

𝑓1 �̅� = (Materials) x (Geometries) 
x Emitted Lum. x Pixel filtering

𝑥&

𝑥.

𝑥!

𝑥/

𝑥0
�̅� = 𝑥#𝑥$𝑥%𝑥&𝑥'
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Rendering Equation

𝐼! = #
"
𝑓! �̅� d𝜇 �̅� 𝐼! ≈

1
𝑁,
#$%

&
𝑓! �̅�#
𝑝(𝑥#)

Monte Carlo estimator

𝑝(𝑥") is the probability density to sample 𝑥"
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Path Tracing

𝑥#

𝑥$

𝑥%
𝑥&𝐼1



157

Motivation

45min30min15min 1h

error / 2 = samples * 4
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Motivation
Observation

• Noise mostly proportional to signal magnitude

Idea

• Noise reduction by sampling sparse signal representation
• Sparse: signal magnitude low, except in small regions
• Wavelets, edge filters, gradients, etc.
• Theoretical justification: Kettunen et al. SIGGRAPH 2015
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The Basic Algorithm
1. Perform standard Monte Carlo rendering to obtain primal image
2. Sample gradients: horizontal and vertical
3. Reconstruct image from primal and gradients
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Image Reconstruction

Reconstructed image

Primal

Gradients

Fusing gradients and primal
information inside 

one image
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Primal domain Gradient domain 163



Primal domain Gradient domain

gradients of 
natural images 

are sparse 
(close to zero 

in most places)

164



165

Can I go from one image to the other?



differentiation (e.g., convolution with forward-difference kernel)

integration (e.g., Poisson solver)

166

Can I go from one image to the other?



Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?

167

Rendering



Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples) 

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

168

Rendering



Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples) 

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

Why not all?

169

Rendering



Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image) 
in primal domain, to use as boundary conditions in the Poisson solver.
• In practice, do image-space stratified sampling to select these pixels.

170

Rendering



A lot of papers since SIGGRAPH 2013 
(first introduction of gradient-domain 
rendering) that are looking to extend 
basically all primal-domain rendering 
algorithms to the gradient domain.

171

Gradient-Domain Rendering
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Does it help?



Gradient-domain path tracing (2 minutes) 173



Primal-domain path tracing (2 minutes) 174



Primal domain Gradient domain

gradients of 
natural images 

are sparse 
(close to zero 

in most places)

175

Remember this idea (we’ll come back to it)
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Modern Gradient-Domain Rendering

https://github.com/mkettune/ngpt

Deep Convolutional Reconstruction For Gradient-Domain Rendering

MARKUS KETTUNEN, Aalto University
ERIK HÄRKÖNEN, Aalto University
JAAKKO LEHTINEN, Aalto University and Nvidia

Input (Ours) NFOR [Bitterli et al. 2016] KPCN [Bako et al. 2017] NGPT (Ours) Ground Truth

Fig. 1. Comparison of the primal-domain denoisers NFOR [Bi�erli et al. 2016] and KPCN [Bako et al. 2017] to our gradient-domain reconstruction NGPT from
very noisy equal-time inputs (8 samples for ours and 20 for others). Generally outperforming the comparison methods, our results show that gradient sampling
is useful also in the context of non-linear neural image reconstruction, o�en resolving e.g. shadows be�er than techniques that do not make use of gradients.

It has been shown that rendering in the gradient domain, i.e., estimating �nite
di�erence gradients of image intensity using correlated samples, and com-
bining them with direct estimates of pixel intensities by solving a screened
Poisson problem, often o�ers fundamental bene�ts over merely sampling
pixel intensities. The reasons can be traced to the frequency content of the
light transport integrand and its interplay with the gradient operator. How-
ever, while they often yield state of the art performance among algorithms
that are based on Monte Carlo sampling alone, gradient-domain rendering
algorithms have, until now, not generally been competitive with techniques
that combine Monte Carlo sampling with post-hoc noise removal using
sophisticated non-linear �ltering.

Drawing on the power of modern convolutional neural networks, we
propose a novel reconstruction method for gradient-domain rendering. Our
technique replaces the screened Poisson solver of previous gradient-domain
techniques with a novel dense variant of the U-Net autoencoder, addition-
ally taking auxiliary feature bu�ers as inputs. We optimize our network to
minimize a perceptual image distance metric calibrated to the human visual
system. Our results signi�cantly improve the quality obtained from gradient-
domain path tracing, allowing it to overtake state-of-the-art comparison
techniques that denoise traditional Monte Carlo samplings. In particular,
we observe that the correlated gradient samples — that o�er information
about the smoothness of the integrand unavailable in standard Monte Carlo
sampling — notably improve image quality compared to an equally powerful
neural model that does not make use of gradient samples.

Authors’ addresses: Markus Kettunen, Aalto University, markus.kettunen@aalto.�; Erik
Härkönen, Aalto University, erik.harkonen@aalto.�; Jaakko Lehtinen, Aalto University
and Nvidia, jaakko.lehtinen@aalto.�.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/7-ART126 $15.00
https://doi.org/10.1145/3306346.3323038

CCS Concepts: • Computing methodologies → Neural networks; Ray
tracing.

Additional Key Words and Phrases: gradient-domain rendering, gradient-
domain reconstruction, screened poisson, ray tracing

ACM Reference Format:
Markus Kettunen, Erik Härkönen, and Jaakko Lehtinen. 2019. Deep Con-
volutional Reconstruction For Gradient-Domain Rendering. ACM Trans.
Graph. 38, 4, Article 126 (July 2019), 12 pages. https://doi.org/10.1145/3306346.
3323038

1 INTRODUCTION
Realistic image synthesis seeks to produce realistic virtual pho-
tographs by computationally solving the Rendering Equation [Ka-
jiya 1986], often by randomly sampling paths that carry light from
the light sources to the sensor. Rendering with too few samples
leaves the image with visually distracting noise. Unsurprisingly,
practical applications constantly struggle with striking a balance be-
tween the complexity of content (slower, more noise) and available
computational resources.

Since many Monte Carlo samples are required for a high qual-
ity image, this leaves four main approaches for making rendering
faster: (1) making samples faster to evaluate (e.g. GPU rendering,
ray tracing hardware, optimized low-level algorithms), (2) sharing
contributions between nearby paths (e.g. photon mapping), (3) being
clever in choosing the light paths to sample (e.g. Bidirectional Path
Tracing, adaptive importance samplers), and, �nally, (4) denoising
or reconstruction, attempting to produce a better picture out of the
samples by relying on various smoothness assumptions or analytic
models of the transport phenomena being modeled.

Despite a long history, and continuous research progress in all of
these areas, signi�cant problems remain. Only naturally, the quality
obtained by “more pure” techniques that rely on few assumptions or
heuristics tends to lag behind those that assume more. For instance,

ACM Trans. Graph., Vol. 38, No. 4, Article 126. Publication date: July 2019.

https://github.com/mkettune/ngpt
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Modern Gradient-Domain Rendering

https://github.com/iRedBean/Deep-Poisson-Reconstruction

GradNet: Unsupervised Deep Screened Poisson Reconstruction for
Gradient-Domain Rendering

JIE GUO∗, State Key Lab for Novel Software Technology, Nanjing University
MENGTIAN LI∗, State Key Lab for Novel Software Technology, Nanjing University
QUEWEI LI, State Key Lab for Novel Software Technology, Nanjing University
YUTING QIANG, State Key Lab for Novel Software Technology, Nanjing University
BINGYANG HU, State Key Lab for Novel Software Technology, Nanjing University
YANWEN GUO†, State Key Lab for Novel Software Technology, Nanjing University
LING-QI YAN†, University of California, Santa Barbara
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Fig. 1. We propose an unsupervised deep neural network (GradNet) for reconstructing high-quality images from noisy base images and the corresponding
image gradients generated by gradient-domain renderers. Even with unlabeled training data, our network can still reproduce noise-free images closely
matching the references.

Monte Carlo (MC)methods for light transport simulation are flexible and gen-
eral but typically suffer from high variance and slow convergence. Gradient-
domain rendering alleviates this problem by additionally generating image
gradients and reformulating rendering as a screened Poisson image recon-
struction problem. To improve the quality and performance of the recon-
struction, we propose a novel and practical deep learning based approach in
this paper. The core of our approach is a multi-branch auto-encoder, termed
∗Both authors contributed equally to the paper
†Corresponding authors

Authors’ addresses: Jie Guo, State Key Lab for Novel Software Technology, Nanjing Uni-
versity, guojie@nju.edu.cn; Mengtian Li, State Key Lab for Novel Software Technology,
Nanjing University, lemonsky@smail.nju.edu.cn; Quewei Li, State Key Lab for Novel
Software Technology, Nanjing University, liquewei@163.com; Yuting Qiang, State Key
Lab for Novel Software Technology, Nanjing University, qiangyuting.new@gmail.com;
Bingyang Hu, State Key Lab for Novel Software Technology, Nanjing University,
fhymyang@gmail.com; Yanwen Guo, State Key Lab for Novel Software Technology,
Nanjing University, ywguo@nju.edu.cn; Ling-Qi Yan, University of California, Santa
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GradNet, which end-to-end learns a mapping from a noisy input image and
its corresponding image gradients to a high-quality image with low variance.
Once trained, our network is fast to evaluate and does not require manual
parameter tweaking. Due to the difficulty in preparing ground-truth images
for training, we design and train our network in a completely unsupervised
manner by learning directly from the input data. This is the first solution in-
corporating unsupervised deep learning into the gradient-domain rendering
framework. The loss function is defined as an energy function including a
data fidelity term and a gradient fidelity term. To further reduce the noise of
the reconstructed image, the loss function is reinforced by adding a regular-
izer constructed from selected rendering-specific features. We demonstrate
that our method improves the reconstruction quality for a diverse set of
scenes, and reconstructing a high-resolution image takes far less than one
second on a recent GPU.

CCS Concepts: • Computing methodologies→ Ray tracing; Neural net-
works.

Additional Key Words and Phrases: Gradient-domain rendering, Deep learn-
ing, Unsupervised learning, Image reconstruction

ACM Reference Format:
Jie Guo, Mengtian Li, Quewei Li, Yuting Qiang, Bingyang Hu, Yanwen Guo,
and Ling-Qi Yan. 2019. GradNet: Unsupervised Deep Screened Poisson Re-
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cle 223 (November 2019), 13 pages. https://doi.org/10.1145/3355089.3356538

ACM Trans. Graph., Vol. 38, No. 6, Article 223. Publication date: November 2019.

https://github.com/iRedBean/Deep-Poisson-Reconstruction


Gradient cameras

178



Why would you want a gradient camera?

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

179

Gradient camera



Primal domain Gradient domain

gradients of 
natural images 

are sparse 
(close to zero 

in most places)

180

What implication would this have on a camera?



Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

181

Gradient camera



Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?

182

Gradient camera



Can you think how?
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Change the sensor



photodiodephotodiode

microlensmicrolens

potential 
well

potential 
well

analog 
voltage

analog 
voltage

discrete 
signal

discrete 
signal

typical analog front-end

+

-

operational amplifier 
(amplify difference 

of inputs)

firing 
mechanism ← what is this for? 184

Change the sensor



photodiodephotodiode

microlensmicrolens

potential 
well

potential 
well

analog 
voltage

analog 
voltage

discrete 
signal

discrete 
signal

typical analog front-end

+

-

operational amplifier 
(amplify difference 

of inputs)

firing 
mechanism

Any disadvantages of this sensor?

Why is this better than computing 
gradients in post-processing?

What about Poisson noise?

185

Change the sensor



photodiodephotodiode

microlensmicrolens

potential 
well

potential 
well

analog 
voltage

analog 
voltage

discrete 
signal

discrete 
signal

typical analog front-end

+

-

operational amplifier 
(amplify difference 

of inputs)

firing 
mechanism

Any disadvantages of this sensor?
• Spatial resolution is reduced by 2x.
• Photosensitive area is reduced.
Why is this better than computing 
gradients in post-processing?
• Additive noise is reduced.
• Acquisition is faster thanks to the firing 

mechanism and sparsity of edges.
What about Poisson noise?
• Poisson noise is the same in both 

cases.
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Change the sensor



Can you think how?
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Change the optics



photodetectors

lenslet

refractive 
slab

template 
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels
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Change the optics



photodetectors

lenslet

refractive 
slab

template 
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels
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Change the optics

Any disadvantages?



photodetectors

lenslet

refractive 
slab

template 
(edge filter)

resulting image

Physical Layout Impulse Response 
(2D)

Optical filtering Angle-sensitive pixels

190

Change the optics

Any disadvantages?
• Reduced light efficiency (we block light).
• We can’t do subtraction very easily in optics.



Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is 

significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?
• Change the sensor.
• Change the optics.

191

Gradient camera



event-based cameras (a.k.a. 
dynamic vision sensors, or DVS)

Concept figure for event-based camera:

https://www.youtube.com/watch?v=kPCZESVfHoQ

High-speed output on a quadcopter:

https://www.youtube.com/watch?v=LauQ6LWTkxM

Simulator:

http://rpg.ifi.uzh.ch/esim 192

We can also compute temporal gradients

https://www.youtube.com/watch?v=kPCZESVfHoQ
https://www.youtube.com/watch?v=LauQ6LWTkxM
http://rpg.ifi.uzh.ch/esim
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Open Challenges in Computer Vision
• The past 60 years of research have been devoted to frame-based 

cameras.                                   

…but they are not good enough!

• Event cameras do not suffer from these problems!

Dynamic RangeLatency  & Motion blur
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What is an event camera?

Mini DVS sensor from  
IniVation.com

Traditional vision algorithms cannot be used 
because: 
• Asynchronous pixels 
• No intensity information (only binary 

intensity changes)

• Novel sensor that measures only motion in the scene

• First commercialized in 2008 by T. Delbruck (UZH&ETH) 
under the name of Dynamic Vision Sensor (DVS)

• Low-latency (~ 1 μs)
• No motion blur

• High dynamic range (140 dB instead of 60 dB)
• Ultra-low power (mean: 1mW vs 1W)

Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, 2008

Image of the solar eclipse 
captured by a DVS



195

Camera vs Event Camera
• A traditional camera outputs frames at fixed time intervals:

• By contrast, a DVS outputs asynchronous events at microsecond resolution. An event 
is generated each time a single pixel detects an intensity changes value 

Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, 2008

time
events stream

event:

time
frame next frame

𝑡, 𝑥, 𝑦 , 𝑠𝑖𝑔𝑛
𝑑𝐼(𝑥, 𝑦)
𝑑𝑡

Event polarity (or sign) (-1 or 1): increase or decrease of brightness

Timestamp (µs)
Pixel coordinates
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Generative Event Model

Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, 2008

log 𝐼(𝒙, 𝑡)

𝑂𝑁

𝑂𝐹𝐹 𝑂𝐹𝐹 𝑂𝐹𝐹

𝑂𝑁 𝑂𝑁

𝑂𝐹𝐹𝑂𝐹𝐹 𝑂𝐹𝐹

Consider the intensity at a single pixel…

Events are triggered asynchronously

±𝐶 = log 𝐼 𝒙, 𝑡 − log 𝐼 𝒙, 𝑡 − Δ𝑡

𝑂𝑁 𝑂𝑁

𝐶 = Contrast sensitivity
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Event cameras are inspired by the Human Eye
Human retina:
• 130 million photoreceptors
• But only 2 million axons!

Brain
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Event Camera Output with No Motion

Standard Camera Event Camera (ON, OFF events)

ΔT = 40 ms

Without motion, only background noise is output
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Event Camera Output with Relative Motion

Standard Camera Event Camera (ON, OFF events)

ΔT = 10 ms
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Event Camera Output with Relative Motion

ΔT = 40 ms

Standard Camera Event Camera (ON, OFF events)
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Low-light Sensitivity (night drive)
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GoPro Hero 6 Event Camera by Prophesee
White = Positive events
Black = Negative events

https://www.prophesee.ai/
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Image Reconstruction from Events
• Probabilistic simultaneous, gradient & rotation estimation from 𝐶=−𝛻𝐿 ·𝐮
• Obtain intensity from gradients via Poisson reconstruction
• The reconstructed image has super-resolution and high dynamic range (HDR)
• In real time on a GPU

Kim et al., Simultaneous Mosaicing and Tracking with an Event Camera, BMVC’14
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Image Reconstruction from Events – E2VID

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”,  CVPR19. 
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019.

3

standard
camera
output:

event
camera
output:

Fig. 2. Comparison of the output of a conventional camera and an event
camera looking at a black disk on a rotating circle. While a conventional
camera captures frames at a fixed rate, an event camera transmits the
brightness changes continuously in the form of a spiral of events in
space-time (red: positive events, blue: negative events). Figure inspired
by [10].

to recover the intensity image. In contrast, we do not reconstruct
individual intensity images from small windows of events, but
synthesize a temporally consistent video from a long stream of
events (several seconds) using a recurrent network. Instead of
mapping event patches to a dictionary of image gradients, we learn
pixel-wise intensity estimation directly.

Despite the body of work on events-to-video reconstruction,
downstream vision applications based on the reconstructions have,
to the best of our knowledge, never been demonstrated prior to our
work.

3 VIDEO RECONSTRUCTION
An event camera consists of independent pixels that respond to
changes in the spatio-temporal brightness signal L(x, t)1 and
transmit the changes in the form of a stream of asynchronous
events (Fig. 2). For an ideal sensor, an event ei = (ui, ti, pi) is
triggered at pixel ui = (xi, yi)T and time ti when the brightness
change since the last event at the pixel reaches a threshold ±C .
However, C is in reality neither constant nor uniform across the
image plane. Rather, it strongly varies depending on factors such
as the sign of the brightness change [12], the event rate (because
of limited pixel bandwidth) [20], and the temperature [21]. Con-
sequently, events cannot by directly integrated to recover accurate
intensity images in practice.

3.1 Overview
Our goal is to translate a continuous stream of events into a
sequence of images {Îk}, where Îk 2 [0, 1]W⇥H . To achieve
this, we partition the incoming stream of events into sequen-
tial (non-overlapping) spatio-temporal windows "k = {ei}, for
i 2 [0, N � 1], each containing a fixed number N of events. The
reconstruction function is implemented by a recurrent convolu-
tional neural network, which maintains and updates an internal
state sk through time. For each new event sequence "k, we
generate a new image Îk using the network state sk�1 (see Fig. 3)
and update the state sk. We train the network in supervised
fashion, using a large amount of simulated event sequences with
corresponding ground-truth images.

3.2 Event Representation
In order to be able to process the event stream using the convo-
lutional recurrent network, we need to convert "k into a fixed-
size tensor representation Ek. A natural choice is to encode

1. Event cameras respond in fact to logarithmic brightness changes, i.e.
L = logE where E is the irradiance.

EkEk�1

A A

"k�1 "k

tek�1
0 ek�1

N�1 ekN�1ekN�1ekN�1ek0e
k
0e
k
0e
k
0ek�1

i

"k�1 "k

tek�1
0 ek�1

N�1 ekN�1ekN�1ekN�1ek0e
k
0e
k
0e
k
0ek�1

i

sk�2 sk�1 sk

Îk�1 Îk

Fig. 3. Overview of our approach. The event stream (depicted as
red/blue dots on the time axis) is split into windows "k containing
multiple events. Each window is converted into a 3D event tensor Ek
and passed through the network, together with the previous state sk�1

to generate a new image reconstruction Îk and updated state sk. In this
example, each window "k contains a fixed number of events N = 7.

the events in a spatio-temporal voxel grid [22]. The duration
�T = tk

N�1 � tk0 spanned by the events in "k is discretized into
B temporal bins. Every event distributes its polarity pi to the two
closest spatio-temporal voxels as follows:

E(xl, ym, tn) =
X

xi=xl
yi=ym

pi max(0, 1� |tn � t⇤
i
|), (1)

where t⇤
i
, B�1

�T
(ti � t0) is the normalized event timestamp. We

use B = 5 temporal bins.

3.3 Training Data
Our network requires training data in the form of event sequences
with corresponding ground-truth image sequences. However, there
exists no large-scale dataset with event data and corresponding
ground-truth images. Furthermore, images acquired by a conven-
tional camera would provide poor ground truth in scenarios where
event cameras excel, namely high dynamic range and high-speed
scenes. For these reasons, we propose to train the network on
synthetic event data, and show subsequently (in Section 4) that
our network generalizes to real event data.

We use the event simulator ESIM [23], which allows simulat-
ing a large amount of event data reliably. ESIM renders images
along the camera trajectory at high framerate, and interpolates
the brightness signal at each pixel to approximate the continuous
intensity signal needed to simulate an event camera. Consequently,
ground-truth images I are readily available. We map MS-COCO
images [24] to a 3D plane and simulate the events triggered
by random camera motion within this simple 3D scene. Using
MS-COCO images allows capturing a much larger variety of
scenes than is available in any existing event camera dataset. We
set the camera sensor size to 240 ⇥ 180 pixels (to match the
resolution of the DAVIS240C sensor used in our evaluation [25]).
Note that inference can be performed at arbitrary resolutions since
we will use a fully-convolutional network. Examples of generated
synthetic event sequences are presented in the supplement.

We further enrich the training data by simulating a different
set of positive and negative contrast thresholds for each simulated
scene (sampled according to a normal distribution with mean
0.18 and standard deviation 0.03, values based on [17]). This
data augmentation prevents the network from learning to naively
integrate events, which would work well on noise-free, simulated
data, but would generalize poorly to real event data (for which the
assumption of a fixed contrast threshold does not hold).

We generate 1,000 sequences of 2 seconds each, which results
in approximately 35 minutes of simulated event data. Note that the

5

Conv Conv + ReLU + BN Decoder↑ Upsampling + Conv + ReLU + BN Conv↓ Strided Conv (s=2) + ReLU + BN ConvLSTM ConvLSTM + ReLU + BN

ConvLSTM
Conv↓

Res Block Residual Block

(a) (b)

Fig. 4. We use a fully convolutional, UNet-like [26] architecture (a), composed of NE recurrent encoder layers (b), followed by NR residual blocks
and NE decoder layers, with skip connections between symmetric layers. Encoders are composed of a strided convolution (stride 2) followed by
a ConvLSTM [27]. Decoder blocks perform bilinear upsampling followed by a convolution. ReLU activations and batch normalization [28] are used
after each layer (except the last prediction layer, for which a sigmoid activation is used). In this diagram, NE = 2 and NR = 1.

(a) Scene overview (b) Events (c) HF (d) MR (e) Ours (f) Ground truth

Fig. 5. Comparison of our method with MR and HF on sequences from [38]. Our network is able to reconstruct fine details well (textures in the first
row), while avoiding common artifacts (e.g. the “bleeding edges” in the third row).

4 EVALUATION

In this section, we present both quantitative and qualitative results
on the fidelity of our reconstructions, and compare to recent
methods [2], [4], [5]. We focus our evaluation on real event data.
An evaluation on synthetic data can be found in supplementary
material.

We use event sequences from the Event Camera Dataset [38].
These sequences were recorded using a DAVIS240C sensor [25]
moving in various environments. It contains events as well as
ground-truth grayscale frames at a rate of 20Hz. We remove
redundant sequences (e.g. ones captured in the same scene)
and those for which the frame quality is poor, leaving seven
sequences in total that amount to 1,670 ground-truth frames. For
each sequence, we reconstruct a video from the events with our
method and each baseline. For each ground-truth frame, we query
the reconstructed image with the closest timestamp (tolerance of
±1ms).

Each reconstruction is then compared to the corresponding
ground-truth frame according to several quality metrics. We apply
local histogram equalization to every ground-truth frame and
reconstructed frame prior to computing the error metrics (this way
the intensity values lie in the same intensity range and are thus
comparable). Note that the camera speed gradually increases in
each sequence, leading to significant motion blur on the ground-
truth frames towards the end of the sequences; we therefore
exclude these fast sections in our quantitative evaluation. We also
omit the first few seconds from each sequence, which leaves

enough time for the baseline methods that are based on event
integration to converge. Note that this works in favor of the
baselines, as our method converges almost immediately (more
details in Section 6).

We compare our approach against several state-of-the-art
methods: [2] (which we denote as SOFIE for “Simultaneous Optic
Flow and Intensity Estimation”), [5] (HF for “High-pass Filter”),
and [4] (MR for “Manifold Regularization”), both in terms of
image reconstruction quality and temporal consistency. For HF
and MR, we used the code that was provided by the authors and
manually tuned the parameters on the evaluated sequences to get
the best results possible. For HF, we also applied a bilateral filter
to the reconstructed images (with filter size d = 5 and � = 25)
in order to remove high-frequency noise, which improves the
results of HF in all metrics. For SOFIE, we report qualitative
results instead of quantitative results since we were not able to
obtain satisfying reconstructions on our datasets using the code
provided by the authors. We report three image quality metrics:
mean squared error (MSE; lower is better), structural similarity
(SSIM; higher is better) [39], and the calibrated perceptual loss
(LPIPS; lower is better) [32]. In addition, we measure the temporal
consistency of the reconstructed videos using the temporal loss
introduced in Eq. (2). Note that computing the temporal loss
requires optical flow maps between successive DAVIS frames,
which we obtain with FlowNet2 [40].

Results and Discussion. The main quantitative results are pre-
sented in Table 1, and are supported by qualitative results in

• A fully convolutional, UNet-like 
architecture composed of 
recurrent encoder layers, 
followed by residual blocks and 
decoder layers, with skip 
connections between 
symmetric layers.
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Image Reconstruction from Events – E2VID
Events

Reconstructed image from events 
(Samsung DVS)

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”,  CVPR19. 
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019.
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HDR Video: Driving out of a tunnel

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”,  CVPR19. 
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019.
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HDR Video: Night Drive

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”,  CVPR19. 
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019.

GoPro Hero 6Our reconstruction from events
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Image Reconstruction from Events - HyperE2VID

Ercan et al., “HyperE2VID: Improving Event-Based Video Reconstruction via Hypernetworks”, IEEE TIP, 2024.

ERCAN et al.: HyperE2VID: IMPROVING EVENT-BASED VIDEO RECONSTRUCTION VIA HYPERNETWORKS 1827

Fig. 1. Comparison of our HyperE2VID method with state-of-the-art
event-based video reconstruction methods based on image quality and
computational complexity. Image quality scores are calculated by normaliz-
ing and averaging each of the quantitative scores reported in Table I, where
normalization maps the best and worst possible score for each metric to
1.0 and 0.0. Number of floating point operations (FLOPs) are measured
as described in Section IV-F. Circle sizes indicate the number of model
parameters, as detailed in Table II. The methods with lower image quality
scores are not included for clarity of presentation.

Since events are generated asynchronously only when the
intensity of a pixel changes, the resulting event voxel grid
is a sparse tensor, incorporating information only from the
changing parts of the scene. The sparsity of these voxel grids is
also highly varying. This makes it hard for neural networks to
adapt to new data and leads to unsatisfactory video reconstruc-
tions that contain blur, low contrast, or smearing artifacts ([7],
[8], [10]). Recently, Weng et al. [9] proposed to incorporate
a Transformer [11] based module to an event-based video
reconstruction network in order to better exploit the global
context of event tensors. This complex architecture improves
the quality of reconstructions, but at the expense of higher
inference times and larger memory consumption.

The methods mentioned above try to process the highly
varying event data with static networks, in which the network
parameters are kept fixed after training. Concurrently, there
has been a line of research that investigates dynamic network
architectures that allow the network to adapt its parameters
dynamically according to the input supplied at inference time.
A well-known example of this approach is the notion of hyper-

networks [12], which are smaller networks that are used to
dynamically generate weights of a larger network at inference
time, conditioned on the input. This dynamic structure allows
the neural networks to increase their representation power with
only a minor increase in computational cost [13].

In this work, we present HyperE2VID which improves
the current state-of-the-art in terms of image quality and
efficiency (see Fig. 1) by employing a dynamic neural network
architecture via hypernetworks. Our proposed model utilizes a
main network with a convolutional recurrent encoder-decoder
architecture, similar to E2VID [7]. We enhance this network
by employing dynamic convolutions, whose parameters are
generated dynamically at inference time. These dynamically
generated parameters are also spatially varying such that there
exists a separate convolutional kernel for each pixel, allowing
them to adapt to different spatial locations as well as each

Fig. 2. HyperE2VID uses a recurrent encoder-decoder backbone, consuming
an event voxel grid at each time step. It enhances this architecture by employ-
ing per-pixel, spatially-varying dynamic convolutions at the decoder, whose
parameters are generated dynamically at inference time via hypernetworks.

input. This spatial adaptation enables the network to learn and
use different filters for static and dynamic parts of the scene
where events are generated at low and high rates, respectively.
We design our hypernetwork architecture in order to avoid the
high computational cost of generating per-pixel adaptive filters
via filter decomposition as in [14].

Fig. 2 presents an overview of our proposed method,
HyperE2VID, for reconstructing video from events. Our
approach is designed to guide the dynamic filter generation
through a context that represents the current scene being
observed. To achieve this, we leverage two complementary
sources of information: events and images. We incorporate
a context fusion module in our hypernetwork architecture to
combine information from event voxel grids and previously
reconstructed intensity images. These two modalities comple-
ment each other since intensity images capture static parts of
the scene better, while events excel at dynamic parts. By fusing
them, we obtain a context tensor that better represents both
static and dynamic parts of the scene. This tensor is then
used to guide the dynamic per-pixel filter generation. We also
employ a curriculum learning strategy to train the network
more robustly, particularly in the early epochs of training when
the reconstructed intensity images are far from optimal.

To the best of our knowledge, this is the first work that
explores the use of hypernetworks and dynamic convolutions
for event-based video reconstruction. The closest to our work
is SPADE-E2VID [10] where the authors employ adaptive
feature denormalization in decoder blocks of the E2VID
architecture. Rather than feature denormalization, we directly
generate per-pixel dynamic filters via hypernetworks for the
first decoder block. Specifically, our contributions can be
summarized as follows:

• We propose the first dynamic network architecture for
the task of video reconstruction from events,1 where we

1Code is available at https://ercanburak.github.io/HyperE2VID.html.

Authorized licensed use limited to: ULAKBIM UASL - Hacettepe Universitesi. Downloaded on March 13,2024 at 08:47:52 UTC from IEEE Xplore.  Restrictions apply. 

ERCAN et al.: HyperE2VID: IMPROVING EVENT-BASED VIDEO RECONSTRUCTION VIA HYPERNETWORKS 1831

Fig. 3. Overview of our proposed HyperE2VID architecture. The main network F uses a U-Net like architecture to process an event voxel grid Vk and
predict the intensity image Îk at each time step k. It includes downsampling encoder blocks, upsampling decoder blocks, and skip connections. The encoders
incorporate ConvLSTM blocks to capture long temporal dependencies in the sparse event stream. The parameters of the context-guided dynamic decoder
(CGDD) block are generated dynamically at inference time, enabling the network to adapt to highly varying event data. These parameters are generated via
hypernetworks, consisting of a context fusion (CF) block and a dynamic filter generation (DFG) block. The DFG block employs two filter decomposition
steps using multi-scale Fourier-Bessel Bases and learned compositional coefficients, avoiding the high computational cost of per-pixel adaptive filters. The
CF block fuses event features from the current time step k with reconstructed image features from the previous time step k � 1 to generate a context tensor.
This fusion scheme combines the dynamic and static parts of the scene captured by events and images, respectively, to generate a context tensor that better
represents the overall scene.

Prediction Layer: The prediction layer is a standard convo-
lutional layer with a kernel size of 1, and it outputs the final
predicted intensity image with 1 channel. We do not use an
activation function after this layer.

Dynamic Filter Generation (DFG) Block: A crucial com-
ponent of our method is the dynamic filter generation. This
block consumes a context tensor and output parameters for
the CGDD block. The context tensor Ck is expected to be at
the same spatial size as the input of the dynamic convolution
(W 00 ⇥ H

00). To generate the context tensor, we use a context
fusion mechanism that fuses features from the event voxel grid
(Vk) and the previous reconstruction ( Îk�1) of the network.

To reduce the computational cost, we use two filter decom-
position steps while generating per-pixel dynamic filters. First,
we decompose filters into per-pixel filter atoms generated
dynamically. Second, we further decompose each filter atom
as a truncated expansion with pre-fixed multi-scale Fourier-
Bessel bases. Inspired by ACDA [14], our approach generates
efficient per-pixel dynamic convolutions that vary spatially.
However, unlike ACDA, our network architecture performs
dynamic parameter generation independently through hyper-
networks, which are guided by a context tensor designed to
provide task-specific features for event-based video recon-
struction.

Fig. 4 illustrates the detailed operations of our proposed
DFG block. A context tensor with dimensions W

00 ⇥ H
00 ⇥

Ccont is fed into a 2-layer CNN, producing pixel-wise basis
coefficients of size Ccoeff that are used to generate per-pixel
dynamic atoms via pre-fixed multi-scale Fourier-Bessel bases.
These bases are represented by a tensor of size s ⇥ b ⇥

Fig. 4. Dynamic Filter Generation (DFG) block. DFG block takes a
context tensor as input and generates per-pixel dynamic convolution param-
eters via two filter decomposition steps, making use of pre-fixed multi-scale
Fourier-Bessel bases and learned compositional coefficients. More details are
given in Section III-C.

l ⇥ l, where s is the number of scales, b is the number
of Fourier-Bessel bases at each scale, and l is the kernel
size for which the dynamic parameters are being generated.
Multiplying the multi-scale Fourier-Bessel bases with the basis
coefficients generate per-pixel dynamic atoms of size l ⇥ l.

Authorized licensed use limited to: ULAKBIM UASL - Hacettepe Universitesi. Downloaded on March 13,2024 at 08:47:52 UTC from IEEE Xplore.  Restrictions apply. 

• A dynamic network architecture for the task of video reconstruction from events, 
where existing static architectures are extended with hypernetworks, dynamic 
convolutional layers, and a context fusion block. 
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Image Reconstruction from Events - HyperE2VID

Ercan et al., “HyperE2VID: Improving Event-Based Video Reconstruction via Hypernetworks”, IEEE TIP, 2024.



What if we combined the complementary 
advantages of event and standard cameras?
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Why combining them?

Event Camera Standard Camera

> 60 years of research!< 10 years research 

Update rate High (asynchronous): 1 MHz Low (synchronous)

Dynamic Range High (140 dB) Low (60 dB)

Motion Blur No Yes

Static motion No (event camera is a high pass filter) Yes

Absolute intensity No (reconstructable up to a constant) Yes

< 10 years of research 
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DAVIS sensor: Events + Images + IMU
• Combines an event and a standard camera in the same pixel array 

(→ the same pixel can both trigger events and integrate light intensity). 

• It also has an IMU

Brandli et al. A 240x180 130dB 3us latency global shutter spatiotemporal vision sensor. IEEE JSSC, 2014

Events time

Standard images

Spatio-temporal visualization 
of the output of a DAVIS sensor

Temporal aggregation of events 
overlaid on a DAVIS frame
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Deblurring a blurry video

òò- =log log

Input blur image Input events Output sharp image

• A blurry image can be regarded as the integral of a sequence of latent images during 
the exposure time, while the events indicate the changes between the latent images.

• Finding: sharp image obtained by subtracting the double integral of event from input 
image

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR 2019
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Deblurring a blurry video
• A blurry image can be regarded as the integral of a sequence of latent images during 

the exposure time, while the events indicate the changes between the latent images.

• Finding: sharp image obtained by subtracting the double integral of event from input 
image

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR 2019

Output sharp videoInput blur image
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Deblurring a blurry video
• A blurry image can be regarded as the integral of a sequence of latent images during 

the exposure time, while the events indicate the changes between the latent images.

• Finding: sharp image obtained by subtracting the double integral of event from input 
image

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR 2019

Input blur image Output sharp video



Video Frame Interpolation
• Video frame interpolation methods aims at generating intermediate frames by inferring 

object motions in the image from consecutive keyframes.

• Motion is generally modelled with first-order approximations like optical flow. 
• This choice restricts the types of motions, leading to errors in highly dynamic scenarios. 

• Event cameras provides auxiliary visual information in the blind-time between frames.

215Tulyakov et al., Time Lens++: Event-based Frame Interpolation with Parametric Non-linear Flow and Multi-scale Fusion, CVPR 2022



Next Lecture: 
Focal Stacks and Lightfields
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