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Today’s Lecture
• Deconvolution

• Sources of blur

• Blind deconvolution

• Non-blind deconvolution

• Coded photography
• The coded photography paradigm

• Dealing with depth blur

• Dealing with motion blur
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Disclaimer: The material and slides for this lecture were borrowed from 
—Ioannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class
—Seungyong Lee and Sunghyun Cho’s “Recent Advances in Image Deblurring” course at SIGGRAPH Asia 2013



Today’s Lecture
• Deconvolution

• Sources of blur

• Blind deconvolution

• Non-blind deconvolution

• Coded photography
• The coded photography paradigm

• Dealing with depth blur

• Dealing with motion blur
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Sources of blur

5
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blur [bl3:(r)]

• Long exposure
• Moving objects
• Camera motion

– panning shot 

• Lens imperfections
• Depth defocus

6



blur [bl3:(r)]

• Often degrades image/video 
quality severely

• Unavoidable under dim light 
circumstances
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Camera shake (Camera motion blur)

Out of focus (Defocus blur) Combinations (vibration & motion, …)

Object movement (Object motion blur)

Various Kinds of Blurs
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Object Motion Blur
• Caused by object motions during exposure time
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Optical Lens Blur 
• Caused by lens aberration

10



Camera Motion Blur
• Caused by camera shakes during 

exposure time
• Motion can be represented as a 

camera trajectory
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Defocus Blur
• Caused by the limited depth of field of a camera

More on coded photography part 12



Deblurring?
• Remove blur and restore a latent sharp image

from a given blurred image find its latent sharp image
13



Why is it important?
• Image/video in our daily lives

• Sometimes a retake is difficult!
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Why is it important?
• Strong demand for high quality deblurring

CCTV, car black box Medical imaging Aerial/satellite 
photography

Robot vision
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from a given blurred image find its latent sharp image

Deblurring
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=     *

Blurred image Latent sharp image

Blur kernel or 
Point Spread 

Function (PSF)

Convolution 
operator

Commonly Used Blur Model
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Blurred image Latent sharp image

Blur kernel or 
Point Spread 

Function (PSF)

Convolution 
operator

Blind Deconvolution
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Blurred image Latent sharp image

Blur kernel or 
Point Spread 

Function (PSF)

Convolution 
operator

Non-blind Deconvolution
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Uniform blur
• Every pixel is blurred in the 

same way
• Convolution based blur model

Uniform vs. Non-uniform Blur
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Non-uniform blur
• Spatially-varying blur
• Pixels are blurred differently
• More faithful to real camera 

shakes

Uniform vs. Non-uniform Blur
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Camera shake (Camera motion blur)

Out of focus (Defocus blur) Combinations (vibration & motion, …)

Object movement (Object motion blur)

Most Blurs Are Non-Uniform
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Blind deconvolution

23
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=     *

Blurred image Latent sharp image

Blur kernel or 
Point Spread 

Function (PSF)

Convolution 
operator

Blind Deconvolution (Uniform Blur)
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Possible solutions
• Infinite number of solutions 

satisfy the blur model

• Analogous to

100 = $
2×50
4×25

3×33.333…

*

*

*

=
Blurred image

Key challenge: Ill-posedness!
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• Parametric blur kernels
• [Yitzhakey et al. 1998], [Rav-Acha and Peleg 2005], …

• Directional blur kernels defined by (length, angle)

Early approaches

*      à
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Early approaches
• But real camera shakes are much more complex
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Early approaches
• Parametric blur kernels

• Very restrictive assumption
• Often failed, poor quality

Blurred image Latent sharp image

Y
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l. 
19

98
]
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More recent work
• Some successful approaches have been introduced…

• [Fergus et al. SIGGRAPH 2006], [Shan et al. SIGGRAPH 2008],
[Cho and Lee, SIGGRAPH Asia 2009], …
• More realistic blur kernels
• Better quality
• More robust

• Commercial software
• Photoshop CC Shake reduction
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Popular Approaches
• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based
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Popular Approaches
• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

• Deep-Learning based (not now, later on)
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Popular Approaches
• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

• [Shan et al. SIGGRAPH 2008],
[Krishnan et al. CVPR 2011],
[Xu et al. CVPR 2013], …

• Seek the most probable solution, 
which maximizes a posterior 
distribution

• Easy to understand
• Convergence problem
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Maximize a joint posterior probability with respect to ! and "

MAP based Approaches

Blur kernel k
Latent image l Blurred image b

Posterior distribution

p(k, l |b)
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Bayes rule:

MAP based Approaches

Posterior distribution Likelihood Prior on l Prior on k

Blur kernel k
Latent image l Blurred image b

p(k, l |b)   ∝ p(b|l,k) p(l) p(k)
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Negative log-posterior:

MAP based Approaches

Regularization on 
blur kernel kData fitting term

Regularization on 
latent image l

Negative log-posterior:

MAP based Approaches

െ log  ݇, ݈ ܾ ֜ െ log  ܾ ݇, ݈ െ log  ݈ െ log  ݇
֜ ݇ כ ݈ െ ܾ ଶ + ߩ ݈ + ߩ ݇

Regularization on 
blur kernel ݇Data fitting term Regularization on 

latent image ݈
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Negative log-posterior:

Alternatingly minimize the energy function w.r.t. k and l

MAP based Approaches

Regularization on 
blur kernel kData fitting term

Regularization on 
latent image l

Negative log-posterior:

MAP based Approaches

െ log  ݇, ݈ ܾ ֜ െ log  ܾ ݇, ݈ െ log  ݈ െ log  ݇
֜ ݇ כ ݈ െ ܾ ଶ + ߩ ݈ + ߩ ݇

Regularization on 
blur kernel ݇Data fitting term Regularization on 

latent image ݈
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Input blurred 
image b

Latent image l
estimation

- maximizes 
posterior w.r.t. l

Blur kernel k
estimation

- maximizes 
posterior w.r.t. k

Output l

MAP based Approaches
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MAP based Approaches
• Chan and Wong, TIP 1998
• Total variation based priors for estimating a parametric blur kernel

• Shan et al. SIGGRAPH 2008
• First MAP based method to estimate a nonparametric blur kernel

• Krishnan et al. CVPR 2011
• Normalized sparsity measure, a novel prior on latent images

• Xu et al. CVPR 2013
• L0 norm based prior on latent images
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Shan et al. SIGGRAPH 2008
• Carefully designed likelihood & priors

Natural image 
statistics based 

prior on l
Likelihood based on  

intensities & derivatives
Kernel statistics 
based prior on k

Shan et al. SIGGRAPH 2008
• Carefully designed likelihood & priors

 ݇, ݈ ܾ ן  ܾ ݈, ݇  ݈  ݇

Natural image 
statistics based 

prior on ݈

Likelihood based on  
intensities & derivatives

Kernel statistics 
based prior on ݇
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Shan et al. SIGGRAPH 2008
• A few minutes for a small image

• High-quality results
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Shan et al. SIGGRAPH 2008
• Convergence problem

• Often converge to the no-blur solution [Levin et al. CVPR 2009]
• Natural image priors prefer blurry images

Shan et al. SIGGRAPH 2008 Fergus et al. SIGGRAPH 2006
(variational Bayesian based)
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Popular Approaches
• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

• [Fergus et al. SIGGRAPH 2006],
[Levin et al. CVPR 2009],
[Levin et al. CVPR 2011], …

• Not seek for one most probable 
solution, but consider all possible 
solutions

• Theoretically more robust
• Slow

42



Variational Bayesian
• MAP
• Find the most probable 

solution
• May converge to a 

wrong solution

• Variational Bayesian
• Approximate the 

underlying distribution 
and find the mean
• More stable
• Slower

Variational
Bayes

Maximum 
a-Posteriori (MAP)

Pixel intensity

S
co

re

MAP v.s. Variational Bayes
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Variational Bayesian
• Fergus et al. SIGGRAPH 2006

• First approach to handle non-parametric blur kernels

• Levin et al. CVPR 2009
• Show that variational Bayesian approaches can perform more robustly than 

MAP based approaches

• Levin et al. CVPR 2010
• EM based efficient approximation to variational Bayesian approach
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Fergus et al. SIGGRAPH 2006
• Posterior distribution

Fergus et al. SIGGRAPH 2006
• Posterior distribution

 ݇, ݈ b ן  ܾ ݇, ݈  ݈  ݇
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Fergus et al. SIGGRAPH 2006
• Find an approximate distribution by minimizing Kullback-Leibler (KL) 

divergence

• cf MAP based approach:

Fergus et al. SIGGRAPH 2006
– Find an approximate distribution by minimizing Kullback-Leibler (KL) 

divergence

– cf) MAP based approach:

argminݍ)ܮܭ ݇ ݍ ݈ ݍ ଶିߪ  ݇, ݈ ܾ
approximate distributions for blur kernel ݇, 

latent image ݈, and noise variance ߪଶ

ݍ ݇ , ݍ ݈ , ݍ ଶିߪ

argmin
,  ݇, ݈ b
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Fergus et al. SIGGRAPH 2006
– Find an approximate distribution by minimizing Kullback-Leibler (KL) 

divergence

– cf) MAP based approach:

argminݍ)ܮܭ ݇ ݍ ݈ ݍ ଶିߪ  ݇, ݈ ܾ
approximate distributions for blur kernel ݇, 

latent image ݈, and noise variance ߪଶ

ݍ ݇ , ݍ ݈ , ݍ ଶିߪ

argmin
,  ݇, ݈ b
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Fergus et al. SIGGRAPH 2006
• First method to estimate a nonparametric blur kernel

• Complex optimization

• Slow: more than an hour for a small image
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Popular Approaches
• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

• [Cho & Lee. SIGGRAPH Asia 2009],
[Xu et al. ECCV 2010],
[Hirsch et al. ICCV 2011], …

• Explicitly try to recover sharp edges 
using heuristic image filters

• Fast
• Proven to be effective in practice,

but hard to analyze because of 
heuristic steps
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Edge Prediction based Approaches
• Joshi et al. CVPR 2008

• Proposed sharp edge prediction to estimate blur kernels
• No iterative estimation, limited to small scale blur kernels

• Cho & Lee, SIGGRAPH Asia 2009
• Proposed sharp edge prediction to estimate large blur kernels
• Iterative framework, very fast

• Cho et al. CVPR 2010
• Applied Radon transform to estimate a blur kernel from blurry edge profiles
• Small scale blur kernels

• Xu et al. ECCV 2010
• Proposed a prediction scheme based on structure scales as well as gradient magnitudes

• Hirsch et al. ICCV 2011
• Applied a prediction scheme to estimate spatially-varying camera shakes
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Cho & Lee, SIGGRAPH Asia 2009
• Key idea: blur can be estimated from a few edges
èNo need to restore every detail for kernel estimation

Blurred image Latent image with only a few 
edges and no texture
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Input Simple
deconvolution

Fast
Kernel 

Estimation

OutputPrediction

Quickly restore important edges
using simple image filters

Cho & Lee, SIGGRAPH Asia 2009
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Input Simple
deconvolution

Fast
Kernel 

Estimation

OutputPrediction

Quickly restore important edges
using simple image filters

Quickly restore important edges
using simple image filters
Do not need complex priors for the latent image and the blur kernel

è Significantly reduce the computation time

Cho & Lee, SIGGRAPH Asia 2009
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Fast but low quality deconvolution Prediction

Updated kernelPrevious kernel

Cho & Lee, SIGGRAPH Asia 2009
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Prediction
Simple & fast image filtering operations

Thresholding
gradients

Bilateral filtering &
Shock filtering

Fast but low-quality 
deconvolution

Visualized by Poisson 
image reconstruction

Cho & Lee, SIGGRAPH Asia 2009
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Blurry input Deblurring result Blur kernel

• State of the art results
• A few seconds
• 1Mpix image
• in C++

Cho & Lee, SIGGRAPH Asia 2009
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Convolution based Blur Model
• Uniform and spatially invariant blur
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Real Camera Shakes: Spatially Variant!
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x & y translational
camera shakes

Planar scene

Uniform Blur Model Assumes
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6D real camera motion

Different depths

Real Camera Shakes
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Clean

Severe artifacts

Non-uniformly blurred image

Uniform deblurring result

Real Blurred Image
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Pixel-wise Blur Model
• Dai and Wu, CVPR 2008

• Estimate blur kernels for every pixel from a single image
• Severely ill-posed
• Parametric blur kernels
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Pixel-wise Blur Model
• Tai et al. CVPR 2008

• Hybrid camera to capture hi-res image & low-res video
• Estimate per-pixel blur kernels using low-res video

time

Hi-res. 
image

Low-res. 
video
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Patch-wise Blur Model
• Sorel and Sroubek, ICIP 2009

• Estimate per-patch blur kernels from a blurred image and an underexposed 
noisy image
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Patch-wise Blur Model
• Hirsch et al. CVPR 2010
• Efficient filter flow (EFF) framework
• More accurate approximation than the naïve patch-wise blur model

• Harmeling et al. NIPS 2010
• Estimate per-patch blur kernels based on EFF from a single image

64



Patch-wise Blur Model
• Approximation

• More patches à more accurate

• Computationally efficient
• Patch-wise uniform blur
• FFTs can be used

• Physically implausible blurs
• Adjacent blur kernels cannot be

very different from each other
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Summary
• Different blur models

• More realistic than uniform blur model

• Still approximations
• Real camera motions: 6 DoF + more (zoom-in, depth, etc…)

• High dimensionality
• Less stable & slower than uniform blur model

Patch based
Efficient but no global constraint

Projective Motion Path
Globally consistent but inefficient

Hybrid
Efficient & globally consistent
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Remaining Challenges
• All methods still fail quite 

often

• Noise

• Outliers

• Non-uniform blur

• Limited amount of edges

• Speed…

• Etc…
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Non-blind deconvolution

68
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=     *

Blurred image Latent sharp image

Blur kernel Convolution 
operator

Non-blind Deconvolution (Uniform Blur)
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object distance S sensor distance S’

1
"! +

1
" =

1
%

Lens imperfections
• Ideal lens: A point maps to a point at a certain plane.
• Real lens: A point maps to a circle that has non-zero minimum radius among all planes.
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object distance S sensor distance S’

What is the effect of this on the images we capture?

1
"! +

1
" =

1
%

• Ideal lens: A point maps to a point at a certain plane.
• Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

Lens imperfections
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object distance S sensor distance S’

• Ideal lens: A point maps to a point at a certain plane.
• Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

Shift-invariant blur.

blur 
kernel

1
"! +

1
" =

1
%

Lens imperfections
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What causes lens imperfections?

Lens imperfections
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What causes lens imperfections?
• Aberrations. 

• Diffraction.

large 
aperture

small 
aperture

(Important note: Oblique 
aberrations like coma and 
distortion are not shift-
invariant blur and we do 
not consider them here!)

Lens imperfections
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object distance S sensor distance S’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

diffraction-limited 
PSF of a circular 

aperture 
(Airy pattern)

blur kernel

1
"! +

1
" =

1
%

Lens as an optical low-pass filter
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object distance S sensor distance S’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

diffraction-limited 
PSF of a circular 

aperture 
(Airy pattern)

blur kernel

1
"! +

1
" =

1
%

Lens as an optical low-pass filter
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We will assume that we can use:
• Fraunhofer diffraction (i.e., distance of sensor and aperture is large relative to 

wavelength).
• incoherent illumination (i.e., the light we are measuring is not laser light).

We will also be ignoring various scale factors. Different functions are not drawn to 
scale.

Some basics of diffraction theory 
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aperture: 
rect 4

Fourier tr
ansform

autocorrelation

coherent point spread 
function: sinc 4

optical transfer 
function: tent 4

?

?
The 1D case

Some basics of diffraction theory 
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aperture: 
rect 4

Fourier tr
ansform

autocorrelation

coherent point spread 
function: sinc 4

optical transfer 
function: tent 4

?
The 1D case

Some basics of diffraction theory 
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aperture: 
rect 4

incoherent point spread 
function: sinc# 4

Fourier tr
ansform

autocorrelation

coherent point spread 
function: sinc 4

optical transfer 
function: tent 4

?

Fourier tr
ansform

square

The 1D case

Some basics of diffraction theory 
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aperture: 
rect 4

incoherent point spread 
function: sinc# 4

Fourier tr
ansform

autocorrelation

coherent point spread 
function: sinc 4

optical transfer 
function: tent 4

Fourier tr
ansform

square

why do we get the 
same result?

The 1D case

Some basics of diffraction theory 
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aperture: 
rect 4

incoherent point spread 
function: sinc# 4

Fourier tr
ansform

autocorrelation

coherent point spread 
function: sinc 4

optical transfer 
function: tent 4

Fourier tr
ansform

square

what happens if we 
increase the aperture 

size?
The 1D case

Some basics of diffraction theory 
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aperture: 
rect 4/2

incoherent point spread 
function: sinc# 24

Fourier tr
ansform

autocorrelation Fourier tr
ansform

square

coherent point spread 
function: sinc 24

optical transfer 
function: tent 4/2The 1D case

Some basics of diffraction theory 
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aperture: 
rect 4/10

incoherent point spread 
function: sinc# 104

square

coherent point spread 
function: sinc 104

optical transfer 
function: tent 4/10The 1D case

Fourier tr
ansform

autocorrelation Fourier tr
ansform

… point spread function 
becomes smaller

As the aperture size 
increases…

Some basics of diffraction theory 
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incoherent point spread 
function

optical transfer 
functionThe 2D case

autocorrelation Fourier tr
ansform

… point spread function 
becomes smaller

As the aperture size 
increases…

aperture

Some basics of diffraction theory 
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incoherent point spread 
function

optical transfer 
functionThe 2D case

autocorrelation Fourier tr
ansform

… point spread function 
becomes smaller

As the aperture size 
increases…

aperture

Some basics of diffraction theory 
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incoherent point spread 
function

optical transfer 
functionThe 2D case

autocorrelation Fourier tr
ansform

… point spread function 
becomes smaller

As the aperture size 
increases…

aperture

Why do we prefer circular 
apertures?

Some basics of diffraction theory 
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incoherent point spread 
function

optical transfer 
functionThe 2D case

autocorrelation Fourier tr
ansform

… point spread function 
becomes smaller

As the aperture size 
increases…

aperture

Other shapes produce very 
anisotropic blur.

Some basics of diffraction theory 
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object distance S sensor distance S’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

diffraction-limited 
PSF of a circular 

aperture 
(Airy pattern)

blur 
kernel

optical transfer 
function (OTF)

aperture

Lens as an optical low-pass filter
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image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

i * k = b

Lens as an optical low-pass filter
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image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

i * k = b

If we know b and k, can we recover i?

Lens as an optical low-pass filter
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=     *

Blurred image Latent sharp image

Blur kernel Convolution 
operator

Non-blind Deconvolution (Uniform Blur)
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Non-blind Deconvolution
• Key component in many deblurring systems

• For example, in MAP based blind deconvolution:

Input blurred 
image b

Latent image l
estimation

Blur kernel k
estimation

Output l

Non-blind deconvolution There can be additional final non-blind 
deconvolution for the final output

93



§ Wiener filter
§ Richardson-Lucy deconvolution
§ Rudin et al. Physica 1992
§ Bar et al. IJCV 2006
§ Levin et al. SIGGRAPH 2007
§ Shan et al. SIGGRAPH 2008
§ Yuan et al. SIGGRAPH 2008
§ Harmeling et al. ICIP 2010
§ etc…

Non-blind Deconvolution
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Ill-Posed Problem
• Even if we know the true blur kernel, we cannot restore the latent 

image perfectly, because:

• Loss of high-freq info & noise ≈ denoising & super-resolution

= * +

Blur destroys
High-freq info Noise
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• Deconvolution amplifies noise as 
well as sharpens edges

• Ringing artifacts
• Inaccurate blur kernels, outliers 

cause ringing artifacts

Ill-Posed Problem
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Classical Methods
• Popular methods
• Wiener filtering

• Richardson-Lucy deconvolution

• Constrained least squares

• Matlab Image Processing Toolbox
• deconvwnr, deconvlucy, deconvreg

• Simple assumption on noise 
and latent images
• Simple & fast

• Prone to noise & artifacts
97



Natural Image Statistics
• Non-blind deconvolution: ill-posed problem

• We need to assume something on the latent image to constrain the 
problem.

= * +
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Natural Image Statistics
• Natural images have a heavy-tailed distribution on gradient magnitudes

• Mostly zero & a few edges
• Levin et al. SIGGRAPH 2007, Shan et al. SIGGRAPH 2008,

Krishnan & Fergus, NIPS 2009
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Natural Image Statistics
• Levin et al. SIGGRAPH 2007

• Propose a parametric model for natural image priors based on image 
gradients

Lo
g 

pr
ob

xx

Gaussian: -x2

Laplacian: -|x|
-|x|0.5

-|x|0.25

Derivative histogram from a 
natural image

Parametric models

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

– Propose a parametric model for natural image priors based on image 
gradients

Lo
g 

pr
ob

xx

Gaussian: -x2

Laplacian: -|x|
-|x|0.5

-|x|0.25

Derivative histogram from a 
natural image

Parametric models

Proposed prior

log ݔ = െ


ݔߘ ఈ

where:
• image :ݔ
• ߙ ,model parameter :ߙ < 1
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Natural Image Statistics
• Levin et al. SIGGRAPH 2007

_
2

+

_ +
2

?

?

High 

Low 
Equal convolution error

*

*

Data term Prior

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

݈ = argmin


݇ כ ݈ െ ܾ ଶ + ߣ σ ݈ߘ ఈ ߙ < 1

_ 2
+

_ +
2

?

?

High 

Low 
Equal convolution error

*

*

Data term Prior
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Natural Image Statistics
• Levin et al. SIGGRAPH 2007

Input Richardson-Lucy Gaussian prior

“spread” gradients

Sparse prior

“localizes” gradients

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

Input Richardson-Lucy Gaussian prior

“spread” gradients

Sparse prior

“localizes” gradients




݈ߘ ଶ 


݈ߘ .଼
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High-order Natural Image Priors
• Patches, large neighborhoods, …

• Effective for various kinds of image restoration problems
• Denoising, inpainting, super-resolution, deblurring, …
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High-order Natural Image Priors
• Schmidt et al. CVPR 2011

• Fields of Experts

• Zoran & Weiss, ICCV 2011
• Trained Gaussian mixture model for natural image patches

• Schuler et al. CVPR 2013
• Trained Multi-layer perceptron to remove artifacts and to restore sharp 

patches

• Schmidt et al. CVPR 2013
• Trained regression tree fields for 5x5 neighborhoods
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High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

• Gaussian Mixture Model (GMM) learned from natural images

Natural images Collected patches GMM

Collect
patches K-means
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High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

• Given a patch, we can compute its likelihood based on the GMM.
• Deconvolution can be done by solving:

High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

– Given a patch, we can compute its likelihood based on the GMM.
– Deconvolution can be done by solving:

argmin


݇ כ ݈ െ ܾ ଶ െ ߣ


log ݈

Log-likelihood of a patch ݈ at ݅-th pixel 
based on GMM
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High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

Denoising Deblurring

Blurred image Krishnan & Fergus
PSNR: 26.38

Zoran & Weiss
PSNR: 27.70
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Ringing Artifacts
• Wave-like artifacts around strong edges

• Caused by
• Inaccurate blur kernels
• Nonlinear response 

curve
• Etc…
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• Noise
• High-freq
• Independent and identical 

distribution
• Priors on image gradients work well

• Ringing
• Mid-freq
• Spatial correlation
• Priors on image gradients are not 

very effective

Ringing Artifacts
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Ringing Artifacts
• Yuan et al. SIGGRAPH 2007
• Residual deconvolution & de-ringing

• Yuan et al. SIGGRAPH 2008
• Multi-scale deconvolution framework based on residual deconvolution

Blurred image Richardson-Lucy Yuan et al. SIGGRAPH 2008
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Blurred image Guide image Residual deconvolution result 
with less ringing artifacts

• Relatively accurate edges, but less details
• Obtained from a deconvolution result from a smaller scale

Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]
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*-

Deconvolution

+

Blurred image Guide image Residual blur

Guide image Detail layer Result

Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]
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• Residual deconvolution

Blurred image Deblurred image

Residual blur Detail layer = 
deblurred residual

Guide image
+ detail layer

Severe ringing

Less ringing
Dec

on
vo

lut
ion

Res
idu

al 

de
co

nv
olu

tio
n

Guide image

Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]
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Progressive Inter-scale & Intra-scale 
Deconvolution [Yuan et al. SIGGRAPH 2008]

• Progressive inter-scale & intra-scale deconvolution
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Blurred image Richardson-Lucy TV regularization

Levin et al. SIGGRAPH 2007 Wavelet regularization Yuan et al. SIGGRAPH 2008
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Outliers
• A main source of severe ringing artifacts

Blurred image with outliers Deblurring result
[Levin et al. SIGGRAPH 2007]
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Outliers
• Saturated pixels caused by limited dynamic range of sensors

Incoming light to sensors

C
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a 

re
sp

on
se

Dynamic range 
of a camera

Information 
loss!

Blurred image [Levin et al. 2007]
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Outliers
• Hot pixels, dead pixels, compression artifacts, etc…

Hot pixel
Blurred image with outliers [Levin et al. 2007]
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Outlier Handling

Latent image

l
Blurred image

b
Gaussian noise 

n
Motion blur

k ∗ l

Outlier Handling
• Most common blur model:

ܾ = ݇ כ ݈ + ݊
Equivalent to

Latent image
݈

Blurred image
ܾ

Gaussian noise 
݊

Motion blur
݇ כ ݈

small amount of Gaussian noise
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Outlier HandlingOutlier Handling
• An energy function derived from this model:

ܧ ݈ = ݇ כ ݈ െ ܾ ଶ + (݈)ߩ

• More robust norms to outliers
– …ଵ-norm, other robust statisticsܮ

ܧ ݈ = ݇ כ ݈ െ ܾ ଵ + (݈)ߩ
– Bar et al. IJCV 2006, Xu et al. ECCV 2010, …

 :ଶ-norm based data termܮ
known to be vulnerable to 

outliers

Regularization term on 
a latent image ݈
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Outlier Handling
• )$-nnorm based data term
• Simple & efficient
• Effective on salt & pepper noise
• Not effective on saturated pixels

Outlier Handling
• ଵ-norm based data termܮ

– Simple & efficient
– Effective on salt & pepper noise
– Not effective on saturated pixels

ଶ-norm based data termܮ

ଵ-norm based data termܮ 146
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Figure 3: DeblurGAN generator architecture. DeblurGAN contains two strided convolution blocks with stride 1
2 , nine resid-

ual blocks [13] and two transposed convolution blocks. Each ResBlock consists of a convolution layer, instance normalization
layer, and ReLU activation.

for non-uniform blind deblurring based on a parametrized
geometric model of the blurring process in terms of the
rotational velocity of the camera during exposure. Simi-
larly Gupta et al. [12] made an assumption that the blur is
caused only by 3D camera movement. With the success
of deep learning, over the last few years, there appeared
some approaches based on convolutional neural networks
(CNNs). Sun et al. [36] use CNN to estimate blur ker-
nel, Chakrabarti [6] predicts complex Fourier coefficients
of motion kernel to perform non-blind deblurring in Fourier
space whereas Gong [9] use fully convolutional network to
move for motion flow estimation. All of these approaches
use CNN to estimate the unknown blur function. Recently,
a kernel-free end-to-end approaches by Noorozi [27] and
Nah [25] that uses multi-scale CNN to directly deblur the
image. Ramakrishnan et al. [29] use the combination of
pix2pix framework [16] and densely connected convolu-
tional networks [15] to perform blind kernel-free image
deblurring. Such methods are able to deal with different
sources of the blur.

2.2. Generative adversarial networks

The idea of generative adversarial networks, introduced
by Goodfellow et al. [10], is to define a game between two
competing networks: the discriminator and the generator.
The generator receives noise as an input and generates a
sample. A discriminator receives a real and generated sam-
ple and is trying to distinguish between them. The goal of
the generator is to fool the discriminator by generating per-
ceptually convincing samples that can not be distinguished
from the real one. The game between the generator G and
discriminator D is the minimax objective:

min
G

max
D

E
xvPr

[log(D(x))] + E
x̃vPg

[log(1�D(x̃))] (2)

where Pr is the data distribution and Pg is the model dis-
tribution, defined by x̃ = G(z), z v P (z), the input z

is a sample from a simple noise distribution. GANs are
known for its ability to generate samples of good percep-
tual quality, however, training of vanilla version suffer from

many problems such as mode collapse, vanishing gradi-
ents etc, as described in [33]. Minimizing the value func-
tion in GAN is equal to minimizing the Jensen-Shannon di-
vergence between the data and model distributions on x.
Arjovsky et al. [2] discuss the difficulties in GAN train-
ing caused by JS divergence approximation and propose
to use the Earth-Mover (also called Wasserstein-1) distance
W (q, p). The value function for WGAN is constructed us-
ing Kantorovich-Rubinstein duality [39]:

min
G

max
D2D

E
xvPr

[D(x)]� E
x̃vPg

[D(x̃)] (3)

where D is the set of 1�Lipschitz functions and Pg is once
again the model distribution The idea here is that critic value
approximates K ·W (Pr, P✓), where K is a Lipschitz con-
stant and W (Pr, P✓) is a Wasserstein distance. In this set-
ting, a discriminator network is called critic and it approx-
imates the distance between the samples. To enforce Lips-
chitz constraint in WGAN Arjovsky et al. add weight clip-
ping to [�c, c]. Gulrajani et al. [11] propose to add a gradi-
ent penalty term instead:

� E
x̃vPx̃

[(krx̃D(x̃)k2 � 1)2] (4)

to the value function as an alternative way to enforce the
Lipschitz constraint. This approach is robust to the choice
of generator architecture and requires almost no hyperpa-
rameter tuning. This is crucial for image deblurring as it al-
lows to use novel lightweight neural network architectures
in contrast to standard Deep ResNet architectures, previ-
ously used for image deblurring [25].

2.3. Conditional adversarial networks

Generative Adversarial Networks have been applied to
different image-to-image translation problems, such as su-
per resolution [20], style transfer [22], product photo gen-
eration [5] and others. Isola et al. [16] provides a detailed
overview of those approaches and present conditional GAN
architecture also known as pix2pix. Unlike vanilla GAN,

Figure 2: GoPro images [25] processed by DeblurGAN. Blurred – left, DeblurGAN – center, ground truth sharp – right.

We make three contributions. First, we propose a loss
and architecture which obtain state-of-the art results in mo-
tion deblurring, while being 5x faster than the fastest com-
petitor. Second, we present a method based on random
trajectories for generating a dataset for motion deblurring
training in an automated fashion from the set of sharp im-
age. We show that combining it with an existing dataset
for motion deblurring learning improves results compared
to training on real-world images only. Finally, we present a
novel dataset and method for evaluation of deblurring algo-
rithms based on how they improve object detection results.

2. Related work

2.1. Image Deblurring

The common formulation of non-uniform blur model is
the following:

IB = k(M) ⇤ IS +N, (1)

where IB is a blurred image, k(M) are unknown blur ker-
nels determined by motion field M . IS is the sharp latent
image, ⇤ denotes the convolution, N is an additive noise.
The family of deblurring problems is divided into two types:
blind and non-blind deblurring. Early work [37] mostly fo-
cused on non-blind deblurring, making an assumption that

the blur kernels k(M) are known. Most rely on the classi-
cal Lucy-Richardson algorithm, Wiener or Tikhonov filter
to perform the deconvolution operation and obtain IS esti-
mate. Commonly the blur function is unknown, and blind
deblurring algorithms estimate both latent sharp image IS

and blur kernels k(M). Finding a blur function for each
pixel is an ill-posed problem, and most of the existing algo-
rithms rely on heuristics, image statistics and assumptions
on the sources of the blur. Those family of methods ad-
dresses the blur caused by camera shake by considering blur
to be uniform across the image. Firstly, the camera motion
is estimated in terms of the induced blur kernel, and then
the effect is reversed by performing a deconvolution oper-
ation. Starting with the success of Fergus et al. [8], many
methods [44][42][28][3] has been developed over the last
ten years. Some of the methods are based on an iterative ap-
proach [8] [44], which improve the estimate of the motion
kernel and sharp image on each iteration by using paramet-
ric prior models. However, the running time, as well as the
stopping criterion, is a significant problem for those kinds
of algorithms. Others use assumptions of a local linearity
of a blur function and simple heuristics to quickly estimate
the unknown kernel. These methods are fast but work well
on a small subset of images.

Recently, Whyte et al. [40] developed a novel algorithm
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We present DeblurGAN, an end-to-end learned method

for motion deblurring. The learning is based on a condi-

tional GAN and the content loss . DeblurGAN achieves

state-of-the art performance both in the structural similarity

measure and visual appearance. The quality of the deblur-

ring model is also evaluated in a novel way on a real-world

problem – object detection on (de-)blurred images. The
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Deblur [25]. We also introduce a novel method for gen-

erating synthetic motion blurred images from sharp ones,

allowing realistic dataset augmentation.

The model, code and the dataset are available at

https://github.com/KupynOrest/DeblurGAN

1. Introduction

This work is on blind motion deblurring of a single pho-
tograph. Significant progress has been recently achieved
in related areas of image super-resolution [20] and in-
painting [45] by applying generative adversarial networks
(GANs) [10]. GANs are known for the ability to preserve
texture details in images, create solutions that are close to
the real image manifold and look perceptually convincing.
Inspired by recent work on image super-resolution [20] and
image-to-image translation by generative adversarial net-
works [16], we treat deblurring as a special case of such
image-to-image translation. We present DeblurGAN – an
approach based on conditional generative adversarial net-
works [24] and a multi-component loss function. Unlike
previous work we use Wasserstein GAN [2] with the gradi-
ent penalty [11] and perceptual loss [17]. This encourages
solutions which are perceptually hard to distinguish from
real sharp images and allows to restore finer texture details
than if using traditional MSE or MAE as an optimization
target.

Figure 1: DeblurGAN helps object detection. YOLO [30]
detections on the blurred image (top), the DeblurGAN re-
stored (middle) and the sharp ground truth image from the
GoPro [25] dataset.
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Fast adaption: ~3mins@1024*768 pixels

Lens #1 Lens #2 Lens #N

Figure 2: The basic idea of building fast and high qual-
ity lens aberration correction model, via pre-training a base
model and fast adapting to different lenses.

convolution and network based refinement. This way the
network is capable to handle various degeneration kernels.

2.3. Plug-and-Play algorithms

Another trending way to utilize PSF-awareness is plug-
and-play(PnP) [22, 20]. A straightforward way is replacing
the general or handcraft prior with a learned deep generative
model [18] solve the optimization problem using gradient
decent. To avoid the heavy computational load of track-
ing the network gradient, the deep network can also serves
as a proximal operator, and the image restoration problem
is solved by iteratively running model-based optimization
and deep network projection. This modeling has shown
promising results in linear inverse problems[2], for image
super-resolution [39], snapshot compressive imaging [34]
and high-spectral imaging [9]. Our work also follows this
formulation.

3. Method

In this section, we first mathematically formulate the lens
aberration model and then propose our deep-prior based ap-
proach for optical aberration correction.

3.1. Problem formulation

As mentioned before, lens aberration can be interpreted
as non-uniform channel-wise blur as the PSF varies both
spatially and spectrally (i.e., RGB channel). Thanks to the

fact the neighbouring PSFs are highly correlated, we can
approximate the non-uniform PSF as patch-wise uniform.
For each small image patch p at channel c, the recorded
degraded image patch yc,p and the latent clear patch xc,p is
related by

yc,p = kc,p ⌦ xc,p + nc,p, (1)

where kc,p is the corresponding PSF (blur kernel), nc,p is
the noise and ⌦ denotes the 2D convolution. For simplic-
ity, we will drop this c index if we consider ⌦ is carried
channel-wisely.

To solving Eq. (1), a prior term is necessary to constrain
the space of x. This leads to

x = argmin
x

X

p

kkp ⌦ xp � ypk22 + ��(x), (2)

where the first term enforces the data term residual and the
second one �(x) denotes the prior(statistical distribution)
of x.

3.2. Data/Prior splitting

We follow [9, 4, 39] to use Half-Quadratic Splitting
(HQS) to solve Eq. (2). By introducing an auxiliary vari-
able z, Eq. (2) can be re-modeled as

argmin
x,z

X

p

kkp ⌦ zp � ypk22 + ��(x) + µkz� xk22, (3)

which can be solved by performing iterations of the follow-
ing sub-problems.

zt  min
z

X

p

kkp ⌦ zp � ypk22 + µkz� xt�1k22, (4)

xt  min
x

µkzt � xk22 + ��(x). (5)

Eq. (4) can be approximately solved in a closed form
under circular boundary conditions as

ztp = F�1

 
F(k)F(yp) + µk

pF(xt�1
p )

F(k)F(k) + µk
p

!
, (6)

where F(·) denotes the Fast Fourier Transform (FFT),
F�1(·) denotes the inverse FFT, and F(·) denotes the com-
plex conjugate of FFT. Notice that although we use a sin-
gle µ notation in Eq. (6), we use different µt

p for differ-
ent patches, channels and iterations when implementing the
patch-wise deconvolution.

For Eq. (5), if we absorb µt
p into �, it is a problem with

ztp,�
t
p as input and xt as output. We treat �(·) as a prox-

imal operator and directly learn a deep projection network
P similar to [2, 39, 9].

xt = P(ztp,�
t
p). (7)

Note that we have omitted the chop and assemble opera-
tions between x, z and {xp}, {zp}
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Universal and Flexible Optical Aberration Correction Using

Deep-Prior Based Deconvolution

Xiu Li1*, Jinli Suo1, Weihang Zhang1, Xin Yuan2, Qionghai Dai1

1Tsinghua University, 2Westlake University

Abstract

High quality imaging usually requires bulky and expen-

sive lenses to compensate geometric and chromatic aberra-

tions. This poses high constraints on the optical hash or

low cost applications. Although one can utilize algorithmic

reconstruction to remove the artifacts of low-end lenses, the

degeneration from optical aberrations is spatially varying

and the computation has to trade off efficiency for perfor-

mance. For example, we need to conduct patch-wise opti-

mization or train a large set of local deep neural networks to

achieve high reconstruction performance across the whole

image. In this paper, we propose a PSF aware deep net-

work, which takes the aberrant image and PSF map as

input and produces the latent high quality version via in-

corporating deep priors, thus leading to a universal and

flexible optical aberration correction method. Specifically,

we pre-train a base model from a set of diverse lenses and

then adapt it to a given lens by quickly refining the param-

eters, which largely alleviates the time and memory con-

sumption of model learning. The approach is of high ef-

ficiency in both training and testing stages. Extensive re-

sults verify the promising applications of our proposed ap-

proach for compact low-end cameras. The code is available

at https://github.com/leehsiu/UABC

1. Introduction

Optical aberration is one of the most common degener-
ation in real lens-based imaging systems. Due to the de-
viation from ideal thin-lens model, the simple/single lens
elements suffer from chromatic, spherical aberration and
coma aberrations, and degenerate the imaging quality sig-
nificantly. To cancel out these artifacts, modern camera
lenses are usually made of a complex combination of sev-
eral (even dozens of) lens elements with carefully designed
parameters (aka. lens prescription). In a nutshell, exist-
ing techniques achieve high imaging quality via such com-

*lixiu15@mails.tsinghua.edu.cn

(a) (b)

(c)

Figure 1: One example of computationally reconstructing
high quality image with a simple lens. (a) A camera with
a simple double glued lens (Thorlabs, AC254-075-A-ML).
(b) The calibrated PSF of the camera in (a). (c) The input
degenerated image (upper row) and our reconstruction re-
sult (bottom row).

plex design, at the expense of high cost, bulky weight and
inevitable lens flare. With the rapid development of large
pixel count digital sensors (e.g. 100 mega-pixel scale), ef-
fective compensation of lens aberration is highly desired.

To achieve light-weighted and low-cost high-quality
imaging, computational optical aberration correction has
been exploited during the past decades. Different from
advanced optical design, computational methods employ a
simple lens for imaging and remove the aberration after-
wards with algorithms. Mathematically, the lens aberra-
tion can be formulated as convolution with spatially varying
kernels, and the compensation is conducted by deconvolu-
tion with the assistance of image priors. These computa-
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(peak signal-to-noise-ratio) metric. Unfortunately, PSNR
and other distortion metrics are well-known to only partially
correspond to human perception [5, 17, 19] and can actually
lead to algorithms with visibly lower quality in the recon-
structed images. To alleviate this problem, recent works
introduced additional loss terms [17,21,34,44,45] that seek
to improve the quality of generated images under metrics
that represent human perception more reliably. Training net-
works to go from corrupted images to a known ground truth
in a supervised way belongs in the family of end-to-end meth-
ods [50]. These methods perform very well in-distribution,
but can be quite fragile to distributional shifts or changes in
the corruption process [25, 50].

A second body of work has focused on using deep gener-
ative models to solve inverse problems [6]. For deblurring,
Generative Adversarial Networks (GANs) [22] have been
successfully applied with competitive performance [3,34,35].
GAN-based restoration methods train the deblurring network
with an adversarial loss to make the restored images more
perceptually plausible. However the proposed methods so far
have been deterministic, and adversarial losses often intro-
duce artifacts not present in the original clean image, leading
to large distortion (e.g. [42] for super-resolution).

In this work, we adopt a different perspective and view
deblurring as a conditional generative modeling task, where
we seek to generate diverse samples from the posterior dis-
tribution. Specifically, we introduce a “predict-and-refine”
conditional diffusion model, where a deterministic data-
adaptive predictor is jointly trained with a stochastic sampler
that refines the output of the said predictor (see Fig. 2).

Our predict-and-refine approach enables more efficient
sampling compared to the standard diffusion model. This for-
mulation also naturally leads to a stochastic model capable
of producing realistic images without sacrificing pixel-level
distortion. To the best of our knowledge, this is the first blind
deblurring technique that leverages a deep generative model
and is capable of producing diverse samples.

Overall, our method produces a variety of plausible and
photo-realistic results, while achieving state-of-the-art per-
formance under many quantitative metrics in terms of both
distortion and perceptual quality across multiple standard
datasets. In addition, by aggregating a different number of
generated deblurred samples, our framework allows us to
conveniently traverse the Perception-Distortion curve [5, 19]
as shown in Fig. 1, without any expensive retraining or
finetuning. These results show clear benefits of stochas-
tic diffusion-based methods for deblurring and challenge
the currently dominant strategy of producing deterministic
reconstructions.

2. Related Work
The goal of image deblurring is to generate a plausible

reconstruction of the unobserved sharp, clean image x from a
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Figure 2. Diagram describing our dual-network architecture. The
initial predictor produces the deterministic candidate for the de-
noiser network, which then models the residual.

blurry input y. Deblurring techniques differ in what they aim
to obtain. For example, one could try to directly sample from
the posterior p(x | y). Another viable option is to compute a
point-estimate such as the conditional mean E [x | y] or the
maximum a posteriori estimate argmaxx p(x | y).
Deblurring through point estimates. Traditional deblur-
ring methods formulate the problem as one of blind decon-
volution [9,10,16,18,28,36,38,58,72,76]. In this setup, the
blur is generally modeled as a noisy linear operator acting on
the clean image. While the exact values of the blur operator
are not assumed to be known, one can enforce some prior
distribution on the blur and the sharp image and try to find
the most likely solution.

Alternatively, many recent methods adopt an end-to-end
approach where a deep neural network is trained to directly
produce a point estimate [8, 11, 14, 20, 34, 35, 48, 52, 53,
62, 64, 65, 71]. These methods generally rely on pairs of
blurry-sharp images as training data and cast the deblur-
ring problem as a supervised regression task. Much of the
efforts have gone into developing specialized network ar-
chitectures and loss functions to achieve better pixel-level
reconstruction metrics such as PSNR or SSIM [68]. For
example, MIMO-UNet [14] proposed an architecture that
facilitates information flow across different image resolu-
tions in a multi-scale U-Net [55]. Another work HINet [11]
introduced Half Instance Normalization [67], which can be
used as a building block for image restoration networks.
MPRNet [73] presented an improved multi-stage architec-
ture designed to incorporate both high-level global features
as well as local details.
Issue of regression to the mean. While the aforementioned
approaches lead to state-of-the-art PSNR, they share the
limitation that they can only produce a deterministic output.
This is at odds with the nature of blind image deblurring,
which is an inherently ill-posed inverse problem with mul-
tiple valid solutions for a single input. In fact, the current
trend of developing point-estimators that directly minimize
a distortion loss suffers from the problem of “regression to
the mean”. If there are multiple possible clean images that
correspond to the blurry input, the optimal reconstruction
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Today’s Lecture
• Deconvolution

• Sources of blur

• Blind deconvolution

• Non-blind deconvolution

• Coded photography
• The coded photography paradigm

• Dealing with depth blur

• Dealing with motion blur
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The coded photography paradigm
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• Optics capture something that is (close to) the final image.
• Computation mostly “enhances” captured image (e.g., deblur). 

optics computationcaptured image enhanced imagereal world
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Conventional photography



• Generalized optics encode world into intermediate representation.
• Generalized computation decodes representation into multiple images. 

generalized 
optics

generalized 
computation

coded representation 
of real world final image(s)real world

? ??

Can you think of 
any examples?
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• Color filter array encodes color into a mosaic.
• Demosaicing decodes color into RGB image. 

generalized 
optics

generalized 
computation

coded representation 
of real world final image(s)real world
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Early example: mosaicing



• Plenoptic camera encodes world into lightfield.
• Lightfield rendering decodes lightfield into refocused or multi-viewpoint images. 

generalized 
optics

generalized 
computation

coded representation 
of real world final image(s)real world
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Recent example: plenoptic camera



• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

non-blind deconvolution

blind deconvolution

conventional 
photography

flutter shutter, motion-invariant photo

coded aperture, focal sweep, lattice lens

coded 
photography
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Why are our images blurry?



• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

non-blind deconvolution

blind deconvolution

conventional 
photography

flutter shutter, motion-invariant photo

coded aperture, focal sweep, lattice lens

coded 
photography
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Why are our images blurry?



Dealing with depth blur: coded aperture
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object distance D focus distance D’

Point spread function (PSF): The blur kernel of a (perfect) lens at some out-of-focus depth.

blur kernel

What does the blur kernel depend on?
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Defocus blur



object distance D focus distance D’

Point spread function (PSF): The blur kernel of a (perfect) lens at some out-of-focus depth.

• Aperture determines shape of kernel.
• Depth determines scale of blur kernel.

blur kernel

136

Defocus blur



object distance D focus distance D’

PSF
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Depth determines scale of blur kernel



object distance D focus distance D’

PSF
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Depth determines scale of blur kernel



object distance D focus distance D’

PSF
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Depth determines scale of blur kernel



object distance D focus distance D’

PSF
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Depth determines scale of blur kernel



object distance D focus distance D’

PSF
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Depth determines scale of blur kernel



object distance D focus distance D’

PSF

142

Aperture determines shape of blur kernel



PSF

photo of aperture shape of aperture 
(optical transfer function, OTF)

blur kernel
(point spread function, PSF)

How do the OTF and PSF relate to each other?

What causes these lines?

143

Aperture determines shape of blur kernel



input defocused imagemeasured PSFs at different depths

How would you create an all in-focus image given the above? 

144

Removing depth defocus



input defocused image

measured PSFs at 
different depthsHow would you create an all in-focus image given the above? 

Defocus is local convolution with a depth-dependent kernel

*

*

*

=

=

=

depth 3

depth 2

depth 1
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Removing depth defocus



• Deconvolve each image patch with all kernels
• Select the right scale by evaluating the deconvolution results

*

*

*

=

=

=

-1

-1

-1

How do we 
select the 

correct 
scale?
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Removing depth defocus



Problem: With standard aperture, results at different scales look very similar.

?correct scale

Owrong scale

?correct scale
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Removing depth defocus

*

*

*

=

=

=

-1

-1

-1



Solution: Change aperture so that it is easier to pick the correct scale

*

*

*

=

=

=

-1

-1

-1

Pcorrect scale

Owrong scale

Owrong scale
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Coded aperture



149

Build your own coded aperture



150

Build your own coded aperture



object distance D focus distance D’

PSF
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Coded aperture changes shape of kernel



object distance D focus distance D’

PSF
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Coded aperture changes shape of kernel



153

Coded aperture changes shape of PSF



Image of a point light source

Captured ImageCaptured Image

Conventional 
Aperture

Coded 
Aperture
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New PSF preserves high frequencies
• More content available to help us 

determine correct depth
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Coded aperture changes shape of PSF



Input

156



All-focused             
(deconvolved)
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Ringing due to wrong scale estimation

158

Comparison between standard and coded aperture
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Comparison between standard and coded aperture



Refocusing 
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Refocusing 
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Refocusing 

162



163

Depth estimation



Input 
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All-focused                    
(deconvolved) 
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Refocusing 

166



Refocusing 
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Refocusing 

168



Depth estimation 

169



170

Any problems with using a coded aperture?



• We lose a lot of light due to blocking.

• The deconvolution becomes harder due to more diffraction/zeros in frequency domain.

• We still need to select correct scale.

171

Any problems with using a coded aperture?



Dealing with depth blur: focal sweep

172



varying in-focus distance

At every focus setting, objects at different 
depths are blurred by different PSF

173

The difficulty of dealing with depth defocus



varying in-focus distance

PSFs for object at depth 1

At every focus setting, objects at different 
depths are blurred by different PSF
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The difficulty of dealing with depth defocus



varying in-focus distance

PSFs for object at depth 1

PSFs for object at depth 2

At every focus setting, objects at different 
depths are blurred by different PSF
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The difficulty of dealing with depth defocus



varying in-focus distance

PSFs for object at depth 1

PSFs for object at depth 2

At every focus setting, objects at different 
depths are blurred by different PSF

As we sweep through focus 
settings, each point every object 

is blurred by all possible PSFs
176

The difficulty of dealing with depth defocus



varying in-focus distance

PSFs for object at depth 1

PSFs for object at depth 2

What is the effective 
PSF in this case?

Go through all focus 
settings during a single 

exposure
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Focal sweep



varying in-focus distance

Anything special 
about these effective 

PSFs?

⎰ dt =  

⎰ dt =  

effective PSF for object at depth 1

effective PSF for object at depth 2

Go through all focus 
settings during a single 

exposure
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Focal sweep



The effective PSF is:
1. Depth-invariant – all points are blurred the same way regardless of depth.
2. Never sharp – all points will be blurry regardless of depth.

What are the implications of this?
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Focal sweep



The effective PSF is:
1. Depth-invariant – all points are blurred the same way regardless of depth.
2. Never sharp – all points will be blurry regardless of depth.

What are the implications of this?
1. The image we capture will not be sharp anywhere; but
2. We can use simple (global) deconvolution to sharpen parts we want

1. Can we estimate depth from this?
2. Can we do refocusing from this?

180

Focal sweep



The effective PSF is:
1. Depth-invariant – all points are blurred the same way regardless of depth.
2. Never sharp – all points will be blurry regardless of depth.

What are the implications of this?
1. The image we capture will not be sharp anywhere; but
2. We can use simple (global) deconvolution to sharpen parts we want

1. Can we estimate depth from this?
2. Can we do refocusing from this?

Depth-invariance of the PSF means 
that we have lost all depth information

181

Focal sweep



182

How can you implement focal sweep?



Use translation stage to move sensor relative 
to fixed lens during exposure

Rotate focusing ring to move lens relative 
to fixed sensor during exposure

183

How can you implement focal sweep?



184

Comparison of different PSFs
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Depth of field comparisons



186

Any problems with using focal sweep?



• We have moving parts (vibrations, motion blur).

• Perfect depth invariance requires very constant speed.

• We lose depth information.

187

Any problems with using focal sweep?



Dealing with depth blur: generalized optics

188



object distance D focus distance D’

PSF

189

Change optics, not aperture



object distance D focus distance D’

Replace lens with a cubic phase plate 
190

Wavefront coding



• Rays no longer converge.
• Approximately depth-invariant PSF for certain range of depths.

standard lens

wavefront coding

191

Wavefront coding



object distance D focus distance D’

Add lenslet array with varying focal length in front of lens
192

Lattice lens



Does this remind you of something?

193

Lattice lens



• Effectively captures only the “useful” subset of the 4D lightfield.

• PSF is not depth-invariant, so local deconvolution as in coded aperture.

Light field spectrum: 4D
Image spectrum: 2D
Depth: 1D

→ Dimensionality gap (Ng 05)
Only the 3D manifold corresponding to 
physical focusing distance is useful

3D

PSFs at different depths
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Lattice lens



Standard lens

195

Results



Lattice lens
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Results



Standard lens
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Results



Lattice lens
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Results



Standard lens

199

Results



Lattice lens
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Results



201

Refocusing example



202

Refocusing example
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Refocusing example



Object at in-focus depth

standard
lens

coded
aperture

focal
sweep

wavefront 
coding

lattice
lens

< << < <

Object at extreme depth

Depth of field 
comparison:

204

Comparison of different techniques



Can you think of any issues?
205

Diffusion coded photography



Dealing with motion blur

206



• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

non-blind deconvolution

blind deconvolution

conventional 
photography

flutter shutter, motion-invariant photo

coded aperture, focal sweep, lattice lens

coded 
photography
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Why are our images blurry?



Most scene is static

Can moving linearly from left to right
208

Motion blur



Ä

motion blur kernelblurry image of 
moving object

sharp image of 
static object

*=

What does the motion blur kernel depend on?
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Motion blur



Ä

motion blur kernelblurry image of 
moving object

sharp image of 
static object

*=

What does the motion blur kernel depend on?
• Motion velocity determines direction of kernel.
• Shutter speed determines width of kernel.

Can we use deconvolution to remove motion blur? 
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Motion blur



• Blur kernel is not invertible.

• Blur kernel is unknown.

• Blur kernel is different for different objects.

211

Challenges of motion deblurring



• Blur kernel is not invertible.

• Blur kernel is unknown.

• Blur kernel is different for different objects.

How would you deal with this?
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Challenges of motion deblurring



Dealing with motion blur: coded exposure

213



Code exposure (i.e., shutter speed) to make motion blur kernel better conditioned. 

Ä

motion blur kernelblurry image of 
moving object

sharp image of 
static object

*=

Ä

motion blur kernelblurry image of 
moving object

sharp image of 
static object

*=

traditional 
camera

flutter-shutter 
camera
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Coded exposure a.k.a. flutter shutter



215

How would you implement coded exposure?



very fast external 
shutter

electronics for external 
shutter control

216

How would you implement coded exposure?



motion blur kernel 
in time domain

motion blur kernel 
in Fourier domain

Why is flutter 
shutter 
better?
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Coded exposure a.k.a. flutter shutter



motion blur kernel 
in time domain

motion blur kernel 
in Fourier domain

Why is flutter 
shutter 
better?

zeros make inverse 
filter unstable

inverse filter 
is stable

218

Coded exposure a.k.a. flutter shutter



blurry 
input

deconvolved 
output

conventional photography flutter-shutter photography
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Motion deblurring comparison



220



221



• Blur kernel is not invertible.

• Blur kernel is unknown.

• Blur kernel is different for different objects.

How would you deal 
with these two?
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Challenges of motion deblurring



Dealing with motion blur: parabolic sweep
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Introduce extra motion so that:
• Everything is blurry; and
• The blur kernel is motion invariant (same for all objects).

How would you achieve this?
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Motion-invariant photography



225

Parabolic sweep



Approximate small translation by small rotation

variable 
radius cam

Rotating 
platform

Lever
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Hardware implementation



parabolic input - blur is 
invariant to velocity

static camera input -
unknown and variable blur
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Some results



output after deconvolution

Is this blind or non-blind deconvolution?

static camera input -
unknown and variable blur

228

Some results



static camera input parabolic camera input deconvolution output
229

Some results



Next Lecture: 
Convolutional Neural Networks
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