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Today’s Lecture
• Course info

• History of photography

• Limitations of traditional photography

• Recent accomplishments

Disclaimer: Some of the material and slides for this lecture were borrowed from 

—Alexei Efros’s CS194-26/294-26 “Intro to Computer Vision and Computational Photography” class

—Steve Marschner’s CS6640 “Computational Photography” class

—Fredo Durand’s slides on “The History of photography”
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Today’s Lecture
• Course info

• History of photography

• Limitations of traditional photography

• Recent accomplishments
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Welcome to AIN434/BBM444
• An advanced undergraduate 

course is about the 
fundamentals of 
computational photography

• Introduces students a 
number of different 
computational techniques to 
capture, manipulate and 
enrich visual media. 
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A little about me…
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Research Interests

66

• I study better ways to
understand and process
visual data. 

• My research interests
span a diverse set of topics, 
ranging from image editing
to visual saliency estimation, 
and to multimodal learning
for integrated vision and language.

Computer
Vision

Natural Language
Understanding

Image 
Processing



Course Logistics
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Course information
Time/Location 09:40-12:30pm Monday, D9 (AIN434/BBM444)

16:40-17:30pm Monday, D8 (AIN435/BBM446)

Instructor Erkut Erdem 
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• for course related announcements:

https://edstem.org/eu/courses/2002

• Course webpage:
https://web.cs.hacettepe.edu.tr/~erkut/ain434-bbm444.s25/index.html

https://edstem.org/eu/courses/2002
https://web.cs.hacettepe.edu.tr/~erkut/ain434-bbm444.s25/index.html


Course webpage
• will be updated 

regularly.

• will include lecture 
slides, additional 
reading material, 
course-related 
resources, and 
information about 
assignments and 
projects.
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ed
• Enrollment link is 

available at the 
course webpage.

• will be used for 
course-related 
announcements.

• similar to piazza, 
but with more 
capabilities.
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Reference Books
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Prerequisites
• Good math (calculus, linear algebra, statistics) and programming 

skills. 

• An introductory course in image processing (BBM413/AIN430), 
and/or computer vision (BBM416/AIN431) and/or machine learning 
(BBM406/AIN311) is highly recommended.
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Grading
• Grading for AIN434/BBM444 will be based on

• Class participation (5%),
• Course project (done in pairs) (30%),
• Midterm exam (30%), and
• Final exam (35%).

• Grading for AIN435/BBM446 will be based on
• Four assignments (done individually) (25% each).
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Schedule
Week 1 Introduction, Digital photography

Week 2 Image formation

Week 3 Noise and Color 

Week 4 Exposure and high-dynamic-range imaging 

Week 5 Edge-aware filtering 

Week 6 Gradient-domain image processing 

Week 7 No class – National Holiday
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Schedule
Week 8 Focal stacks and lightfields

Week 9 Midterm Exam 

Week 10 Deconvolution, Coded photography 

Week 11 Convolutional Neural Networks

Week 12 Deep Generative Models and their applications

Week 13 Visual quality assessment 

Week 14 Project presentations, Course wrap-up

15



Lecture 1: Introduction to Digital photography
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Lecture 2: Image formation
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Cornell CS6640 Fall 2012

Pinhole camera

• Simplest possible camera
1. light tight box with hole

2. film

• Rays are selected simply by occlusion

3

Worth a look
www.kodak.com/ek/US/
en/Pinhole_Camera.htmFr
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Lecture 3: Noise and Color

18



Lecture 4: Exposure and high-dynamic-range 
imaging
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Lecture 5: Edge-aware filtering
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Lecture 6: Gradient-domain image processing
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Lecture 7: Focal stacks and lightfields
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Lecture 8: Deconvolution, Coded photography
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Lecture 9: Convolutional Neural Networks

24
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KARADENIZ et al.: BURST PHOTOGRAPHY FOR LEARNING TO ENHANCE EXTREMELY DARK IMAGES 9377

Fig. 5. An example night photo captured with 0.1 sec exposure and its enhanced versions by the proposed coarse, fine and burst networks. As the cropped
images demonstrate, the fine network enhances both the color and the details of the coarse result. The burst network produces even much sharper and
perceptually more pleasing output.

the features of burst frames. This is achieved by using a
max-pooling over the set of burst features after each convo-
lution layer in the encoder part of the network. Then, in the
decoder part, instead of concatenating the deconvolution fea-
tures with the corresponding earlier features, we concatenate
them with the global max-pooled features computed in the
encoder. Hence, without even changing the parameter size,
we integrate the advantage of multiple observations to the
network.

To obtain robustness to small motions, we apply max
fusion between the features of burst frames after the second
convolution block. As the features are downsampled, their
alignment becomes much easier and the network benefits from
the fusion of the higher-level features. To deal with large
motions in the scene, however, we can utilize the outputs of our
coarse network to estimate optical flows between consecutive
frames. In our experiments, we employ the method in [65] to
obtain the optical flow maps, which are then used to selectively
zero out the regions with large motion.1 Thus, inputs to the fine
network are these processed burst frames which differ from
each other in the regions with small motion, and their fusion
is performed via the max-pooling layers inside the network.

As Fig. 5 demonstrates, processing multiple dark images via
the proposed burst network significantly improves the quality.
Our burst model produces perceptually better and sharper
results than our fine network and especially recovers the fine
details and the texture much better. We analyze its ability to
handle motion in more detail in our experimental analysis.

C. Losses

To train our networks, we tested combining a pixel-wise loss
(L1) with two alternative featurewise losses, namely perceptual
loss (LP) [49], [50] and contextual loss (LCX) [51], [66].

1) Pixel-Wise Loss: As the pixel-wise loss, we use the
L1 loss between the network output and the ground truth

1Here, we extract optical flows after converting the raw coarse Bayer data
to raw RGB by splitting it into distinct RGB channels with the green channel
obtained by averaging the two green subpixels in each two-by-two pattern.

long-exposure image, given as:
L1(y, ŷ) =

∥∥y − ŷ
∥∥

1 . (7)

2) Perceptual Loss: To measure the distance at a more
semantic level, we employ the commonly used percep-
tual loss [49], [50], which uses high-level features from a
pre-trained VGG-19 network [67], defined as:

LP(y, ŷ, l) =
∥∥∥φl(y) − φl(ŷ)

∥∥∥
1

(8)

where φl(·) denotes the feature maps at the l-th layer of the
network.

3) Contextual Loss: As an alternative to the perceptual loss,
we also consider the contextual loss proposed in [51], [66],
which is shown to better capture changes in fine scale details.
Specially, it measures the statistical difference between the
feature distributions φl(y) and φl(ŷ) extracted from y and ŷ,
respectively, and is defined as:

LCX(y, ŷ, l) = − log(CX(φl(y),φl(ŷ))) (9)

where the statistical similarity CX is estimated by an approx-
imation of the KL-divergence, as follows.

Let R = {ri } and S = {s j } respectively represent the
set of features extracted from a pair of images, with cardi-
nality N , and di j be the cosine distance between the fea-
tures ri and s j . Then, CX(R, S) = 1

N

∑
j max

i
CXi j where

CXi j = wi j /
∑

k wik and wi j = exp ((1 − d̃i j )/h), d̃i j =
di j /(mink dik + ε).

4) Implementation Details: To generate our training data,
we extracted 512 × 512 pixels random patches for each input
image and also generated their downsampled versions with
half resolution (obtained by bilinear interpolation). Hence,
the input patch sizes for the coarse and fine networks are
256 × 256 and 512 × 512 pixels, respectively. We follow the
same preprocessing steps for raw data as in [28] by packing
raw array into channels, subtracting black level, and scaling
the data with the given amplification ratio. We first trained the
coarse network Fc by using Adam optimizer with a learning
rate of 10−4 for 2000 epochs and 10−5 for 2000 epochs. Then,
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Fig. 5. An example night photo captured with 0.1 sec exposure and its enhanced versions by the proposed coarse, fine and burst networks. As the cropped
images demonstrate, the fine network enhances both the color and the details of the coarse result. The burst network produces even much sharper and
perceptually more pleasing output.

the features of burst frames. This is achieved by using a
max-pooling over the set of burst features after each convo-
lution layer in the encoder part of the network. Then, in the
decoder part, instead of concatenating the deconvolution fea-
tures with the corresponding earlier features, we concatenate
them with the global max-pooled features computed in the
encoder. Hence, without even changing the parameter size,
we integrate the advantage of multiple observations to the
network.
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Lecture 10: Deep Generative Models and their 
applications

25

BigGANs, Brock et al., 2018
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Manipulating A!ributes of Natural Scenes via Hallucination

LEVENT KARACAN, Hace!epe University and Iskenderun Technical University, Turkey
ZEYNEP AKATA, University of Tübingen, Germany
AYKUT ERDEM and ERKUT ERDEM, Hace!epe University, Turkey

Fig. 1. Given a natural image, our approach can hallucinate di"erent versions of the same scene in a wide range of conditions, e.g., night, sunset, winter, spring,
rain, fog, or even a combination of those. First, we utilize a generator network to imagine the scene with respect to its semantic layout and the desired set of
a!ributes. Then, we directly transfer the scene characteristics from the hallucinated output to the input image, without the need for a reference style image.

In this study, we explore building a two-stage framework for enabling users
to directly manipulate high-level attributes of a natural scene. The key to
our approach is a deep generative network that can hallucinate images of
a scene as if they were taken in a di!erent season (e.g., during winter),
weather condition (e.g., on a cloudy day), or at a di!erent time of the day
(e.g., at sunset). Once the scene is hallucinated with the given attributes, the
corresponding look is then transferred to the input image while preserv-
ing the semantic details intact, giving a photo-realistic manipulation result.
As the proposed framework hallucinates what the scene will look like, it

This work was supported in part by TUBA GEBIP fellowship awarded to E. Erdem.
We would like to thank NVIDIA Corporation for the donation of GPUs used in this
research. This work has been partially funded by the DFG-EXC-Nummer 2064/1-
Projektnummer 390727645.
Authors’ addresses: L. Karacan, Hacettepe University, Ankara, Turkey and Iskenderun
Technical University, Hatay, Turkey; email: karacan@cs.hacettepe.edu.tr; Z. Akata,
University of Tübingen, Tubingen, Germany; email: zeynep.akata@uni-tuebingen.de;
A. Erdem and E. Erdem, Hacettepe University, Ankara, Turkey; emails: {aykut,
erkut}@cs.hacettepe.edu.tr.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro"t or commercial advantage and that copies bear this notice and the full cita-
tion on the "rst page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci"c permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART7 $15.00
https://doi.org/10.1145/3368312

does not require any reference style image as commonly utilized in most of
the appearance or style transfer approaches. Moreover, it allows to simul-
taneously manipulate a given scene according to a diverse set of transient
attributes within a single model, eliminating the need of training multiple
networks per each translation task. Our comprehensive set of qualitative
and quantitative results demonstrates the e!ectiveness of our approach
against the competing methods.

CCS Concepts: • Computing methodologies → Neural networks; Im-
age manipulation; Image representations;

Additional Key Words and Phrases: Image generation, style transfer, gen-
erative models, visual attributes

ACM Reference format:
Levent Karacan, Zeynep Akata, Aykut Erdem, and Erkut Erdem. 2019.
Manipulating Attributes of Natural Scenes via Hallucination. ACM Trans.
Graph. 39, 1, Article 7 (November 2019), 17 pages.
https://doi.org/10.1145/3368312

1 INTRODUCTION
“The trees, being partly covered with snow, were
outlined indistinctly against the grayish background
formed by a cloudy sky, barely whitened by the
moon.”

—Honore de Balzac (Sarrasine, 1831)

ACM Transactions on Graphics, Vol. 39, No. 1, Article 7. Publication date: November 2019.
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A cat with black hair. A british shorthair cat with grey hair.

A cat with ginger hair. An old calico cat.

A cat with brown hair. An elderly cat with black hair.

A calico cat. A cat with ginger hair.

Fig. 2. More text-guided manipulation results on cat images obtained with our Text2Style approach.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.



Lecture 11: Visual quality assessment
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Original Perturbed Patches

(a) Traditional

Original Perturbed Patches

(b) CNN-based

Figure 2: Example distortions. We show example distortions using our (a) traditional and (b) CNN-based methods.

[19, 36, 35], and (3) may not actually constitute a distance
metric [56]. The crux of (2) is that there are many differ-
ent “senses of similarity” that we can simultaneously hold
in mind: is a red circle more similar to a red square or to a
blue circle? Directly fitting a function to human judgments
may be intractable due the the context-dependent and pair-
wise nature of the judgments (which compare the similar-
ity between two images). Indeed, we show in this paper a
negative result where this approach fails to generalize, even
when trained on a large-scale dataset containing many dis-
tortion types.

Instead, might there be a way to learn a notion of per-
ceptual similarity without directly training for it? The com-
puter vision community has discovered that internal activa-
tions of deep convolutional networks, though trained on a
high-level image classification task, are often surprisingly
useful as a representational space for a much wider vari-
ety of tasks. For example, features from the VGG archi-
tecture [52] have been used on tasks such as neural style
transfer [17], image superresolution [23], and conditional
image synthesis [14, 8]. These methods measure distance
in VGG feature space as a “perceptual loss” for image re-
gression problems [23, 14].

But how well do these “perceptual losses” actually cor-
respond to human visual perception? How do they compare
to traditional perceptual image evaluation metrics? Does the
network architecture matter? Does it have to be trained on
the ImageNet classification task, or would other tasks work
just as well? Do the networks need to be trained at all?

In this paper, we evaluate these questions on a new large-
scale database of human judgments, and arrive at several
surprising conclusions. We find that internal activations
of networks trained for high-level classification tasks, even
across network architectures [20, 28, 52] and no further cal-
ibration, do indeed correspond to human perceptual judg-
ments. In fact, they correspond far better than the com-
monly used metrics like SSIM and FSIM [58, 62], which
were not designed to handle situations where spatial ambi-
guities are a factor [49]. Furthermore, the best performing
self-supervised networks, including BiGANs [13], cross-

channel prediction [64], and puzzle solving [40] perform
just as well at this task, even without the benefit of human-
labeled training data. Even a simple unsupervised network
initialization with stacked k-means [26] beats the classic
metrics by a large margin! This illustrates an emergent
property shared across networks, even across architectures
and training signals. Importantly, however, having some
training signal appears crucial – a randomly initialized net-
work achieves much lower performance.

Our study is based on a newly collected perceptual sim-
ilarity dataset, using a large set of distortions and real algo-
rithm outputs. It contains both traditional distortions, such
as contrast and saturation adjustments, noise patterns, fil-
tering, and spatial warping operations, and CNN-based al-
gorithm outputs, such as autoencoding, denoising, and col-
orization, produced by a variety of architectures and losses.
Our dataset is richer and more varied than previous datasets
of this kind [45]. We also collect judgments on outputs from
real algorithms for the tasks of superresolution, frame inter-
polation, and image deblurring, which is especially impor-
tant as these are the real-world use cases for a perceptual
metric. We show that our data can be used to “calibrate” ex-
isting networks, by learning a simple linear scaling of layer
activations, to better match low-level human judgments.

Our results are consistent with the hypothesis that per-
ceptual similarity is not a special function all of its own, but
rather a consequence of visual representations tuned to be
predictive about important structure in the world. Repre-
sentations that are effective at semantic prediction tasks are
also representations in which Euclidean distance is highly
predictive of perceptual similarity judgments.

Our contributions are as follows:
• We introduce a large-scale, highly varied, perceptual

similarity dataset, containing 484k human judgments.
Our dataset not only includes parameterized distor-
tions, but also real algorithm outputs. We also collect
judgments on a different perceptual test, just notice-
able differences (JND).

• We show that deep features, trained on supervised,
self-supervised, and unsupervised objectives alike,

2

Original Perturbed Patches

(a) Traditional

Original Perturbed Patches

(b) CNN-based

Figure 2: Example distortions. We show example distortions using our (a) traditional and (b) CNN-based methods.
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the ImageNet classification task, or would other tasks work
just as well? Do the networks need to be trained at all?

In this paper, we evaluate these questions on a new large-
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training signal appears crucial – a randomly initialized net-
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real algorithms for the tasks of superresolution, frame inter-
polation, and image deblurring, which is especially impor-
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Our results are consistent with the hypothesis that per-
ceptual similarity is not a special function all of its own, but
rather a consequence of visual representations tuned to be
predictive about important structure in the world. Repre-
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Programming Assignments
• 4 programming assignments (25% each)

• Should be done individually

• Involve implementing an algorithm, carrying out a set of experiments 
to evaluate it, and writing up a report on the experimental results. 

• Late policy: You have 5 slip days in the semester.

• Tentative Dates
- Assignment 1 Out: March 3, Due: March 17
- Assignment 2 Out: March 17, Due: March 31
- Assignment 3 Out: April 7, Due: April 21
- Assignment 4 Out: April 28, Due: May 12

28



Course project
• The course project gives students a chance to apply the methods 

discussed in class to a research oriented project.

• The students can work in pairs. 

• The course project may involve
- Design of a novel approach and its experimental analysis, or
- An extension to a recent study of non-trivial complexity and its experimental analysis.
- A comparative analysis of methods

• Deliverables
- Proposals Mar 24, 2025
- Project progress reports April 28, 2025
- Final project presentations TBA
- Final reports May 25, 2025

29

The students who need GPU resources
for the course project are advised to 
use Google Colab. 



Sample Course Projects – Spring 2024
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Sample Course Projects – Spring 2023
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Sample Course Projects – Spring 2022
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Today’s Lecture
• Course info

• History of photography

• Limitations of traditional photography

• Recent accomplishments

33
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Filtering

• It refers to an emerging new research 
area.

• It covers the set of methods used for 
capturing and processing digital images 
based on modern digital computation and 
algorithms instead of optical processes.

• It has changed the rules of photography, 
bringing to it new modes of capture, 
post-processing, storage, and sharing.

What is Computational Photography ?

34
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FilteringComputational
Photography

Filtering

• Digital photography:
– Simply replaces traditional sensors and 

recording by digital technology
– Involves only simple image processing

• Computational photography
– More elaborate image manipulation, 

more computation
– New types of media (panorama, 3D, etc.)
– Camera design that take computation 

into account

What is Computational Photography ?
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Spot the difference

36

Film camera
Digital camera

Digital camera



Depicting Our World: Prehistory

37Prehistoric Painting, Lascaux Cave, France ~ 13,000 -- 15,000 B.C.



Depicting Our World: Middle Ages

38The Empress Theodora with her court., Ravenna, St. Vitale 6th c. 



Depicting Our World: Middle Ages

39Nuns in Procession. French ms. ca. 1300. 



Depicting Our World: Renaissance

40

East Doors (1452)North Doors (1424) Lorenzo 
Ghiberti

(1378-1455)
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Depicting Our World: Renaissance

41
Piero della Francesca, The Flagellation (c.1469)



Depicting Our World: Renaissance

42
Paolo Uccello, Miracle of the Profaned Host (c.1467-9)



Depicting Our World: Song Dynasty (China)

43
Qingming Festival by the Riverside, Zhang Zeduan ~900 AD

Qingming Festival by the Riverside  Zhang Zeduan ~900 AD  

Weak perspective projection 



Depicting Our World: Edo Period (Japan) 

44

The Great Wave off Kanagawa, part of the series 
Thirty-six Views of Mount Fuji, Hokusai (between 1826 and 1833) 



Depicting Our World: Ottoman Miniatures

45

The Ottoman army besieging Vienna, from Huner-nama ('Book of Skills’). 
Nakkas Osman, 1588.



Depicting Our World: Ottoman Miniatures

46
An Ottoman miniature from Surname-ı Vehbi, Abdulcelil Levni (1720)



Depicting Our World: Toward Perfection

47
Jan van Eyck, The Arnolfini Marriage (c.1434) 



Depicting Our World: Toward Perfection

48
Lens Based Camera Obscura, 1568



Depicting Our World: Perfection!

49
View from the Window at Le Gras, Joseph Nicéphore Niépce (1826)



Depicting Our World: Perfection!

50
Still Life, Louis Jaques Mande Daguerre, 1837



Depicting Our World: Perfection!

51
Boulevard du Temple, Louis Daguerre, 1838



After realism…

52
Monet, La rue Montorgueil



Depicting Our World: Ongoing Quest

53
Pablo Picasso David Hockney



David Hockney, Place Furstenberg, (1985)

Depicting Our World: Ongoing Quest

54



Alyosha Efros
Place Furstenberg, 2009

Single viewpoint

David Hockney, 
Place Furstenberg, 1985

Which one is right?

Multiple viewpoints

55
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• Silver halide (AgCl, AgBr, AgI) salts are light sensitive
• absorbed photons in halide ions cause free electrons 
• electrons combine with Ag+, producing metallic silver

• Daguerre: first practical and permanent photographic 
plate
• Hg vapor (yikes!) combines with Ag to produce reflective amalgam 

Daguerrotypes were widely popular

• Indirect negative-plate processes
• negative images on paper, glass allowed multiple copies to be 

printed

• Roll film: silver halide grains in gelatin on celluloid
• introduced by Eastman in 1880s
• portable, convenient, practical
• sensitive (“fast”) enough for moving subjects in daylight

Recording images automatically

56

Daguerrotype (1839)

George Eastman with his Kodak camera
George Eastman with 

his Kodak camera



Motion pictures
• Sensitive roll film enables sampling in 

time

• 1890s - several cameras
• Lumière brothers’ 

Cinematographe
• Edison’s Kinescope

57

Cinématographe
[Wikimedia 
commons] George Eastman and Thomas Edison in 1928



George Méliès

58

Georges Méliès, A Trip to the Moon, 1902 



Improvements in cameras
• Size and portability

• Ease of use

• Automation

59



Improvements in film
• Sensitivity 

• enables photographs of faster subjects—“faster” film 

• Dynamic range 
• higher quality images with detail in highlights and shadows 
• expanded “latitude” to mess up the exposure 

• Resolution 
• enables smaller format cameras 

60



Television
• Practical around 1927 (Farnsworth) 

• Camera basically the same 
• imaging lens plus planar image sensor 

• Recording is electronic 
• various early schemes 
• early winner: CRT image sensors (Orthicon, 

Vidicon, ...) 

• Initially seems quite different from 
photography/cinematography 
• ephemeral output signal - live viewing only 
• low resolution, low dynamic range images 

61

Philo Farnsworth, c. 1935

Farnsw
orth Archives 



Recording video signals
• Kinescope (1940s) 

• photograph onto motion picture 
film re-photograph the film for 
replay 

• Videotape (1956) 
• record signal on magnetic tape 
• very high head velocities required -

transverse or helical scanning 

62Helical scan 

A Kinescope, c. 1950–55 

A 2-inch video tape recorder c.1970 

Peter Lindell, 
C

anada Science and Technology M
useum

W
ikipedia

W
ikipedia



Imaging around 1950s–70s
• Technology improves incrementally

• Film emulsions improve; very high quality attainable in large formats 
• Video technology improves; but standards keep resolution fixed 
• Lens designs improve, cameras become much more usable

• Usage is refined
• Photography an established art form, widespread hobby 
• Cinematography develops as a storytelling medium 
• Television becomes dominant mass communication medium

63



Meanwhile...
• Invention of CCD (1969)

• solid-state, fundamentally discrete image sensor
• quickly established in astronomy, space
• by mid-80s, displaces tubes in video cameras 

(as drop-in replacement)

• Computing and computer graphics
• sufficient memory to store images becomes 

available
• first framebuffers developed 1972–74

• Digital signal transmission and processing
• used for audio and telephone

• These set the stage for the next revolution
64

Photo: Alcatel-Lucent/Bell Labs

Cornell CS6640 Fall 2012

Meanwhile…
• Invention of CCD (1969)

solid-state, fundamentally discrete 
image sensor
quickly established in astronomy, space
by mid-80s, displaces tubes in video
cameras (as drop-in replacement)

• Computing and computer graphics
sufficient memory to store images 
becomes available
first framebuffers developed 1972–74

• Digital signal transmission and processing
used for audio and telephone

• These set the stage for the next revolution
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Early CCD array

Early CCD array

George Smith and Willard Boyle in 1970

Photo: Alcatel-Lucent/Bell Labs



Digital imaging
• Halftone printing of images

• halftone process around for a while 
• complex, delicate optical procedure
• moving images from place to place requires moving 

film or paper

• Digital imaging
• scan images from film or paper
• transmit images by phone
• do processing (e.g. halftone separation) by computing print images using laser 

printer or laser film recorder

• Image editing
• 1990—Adobe Photoshop 1.0

• Image compression algorithms
• make image storage, transmission more practical

65

Cornell CS6640 Fall 2012

Digital imaging

• Halftone printing of images
halftone process around for a while

complex, delicate optical procedure

moving images from place to place 
requires moving film or paper

• Digital imaging
scan images from film or paper

transmit images by phone

do processing (e.g. halftone separation) by computing

print images using laser printer or laser film recorder

• Image editing
1990—Adobe Photoshop 1.0

• Image compression algorithms
make image storage, transmission more practical

24



Digital photography
• Digital images are established

• people can make use of them directly

• CCD sensors improve
• Moore’s law makes pixels smaller
• video cameras already recording images electronically
• digital image capture used in scientific applications

• Analog electronic still camera (aka. still video 
camera)
• is just a video camera that takes one frame at a time
• several manufacturers made them
• but high image quality expectations for stills delays 

acceptance

66

First microprocessor in a camera, Canon AE-1976

Canon RC-701 still video camera, 1986

Cornell CS6640 Fall 2012

Digital photography

• Digital images are established
people can make use of them directly

• CCD sensors improve
Moore’s law makes pixels smaller

video cameras already recording
images electronically

digital image capture used in scientific applications

• Analog electronic still camera (aka. still video camera)
is just a video camera that takes one frame at a time

several manufacturers made them

but high image quality expectations for stills delays acceptance

25

Canon Cam
era M

useum

Canon RC-701 still video camera, 1986



Early digital cameras
• Important limitations

• low image quality (relative to film) 
• slow camera performance
• large, heavy, clunky
• limited, expensive image storage

• Important advantages
• immediate availability of images
• zero (well...) marginal cost per exposure

• First adopters: photojournalists
• Kodak DCS series

• based on film camera bodies
• early commercial success
• storage: PCMCIA hard disks (mid 90s)

67

Kodak DCS-100, 1991 

digicamhistory.com

Kodak DCS-100, 1991 



Digital rivals film
• Key improvements 

• cameras become more compact 
• resolution and dynamic range improve 
• LCD displays for immediate image review 
• costs drop 

• Meanwhile 
• computers with high-quality color displays become pervasive 

• User experience 
• image review is a big change for users
• sharing of digital images suddenly becomes easier than prints 
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Digital video
• Initially: improved recording medium 

• record the same old signal, but digitally best-quality medium for professional 
use 

• Improvements 
• storage and bandwidth improve by orders of magnitude 
• video compression algorithms advance
• digital formats become simpler/better than analog-derived 
• flexibility finally unlocks video resolution 

• Digital recording becomes standard for video 
• basic experience similar
• cost and quality greatly improved

69



Digital displaces film and video
• Move from convenience vs. quality to convenience and quality

• Digital slowly takes over for basically all users 
• advances in storage/transmission and compression algorithms 
• ecosystem for online sharing of photos, videos
• declining use of printed images 

• Last bastion: cinematography 
• delay: quality standards plus tradition
• first took over low end because of film costs
• now taking over high end because of superior quality/usability 

70



Digital cameras today
• Digital SLRs

• high-end product for professionals and enthusiasts

• Digital cinema
• high-resolution cameras for big-budget film production

• HD video
• medium resolution for low-end film and high-end TV 

production

• Mirrorless system cameras
• smaller high-end cameras with electronic viewfinding

• Compact still cameras
• inexpensive, auto-everything for day-to-day usage

• Tiny cameras in all cell phones
• “The best camera is the camera that is with you”

71

Cornell CS6640 Fall 2012

• Digital SLRs
high-end product for 
professionals and enthusiasts

Digital cameras today
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Digital photography today
• Video, photography, and cinema have 

converged 
• all using the same basic technology
• all modern still cameras do video too (and many vice 

versa) 

• Cameras becoming completely pervasive 
• film-equivalent quality possible in <1 cm3

• mobile applications driving much sensor/lens 
development 
• mobile cameras had eaten compact digicam market 

• Computing power still rapidly advancing 
• more and more computation being done on images 
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Computer Graphics?
• Computers to create image

• Sketchpad, 1961, Ivan 
Sutherland’s MIT PhD 
thesis

73



GRAPHICS

Traditional Computer Graphics

3D geometry

physics

Simulation

projection

74



State of the Art
• Amazingly real
• But so sterile, lifeless, 

futuristic (why?)
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The richness of our everyday world

76Photo by Svetlana Lazebnik



Beauty in complexity

77University Parks, Oxford



Which parts are hard to model?

78Photo by Svetlana Lazebnik



People

79

From “Final Fantasy”

On the Tube, London



GenAI - Generative AI
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• refers to the set of recent 
techniques (mostly based 
on deep learning) which 
employs existing content 
(like text, images, videos, 
speech, codes, etc.) 
to generate new 
plausible content.

• Many interesting 
applications, and 
application domains. 



GenAI - Generative AI
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GenAI - Generative AI

82

Appendix

Figure 13. Convolutional samples from the semantic landscapes model as in Sec. 4.3.2, finetuned on 5122 images.
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Today’s Lecture
• Course info

• History of photography

• Limitations of traditional photography

• Recent accomplishments

83



The unfinished revolution
• Traditional photography:

- optics focuses optical array 
onto sensor

- chemistry records !nal image

• Digital photography
- optics focuses optical array 

onto sensor
- digital sensor records !nal image

Tuesday, February 7, 12

The unfinished revolution
• Traditional photography: 
• optics focuses optical array onto sensor 
• chemistry records final image 

•Digital photography
• optics focuses optical array onto sensor 
• digital sensor records final image 
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Limitations of traditional photography
• Blur, camera shake, noise, damage
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Limitations of traditional photography
• Limited resolution
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Limitations of traditional photography
• Bad color / no color
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Limitations of traditional photography
• Unwanted objects
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Limitations of traditional photography
• Unfortunate expressions
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Limitations of traditional photography
• Limited dynamic range
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Limitations of traditional photography
• Single viewpoint, static 2D picture
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Limitations of traditional photography
• Single depth of focus
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Creating Realistic Imagery
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+ great creative possibilities

+ easy to manipulate objects or 
viewpoint

- tremendous expertise and effort to 
obtain realism

+ instantly realistic

+ easy to acquire

- very hard to manipulate objects or 
viewpoint

Computer Graphics Photography
Computational
Photography

Realism
Manipulation
Ease of capture



Computational Photography
• Arbitrary computation between the optical  array and the final image

• Data recorded by sensor is not the final image 
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Computational Photography
• Arbitrary computation between the optical 

array and the final image
• Data recorded by sensor is not the final image

Generalized imaging Lots of computation Final image
Tuesday, February 7, 12

Generalized imaging                           Lots of computation   Final image



Computational Photography
• Arbitrary computation between the optical  array and the final image

• Data recorded by sensor is not the final image 
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Raw DataRaw Data

White 
Balance Demosaic Color Space 

Conversion

Align & 
Merge

Learning linear 
Transformations

Weighted 
Summation

White 
Balance, 

Demosaic,
Chroma, 
Denoise

Local tone 
map

Dehaze,
Global tone 

map

Sharpen, 
hue & 

saturation

Denoise,
Sharpen

Gamma 
Correction

Pixel 
Categorization

Traditional

L3

Burst Output

Output

OutputRaw

Raw

Raw

(a)

(b)

Figure 3. The structure of different image processing pipelines. (a) From top to bottom: a traditional image processing pipeline, the L3
pipeline [18], and a burst imaging pipeline [14]. (b) Our pipeline.

modules such as white balance, demosaicing, denoising,
sharpening, color space conversion, gamma correction, and
others. These modules are often tuned for specific cameras.
Jiang et al. [18] proposed to use a large collection of lo-
cal, linear, and learned (L3) filters to approximate the com-
plex nonlinear pipelines found in modern consumer imag-
ing systems. Yet neither the traditional pipeline nor the L3
pipeline successfully deal with fast low-light imaging, as
they are not able to handle the extremely low SNR. Hasinoff
et al. [14] described a burst imaging pipeline for smartphone
cameras. This method can produce good results by aligning
and blending multiple images, but introduces a certain level
of complexity, for example due to the need for dense corre-
spondence estimation, and may not easily extend to video
capture, for example due to the use of lucky imaging.

We propose to use end-to-end learning for direct single-
image processing of fast low-light images. Specifically, we
train a fully-convolutional network (FCN) [22, 25] to per-
form the entire image processing pipeline. Recent work has
shown that pure FCNs can effectively represent many im-
age processing algorithms [40, 5]. We are inspired by this
work and investigate the application of this approach to ex-
treme low-light imaging. Rather than operating on normal
sRGB images produced by traditional camera processing
pipelines, we operate on raw sensor data.

Figure 3(b) illustrates the structure of the presented
pipeline. For Bayer arrays, we pack the input into four
channels and correspondingly reduce the spatial resolution
by a factor of two in each dimension. For X-Trans arrays
(not shown in the figure), the raw data is arranged in 6⇥6
blocks; we pack it into 9 channels instead of 36 channels by
exchanging adjacent elements. We subtract the black level
and scale the data by the desired amplification ratio (e.g.,
x100 or x300). The packed and amplified data is fed into
a fully-convolutional network. The output is a 12-channel
image with half the spatial resolution. This half-sized out-
put is processed by a sub-pixel layer to recover the original
resolution [37].

After preliminary exploration, we have focused on two
general structures for the fully-convolutional network that
forms the core of our pipeline: a multi-scale context aggre-
gation network (CAN) recently used for fast image process-
ing [5] and a U-net [35]. Other work has explored residual
connections [20, 34, 41], but we did not find these bene-
ficial in our setting, possibly because our input and output
are represented in different color spaces. Another consid-
eration that affected our choice of architectures is memory
consumption: we have chosen architectures that can process
a full-resolution image (e.g., at 4240⇥2832 or 6000⇥4000
resolution) in GPU memory. We have therefore avoided



Computational Photography
• Arbitrary computation between the optical  array and the final 

image

• Post-process after traditional imaging
• a.k.a. image processing (maybe more interactive) 
• But also combine multiple images to overcome limits of traditional imaging 

(HDR, panorama) 

• Design imaging architecture together with computation 
• Computational cameras, computational illumination, coded imaging, data-rich 

imaging 

• Extract more than just 2D images 

• New media (panorama, photo tourism) 
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Computational Photography
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• How can I use computational techniques to capture light in new ways?

• How can I use computational techniques to breathe new life into the 
photograph?

• How can I use computational techniques to synthesize and organize 
photo collections?



Today’s Lecture
• Course info

• History of photography

• Limitations of traditional photography

• Recent accomplishments
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Photo Style Transfer
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Photo Style Transfer
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Image Relighting
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Image Denoising

102

(a) Reference (b) Average (c) HDR+ (d) NLM (e) VBM4D (f) Ours (KPN)Reference frame

Figure 1: A qualitative evaluation of our model on real image bursts from a handheld camera in a low-light environment.
The reference frame from the input burst (a) is sharp, but noisy. Noise can be reduced by simply averaging a burst of similar
images (b), but this can fail in the presence of motion (see Figure 8). Our approach (f) learns to use the information present
in the entire burst to denoise a single frame, producing lower noise and avoiding artifacts compared to baseline techniques (c
– e). See the supplement for full resolution images and more examples.

have been retargeted towards the task of denoising a burst
of noisy images captured from commodity mobile phones,
with an emphasis on energy efficiency and speed [8, 16].
These approaches first align image patches to within a few
pixels and then perform joint denoising by robust averag-
ing (such as Wiener filtering). Another line of work has
focused on achieving high quality by combining multiple
image formation steps with a single linear operator and us-
ing modern optimization techniques to solve the associated
inverse problem [11, 10]. These approaches generalize to
multiple image denoising but require calculating alignment
as part of the forward model.

The success of deep learning has yielded a number of
neural network approaches to multi-image denoising [29,
27], in addition to a wide range of similar tasks such as joint
denoising and demosaicking [7], deblurring [24], and su-
perresolution [25]. Similar in spirit to our method, Kernel-
Predicting Networks [2] denoise Monte Carlo renderings
with a network that generates a filter for every pixel in
the desired output, which constrains the output space and
thereby prevents artifacts. Similar ideas have been applied
successfully to both video interpolation [18, 19] and video
prediction [6, 15, 28, 5], where applying predicted optical
flow vectors or filters to the input image data helps prevent
the blurry outputs often produced by direct pixel synthesis
networks.

3. Problem specification

Our goal is to produce a single clean image from a noisy
burst of N images captured by a handheld camera. Fol-
lowing the design of recent work [8], we select one image
X1 in the burst as the “reference” and denoise it with the
help of “alternate” frames X2, . . . , XN . It is not necessary
for X1 to be the first image acquired. All input images
are in the raw linear domain to avoid losing signal due to
the post-processing performed between capture and display
(e.g., demosaicking, sharpening, tone mapping, and com-
pression). Creating training examples for this task requires
careful consideration of the characteristics of raw sensor
data.

3.1. Characteristics of raw sensor data

Camera sensors output raw data in a linear color space,
where pixel measurements are proportional to the number
of photoelectrons collected. The primary sources of noise
are shot noise, a Poisson process with variance equal to the
signal level, and read noise, an approximately Gaussian pro-
cess caused by a variety of sensor readout effects. These ef-
fects are well-modeled by a signal-dependent Gaussian dis-
tribution [9]:

xp ∼ N
(

yp,σ
2

r + σsyp
)

(1)

where xp is a noisy measurement of the true intensity yp
at pixel p. The noise parameters σr and σs are fixed for
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Image Super Resolution
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Image Super Resolution

104

RRDB ESRGAN RankSRGAN SRFlow, ⌧ = 0.9 HCFlow, ⌧ = 0.9 HCFlow++, ⌧ = 0.9 Ground Truth

Figure 4: Visual results of general image SR (⇥4) on the DIV2K [1] validation set.

LR (⇥8) RRDB ESRGAN SRFlow, ⌧ = 0.8 HCFlow, ⌧ = 0.8 HCFlow++, ⌧ = 0.8 Ground Truth

Figure 5: Visual results of face image SR (⇥8) on the CelebA [27] testing set.

and RRDB [36], perception-oriented ESRGAN [36] and
RankSRGAN [45], as well as SRFlow [28]. All methods
are trained on the same training dataset. From Table 2 and
Fig. 4, we have several observations as follows. First, when
sampling HR images with temperature ⌧ = 0, HCFlow
acts like a PSNR-oriented model, achieving similar per-
formance as EDSR and RRDB. Adding the HR pixel loss
(i.e., HCFlow+) can further improve the PSNR and SSIM
by large margins. Second, when ⌧ = 0.9, the perceptual
metrics of HCFlow are boosted dramatically. With per-
ceptual loss and GAN loss (i.e., HCFlow++), the percep-
tual metrics are further improved by significant margins in

terms of LPIPS and BRISQUE, which is confirmed by the
visual results. Note that, unlike ESRGAN and RankSR-
GAN, the generated HR images of HCFlow++ are still di-
versified. Third, HCFlow achieves state-of-the-art perfor-
mance in terms of both quantitative metrics and visual qual-
ity. It generates sharp images with few artifacts. In contrast,
RRDB and SRFlow tend to produce blurry images, while
ESRGAN and RankSRGAN suffer from over-sharpen arti-
facts and distortions. In addition, HCFlow only has about
half of the number of parameters compared with SRFlow.
Face image SR. We also test HCFlow on face image SR
(⇥8) to show its effectiveness. The compared methods
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Image Super Resolution

105

Results of a SR3 model (64×64 → 512×512), trained on FFHQ, and applied to images outside of 
the training set.
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Image Deblurring
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Figure 7: Results on the GoPro test dataset. From left to right: blurred photo, Nah et al. [25], DeblurGAN.

Figure 8: Results on the Kohler dataset. From left to right: blurred photo, Nah et al. [25], DeblurGAN.

different datasets. The first model to which we re-
fer as DeblurGANWILD was trained on a random crops
of size 256x256 from 1000 GoPro training dataset im-

ages [25] downscaled by a factor of two. The second one
DeblurGANSynth was trained on 256x256 patches from MS
COCO dataset blurred by method, presented in previous

Figure 7: Results on the GoPro test dataset. From left to right: blurred photo, Nah et al. [25], DeblurGAN.

Figure 8: Results on the Kohler dataset. From left to right: blurred photo, Nah et al. [25], DeblurGAN.

different datasets. The first model to which we re-
fer as DeblurGANWILD was trained on a random crops
of size 256x256 from 1000 GoPro training dataset im-

ages [25] downscaled by a factor of two. The second one
DeblurGANSynth was trained on 256x256 patches from MS
COCO dataset blurred by method, presented in previous



Image Deblurring

107Im
ag

e 
cr

ed
it:

 T
u 

et
 a

l.,
 2

02
2



Outdoors at night. Sony a7S II camera

Traditional pipeline

Low-light Image Enhancement
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Outdoors at night. Sony a7S II camera

Traditional pipeline + scaling

Low-light Image Enhancement
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Scaling + BM3D denoising
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Outdoors at night. Sony a7S II camera

Our result Scaling + BM3D denoising
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Our result
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Generating Synthetic Images
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Appendix

Figure 13. Convolutional samples from the semantic landscapes model as in Sec. 4.3.2, finetuned on 5122 images.
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A british shorthair 
jumping over a coach

A teddy bear 
running in New York City

A swarm of bees
flying around their hive
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A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears 
a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red 
lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the 
colorful lights. Many pedestrians walk about.
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A young man at his 20s is sitting on a piece of cloud in the sky, reading a book.
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The camera directly faces colorful buildings in burano italy. An adorable dalmation looks through a window on a 
building on the ground floor. Many people are walking and cycling along the canal streets in front of the buildings.
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Image Inpainting
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40-50% masked All samples

Method FID # LPIPS # FID # LPIPS #
LDM-4 (ours, big, w/ ft) 9.39 0.246± 0.042 1.50 0.137± 0.080
LDM-4 (ours, big, w/o ft) 12.89 0.257± 0.047 2.40 0.142± 0.085
LDM-4 (ours, w/ attn) 11.87 0.257± 0.042 2.15 0.144± 0.084
LDM-4 (ours, w/o attn) 12.60 0.259± 0.041 2.37 0.145± 0.084

LaMa [83]† 12.31 0.243± 0.038 2.23 0.134± 0.080
LaMa [83] 12.0 0.24 2.21 0.14
CoModGAN [100] 10.4 0.26 1.82 0.15
RegionWise [47] 21.3 0.27 4.75 0.15
DeepFill v2 [97] 22.1 0.28 5.20 0.16
EdgeConnect [53] 30.5 0.28 8.37 0.16

Table 6. Comparison of inpainting performance on 30k crops of
size 512⇥ 512 from test images of Places [101]. The column 40-
50% reports metrics computed over hard examples where 40-50%
of the image region have to be inpainted. †recomputed on our test
set, since the original test set used in [83] was not available.

input GT LaMa [83] LDM #1 LDM #2 LDM #3

Figure 11. Qualitative results on image inpainting as in Tab. 6.

a bottleneck for tasks that require fine-grained accuracy in
pixel space. We assume that our superresolution models
(Sec. 4.4) are already somewhat limited in this respect.
Societal Impact Generative models for media like im-
agery are a double-edged sword: On the one hand, they
enable various creative applications, and in particular ap-
proaches like ours that reduce the cost of training and in-
ference have the potential to facilitate access to this tech-
nology and democratize its exploration. On the other hand,
it also means that it becomes easier to create and dissemi-
nate manipulated data or spread misinformation and spam.
In particular, the deliberate manipulation of images (“deep
fakes”) is a common problem in this context, and women in
particular are disproportionately affected by it [12, 22].

Moreover, deep learning modules tend to reproduce
or exacerbate biases that are already present in the data
[20,34,85]. While diffusion models achieve better coverage
of the data distribution than e.g. GAN-based approaches,
the extent to which our two-stage approach that combines
adversarial training and a likelihood-based objective mis-
represents the data remains an important research question.

For a more detailed discussion of the ethical considera-
tions of deep generative models, see e.g. [12].

6. Conclusion

We have presented latent diffusion models, a simple and
efficient way to significantly improve both the training and
sampling efficiency of denoising diffusion models with-
out degrading their quality. Based on this and our cross-

input result

Figure 12. Qualitative results on object removal with our big, w/
ft inpainting model. For more results, see Fig. 22.

attention conditioning mechanism, our experiments could
demonstrate favorable results compared to state-of-the-art
methods across a wide range of conditional image synthesis
tasks without task-specific architectures.

This work has been supported by the German Research Foundation
(DFG) project 421703927 and the German Federal Ministry for Economic
Affairs and Energy within the project ’KI-Absicherung - Safe AI for auto-
mated driving’.
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Semantic Layout

Semantic Image Editing
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Blended Latent Di�usion
OMRI AVRAHAMI, The Hebrew University of Jerusalem, Israel
OHAD FRIED, Reichman University, Israel
DANI LISCHINSKI, The Hebrew University of Jerusalem, Israel

Input image Input mask “gravestone” “toy truck” “snake” Input image Input mask “a man with “a man with “a muscular man
a red suit” a yellow sweater” with a blue shirt”

Input image Input mask a horror book a children’s book a romantic novel
named “CVPR” titled “ECCV” titled “SIGGRAPH”

Input image Input mask “beach” “big mountain” “The Great
Pyramid of Giza”

Input image Input mask Prediction 1 Prediction 2 Prediction 3 Original image Image after scribble mask Prediction 1 Prediction 1

Fig. 1. Applications of our method: (top le�) adding a new object in the masked area guided by the text prompt, (top right) altering a part within an
existing object, (middle le�) generation of text, (middle right) altering the background in the scene, (bo�om le�) generating multiple predictions for the same
text prompt (“stones”), and (bo�om right) guiding the result by a combination of text (“paint splashes”) and scribbles.

The tremendous progress in neural image generation, coupled with the
emergence of seemingly omnipotent vision-language models has �nally
enabled text-based interfaces for creating and editing images. Handling
generic images requires a diverse underlying generative model, hence the
latest works utilize di�usion models, which were shown to surpass GANs
in terms of diversity. One major drawback of di�usion models, however, is
their relatively slow inference time. In this paper, we present an accelerated
solution to the task of local text-driven editing of generic images, where the
desired edits are con�ned to a user-provided mask. Our solution leverages
a recent text-to-image Latent Di�usion Model (LDM), which speeds up
di�usion by operating in a lower-dimensional latent space. We �rst convert
the LDM into a local image editor by incorporating Blended Di�usion into it.
Next we propose an optimization-based solution for the inherent inability of
this LDM to accurately reconstruct images. Finally, we address the scenario
of performing local edits using thin masks. We evaluate our method against
the available baselines both qualitatively and quantitatively and demonstrate
that in addition to being faster, our method achieves better precision than the
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baselines while mitigating some of their artifacts. Project page is available
at https://omriavrahami.com/blended-latent-di�usion-page/

CCS Concepts: • Computing methodologies! Image manipulation.

Additional Key Words and Phrases: Zero-Shot Text-Driven Local Image
Editing
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1 INTRODUCTION
In recent years we have witnessed tremendous progress in realistic
image synthesis and image manipulation with deep neural genera-
tive models. GAN-based models were �rst to emerge [Goodfellow
et al. 2014; Brock et al. 2018; Karras et al. 2019, 2020], soon fol-
lowed by di�usion-based models [Sohl-Dickstein et al. 2015; Ho
et al. 2020; Nichol and Dhariwal 2021]. In parallel, recent advances
in multimodal machine learning, such as CLIP [Radford et al. 2021]
have opened the way for generating and editing images using a
fundamental form of human communication — natural language.
The resulting text-guided image generation and manipulation ap-
proaches, e.g., [Patashnik et al. 2021; Nichol et al. 2021; Ramesh
et al. 2022] enable artists to simply convey their intent in natural
language, potentially saving hours of painstaking manual work.
Figure 1 demonstrates some examples.
However, the vast majority of the text-guided approaches focus

on generating images from scratch or on manipulating existing
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Target: A cat with ginger hair
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Target: This bird has wings that are 
blue and has a white belly
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Target: This young person has black 
hair and bangs
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Target: Elsa from FrozenSource image
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Instruction-Based Object Removal
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remove the gray kite at the left remove the street light at the left remove the man at the right of the man

remove the red car at the left of the tall ladder remove the colorful train at the right remove the boat at the right of the small boat
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Visual Quality Assessment
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Figure 2. Model overview of MUSIQ. We construct a multi-scale image representation as input, including the native resolution image
and its ARP resized variants. Each image is split into fixed-size patches which are embedded by a patch encoding module (blue boxes).
To capture 2D structure of the image and handle images of varying aspect ratios, the spatial embedding is encoded by hashing the patch
position (i, j) to (ti, tj) within a grid of learnable embeddings (red boxes). Scale Embedding (green boxes) is introduced to capture scale
information. The Transformer encoder takes the input tokens and performs multi-head self-attention. To predict the image quality, we
follow a common strategy in Transformers to add an [CLS] token to the sequence to represent the whole multi-scale input and use the
corresponding Transformer output as the final representation.

functions. ViT [10] showed that the deterministic and learn-
able positional embeddings [12] works equally well. How-
ever, those positional embeddings are generated for fixed-
length sequences. When the input resolution changes, the
pre-trained positional embeddings is no longer meaning-
ful. Relative positional embeddings [2, 31] is proposed to
encode relative distance instead of absolute position. Al-
though the relative positional embeddings can work for
variable length inputs, it requires substantial modifications
in Transformer attention and cannot capture multi-scale po-
sitions in our use case.

3. Multi-scale Image Quality Transformer
3.1. Overall Architecture
To tackle the challenge of learning IQA on full-size im-
ages, we propose a multi-scale image quality Transformer
(MUSIQ) which can handle inputs with arbitrary aspect ra-
tios and resolutions. An overview of the model is shown in
Figure 2.

We first make a multi-scale representation of the input
image, containing the native resolution image and its ARP
resized variants. The images at different scales are parti-
tioned into fixed-size patches and fed into the model. Since
patches are from images of varying resolutions, we need
to effectively encode the multi-aspect-ratio multi-scale in-
put into a sequence of tokens (the small boxes in Figure 2),
capturing both the pixel, spatial, and scale information.

To achieve this, we design three encoding components in
MUSIQ, including: 1) A patch encoding module to encode
patches extracted from the multi-scale representation (Sec-
tion 3.2); 2) A novel hash-based spatial embedding module
to encode the 2D spatial position for each patch (Section
3.3); 3) A learnable scale embedding to encode different
scale (Section 3.4).

After encoding the multi-scale input into a sequence of
tokens, we use the standard approach of prepending an ex-
tra learnable “classification token” (CLS) [9, 10]. The CLS
token state at the output of the Transformer encoder serves
as the final image representation. We then add a fully con-
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Visual Quality Assessment of 360° images
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Figure 1: An overview of the proposed local-global transformer for 360-degree
quality assessment method (LGT360IQ). The model consists of two branches, mimic-

ing bottom-up (task-independent) and top-down (task-dependent) attention mechanisms.

The local branch processes tangent images extracted from visually salient regions, whereas

the global branch utilizes ERP representation of the omnidirectional image, and performs

adaptive token selection. The prediction module employs cross-attention to combine in-

formation coming from both branches, leading to accurate quality score predictions.

through a limited viewport, continually examining the surroundings through
head movements. Inspired by this, instead of utilizing a projected version
of ODI, in the local branch of our network, we employ a series of tangent
viewports extracted from the input 360-degree image. Previous studies, such
as [18], [19], [20], have highlighted the importance of saliency maps in IQA,
as they provide valuable insights into the perceptually relevant regions of an
image. Consequently, we propose to sample the viewports based on their
salience for processing. By combining saliency maps with local image fea-
tures, we can achieve a more comprehensive and accurate assessment of image
quality, capturing the nuances that contribute to the overall visual experi-
ence.

Saliency-Guided Viewport Sampling. To enhance the accuracy of the
360-degree IQA for omnidirectional images, we introduce a saliency-based
sampling method in the local branch of our model. This method, draw-
ing inspiration from human visual attention mechanisms, utilizes the ATSal
model [47] for predicting visual saliency in omnidirectional content. ATSal
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Fig. 4. Results for WDC with mixture noise in Case 5. (a) False-color original image with bands (57, 27, 17), (b) Noisy image, (c) LRTF-DFR, (d) FastHyMix, (e) BM4D, (f) LRTV,
(g) LRMR, (h) LRTDTV, (i) QRNN3D, (j) HSID-CNN, (k) MemNet, (l) HDNET, (m) MAN, (n) SM-CNN (Ours).

Table 1
Quantitative evaluation of different denoising methods with five complex noise cases on the WDC dataset.
Method Case 1: GN Case 2: GN & SN Case 3: GN & DN Case 4: GN & IN Case 5: Mixture Noise

MPSNR MSSIM SAM MPSNR MSSIM SAM MPSNR MSSIM SAM MPSNR MSSIM SAM MPSNR MSSIM SAM

Noisy HSI 18.508 0.690 0.278 18.982 0.711 0.264 17.338 0.653 0.328 15.269 0.531 0.420 13.402 0.500 0.464
BM4D [28] 26.904 0.943 0.093 27.057 0.947 0.091 23.303 0.895 0.158 20.272 0.729 0.251 17.841 0.701 0.297
LRTV [16] 25.464 0.906 0.111 25.839 0.914 0.106 24.895 0.895 0.118 23.253 0.850 0.153 22.842 0.855 0.150
LRMR [14] 28.501 0.964 0.079 28.670 0.965 0.077 25.926 0.944 0.104 23.183 0.865 0.170 21.841 0.864 0.173
LRTDTV [17] 27.999 0.956 0.081 28.376 0.960 0.077 27.602 0.952 0.084 26.393 0.933 0.100 26.041 0.931 0.101
LRTF-DFR [20] 31.603 0.981 0.054 31.987 0.983 0.051 30.621 0.978 0.058 28.988 0.964 0.081 28.559 0.967 0.077
FastHyMix [32] 32.303 0.986 0.052 32.155 0.986 0.052 30.203 0.981 0.059 27.435 0.911 0.129 24.618 0.905 0.133
QRNN3D [10] 27.352 0.963 0.084 27.512 0.965 0.082 27.336 0.964 0.084 26.943 0.960 0.088 26.197 0.952 0.096
HSID-CNN [8] 29.355 0.968 0.071 29.541 0.970 0.069 28.872 0.966 0.075 26.559 0.943 0.097 26.156 0.940 0.101
MemNet [36] 28.126 0.964 0.095 28.398 0.966 0.079 29.913 0.971 0.069 29.702 0.969 0.081 27.082 0.960 0.093
HDNET [43] 29.897 0.972 0.065 30.079 0.974 0.064 29.158 0.969 0.070 26.982 0.951 0.090 26.222 0.945 0.095
MAN [42] 31.971 0.981 0.052 32.060 0.983 0.051 31.664 0.981 0.054 29.973 0.971 0.066 28.205 0.961 0.079
SM-CNN (Ours) 32.529 0.984 0.048 31.477 0.981 0.054 32.281 0.983 0.050 30.063 0.973 0.064 29.832 0.973 0.066

Fig. 5. PSNR and SSIM values across the spectrum corresponding to the denoising results of the proposed and the competing methods for Case 5.

for better results rather than considering it as a single model, as noted
in [10].
PU dataset. The noises similar to the mixture noise given in Case
5 have been added to this data. All conditions except the randomly
selected number of bands to add different noises have been chosen as
in the above cases. Since the number of bands is less than those of WDC,
one third of the randomly selected bands corresponds to 34 bands. As
a result, each band is randomly corrupted by at least one type of noise.
While performing this test, the network trained on WDC data has been
used. Note that the pre-trained network is used even though the number
of bands is different. This feature demonstrates the reusability power
of single models.

Table 2 shows the quantitative evaluation of the denoising results
of different methods for the PU dataset distorted by mixture noise. We
ran tests on 10 different scenarios to observe the performance changes
of all methods when different bands were corrupted with sparse noise.
The table shows the mean and standard deviations of the different
runs that we conducted. The proposed SM-CNN achieves the highest
MPSNR, second best MSSIM and SAM for the PU dataset without any
fine tuning. QRNN3D achieves the highest MSSIM and SAM, which
may be due to the possibility that the training data will better match

Table 2
Quantitative evaluation of different denoising methods on the PU dataset across 10
noisy runs.

Method MPSNR MSSIM SAM

Noisy HSI 14.671 ± 0.317 0.281 ± 0.015 0.649 ± 0.012
BM4D [28] 23.853 ± 0.212 0.713 ± 0.010 0.273 ± 0.008
LRTV [16] 27.786 ± 1.005 0.838 ± 0.015 0.204 ± 0.023
LRMR [14] 26.844 ± 0.280 0.809 ± 0.011 0.214 ± 0.007
LRTDTV [17] 31.038 ± 0.191 0.901 ± 0.006 0.142 ± 0.005
LRTF-DFR [20] 29.696 ± 0.255 0.902 ± 0.007 0.138 ± 0.005
FastHyMix [32] 28.370 ± 0.290 0.884 ± 0.007 0.162 ± 0.007
QRNN3D [10] 31.274 ± 0.134 0.953 ± 0.002 0.107 ± 0.002
HSID-CNN [8] 27.185 ± 0.105 0.837 ± 0.003 0.189 ± 0.002
MemNet [36] 29.642 ± 0.118 0.910 ± 0.004 0.143 ± 0.001
HDNET [43] 29.931 ± 0.186 0.911 ± 0.004 0.142 ± 0.003
MAN [42] 30.283 ± 0.112 0.914 ± 0.002 0.139 ± 0.001
SM-CNN (Ours) 31.359 ± 0.119 0.923 ± 0.002 0.124 ± 0.001

these data. Because MAN uses 3D convolution, retraining it when the
number of bands in the data changes will improve its performance and
adaptability. HSID-CNN, MemNet and HDNET have performed worse
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Fig. 4. Results for WDC with mixture noise in Case 5. (a) False-color original image with bands (57, 27, 17), (b) Noisy image, (c) LRTF-DFR, (d) FastHyMix, (e) BM4D, (f) LRTV,
(g) LRMR, (h) LRTDTV, (i) QRNN3D, (j) HSID-CNN, (k) MemNet, (l) HDNET, (m) MAN, (n) SM-CNN (Ours).

Table 1
Quantitative evaluation of different denoising methods with five complex noise cases on the WDC dataset.
Method Case 1: GN Case 2: GN & SN Case 3: GN & DN Case 4: GN & IN Case 5: Mixture Noise

MPSNR MSSIM SAM MPSNR MSSIM SAM MPSNR MSSIM SAM MPSNR MSSIM SAM MPSNR MSSIM SAM

Noisy HSI 18.508 0.690 0.278 18.982 0.711 0.264 17.338 0.653 0.328 15.269 0.531 0.420 13.402 0.500 0.464
BM4D [28] 26.904 0.943 0.093 27.057 0.947 0.091 23.303 0.895 0.158 20.272 0.729 0.251 17.841 0.701 0.297
LRTV [16] 25.464 0.906 0.111 25.839 0.914 0.106 24.895 0.895 0.118 23.253 0.850 0.153 22.842 0.855 0.150
LRMR [14] 28.501 0.964 0.079 28.670 0.965 0.077 25.926 0.944 0.104 23.183 0.865 0.170 21.841 0.864 0.173
LRTDTV [17] 27.999 0.956 0.081 28.376 0.960 0.077 27.602 0.952 0.084 26.393 0.933 0.100 26.041 0.931 0.101
LRTF-DFR [20] 31.603 0.981 0.054 31.987 0.983 0.051 30.621 0.978 0.058 28.988 0.964 0.081 28.559 0.967 0.077
FastHyMix [32] 32.303 0.986 0.052 32.155 0.986 0.052 30.203 0.981 0.059 27.435 0.911 0.129 24.618 0.905 0.133
QRNN3D [10] 27.352 0.963 0.084 27.512 0.965 0.082 27.336 0.964 0.084 26.943 0.960 0.088 26.197 0.952 0.096
HSID-CNN [8] 29.355 0.968 0.071 29.541 0.970 0.069 28.872 0.966 0.075 26.559 0.943 0.097 26.156 0.940 0.101
MemNet [36] 28.126 0.964 0.095 28.398 0.966 0.079 29.913 0.971 0.069 29.702 0.969 0.081 27.082 0.960 0.093
HDNET [43] 29.897 0.972 0.065 30.079 0.974 0.064 29.158 0.969 0.070 26.982 0.951 0.090 26.222 0.945 0.095
MAN [42] 31.971 0.981 0.052 32.060 0.983 0.051 31.664 0.981 0.054 29.973 0.971 0.066 28.205 0.961 0.079
SM-CNN (Ours) 32.529 0.984 0.048 31.477 0.981 0.054 32.281 0.983 0.050 30.063 0.973 0.064 29.832 0.973 0.066

Fig. 5. PSNR and SSIM values across the spectrum corresponding to the denoising results of the proposed and the competing methods for Case 5.

for better results rather than considering it as a single model, as noted
in [10].
PU dataset. The noises similar to the mixture noise given in Case
5 have been added to this data. All conditions except the randomly
selected number of bands to add different noises have been chosen as
in the above cases. Since the number of bands is less than those of WDC,
one third of the randomly selected bands corresponds to 34 bands. As
a result, each band is randomly corrupted by at least one type of noise.
While performing this test, the network trained on WDC data has been
used. Note that the pre-trained network is used even though the number
of bands is different. This feature demonstrates the reusability power
of single models.

Table 2 shows the quantitative evaluation of the denoising results
of different methods for the PU dataset distorted by mixture noise. We
ran tests on 10 different scenarios to observe the performance changes
of all methods when different bands were corrupted with sparse noise.
The table shows the mean and standard deviations of the different
runs that we conducted. The proposed SM-CNN achieves the highest
MPSNR, second best MSSIM and SAM for the PU dataset without any
fine tuning. QRNN3D achieves the highest MSSIM and SAM, which
may be due to the possibility that the training data will better match

Table 2
Quantitative evaluation of different denoising methods on the PU dataset across 10
noisy runs.

Method MPSNR MSSIM SAM

Noisy HSI 14.671 ± 0.317 0.281 ± 0.015 0.649 ± 0.012
BM4D [28] 23.853 ± 0.212 0.713 ± 0.010 0.273 ± 0.008
LRTV [16] 27.786 ± 1.005 0.838 ± 0.015 0.204 ± 0.023
LRMR [14] 26.844 ± 0.280 0.809 ± 0.011 0.214 ± 0.007
LRTDTV [17] 31.038 ± 0.191 0.901 ± 0.006 0.142 ± 0.005
LRTF-DFR [20] 29.696 ± 0.255 0.902 ± 0.007 0.138 ± 0.005
FastHyMix [32] 28.370 ± 0.290 0.884 ± 0.007 0.162 ± 0.007
QRNN3D [10] 31.274 ± 0.134 0.953 ± 0.002 0.107 ± 0.002
HSID-CNN [8] 27.185 ± 0.105 0.837 ± 0.003 0.189 ± 0.002
MemNet [36] 29.642 ± 0.118 0.910 ± 0.004 0.143 ± 0.001
HDNET [43] 29.931 ± 0.186 0.911 ± 0.004 0.142 ± 0.003
MAN [42] 30.283 ± 0.112 0.914 ± 0.002 0.139 ± 0.001
SM-CNN (Ours) 31.359 ± 0.119 0.923 ± 0.002 0.124 ± 0.001

these data. Because MAN uses 3D convolution, retraining it when the
number of bands in the data changes will improve its performance and
adaptability. HSID-CNN, MemNet and HDNET have performed worse
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Today’s Lecture
• Course info

• History of photography

• Limitations of traditional photography

• Recent accomplishments
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Reading Assignments
• Brian Hayes, Computational Photography, American Scientist 96, 

94-99, 2008

• Michael Johnston, Your Camera Roll Contains A Masterpiece, New 
Yorker, March 31, 2022
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Next Lecture: 
Image formation
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