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Today's Lecture

Digital photography

Standard camera pipeline

Noise

Color

Disclaimer: The material and slides for this lecture were borrowed from
—Wojciech Jarosz's CS 89.15/189.5 “"Computational Aspects of Digital Photography” class
—loannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class

—Steve Marschner's CS6640 “Computational Photography” class

—Mlichael S. Brown's ICCV 2023 tutorial on “Understanding the in-camera rendering pipeline and the role of Al
and deep learning”



Today's Lecture

 Digital photography



The modern photography plpellne

post-capture processing

sensor, analog In-camera Image
-> front-end, and =>» processing
color filter array pipeline

optics and optical
controls




Imaging sensor primer



What does an imaging sensor do?

When the camera shutter opens...

... exposure begins...

Canon 6D sensor array of photon buckets
(20.20 MP, full-frame)

photons

O O

close-up view of photon buckets

... photon buckets begin to store
photons...

... until the camera shutter closes.
Then, they convert stored photons
to intensity values.



Nikon D3s



Photoelectric effect

photons / / electrons
%{1 © ©)]

O @0 O ©
@@@@@

Albert Einstein

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics,
and especially for his discovery of the law of the photoelectric effect”



Basic imaging sensor design

photosite photosite photosite

Canon 6D sensor
(20.20 MP, full-frame)

\ made of silicon, emits

out etc. circuitry electrons electrons from photons

7

silicon for read- /

/
stores emitted /

The term “photosite” can be used to refer to both
the entire pixel and only the photo-sensitive area.



Photosite quantum efficiency (QE)

How many of the incident photons will the photosite
convert into electrons?

# photons

Fundamental optical performance metric of imaging sensors.

Not the only important optical performance metric!

% ® ©)
# electrons - dent it
QE photons / electrons

/

O, 00 3 © o
©%6 0 0 6
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Photosite response

The photosite response Is mostly linear

number of electrons

what does this slope equal?
>

number of photons
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Photosite response

The photosite response Is mostly linear

number of electrons

what happens here?

v QE

number of photons
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Photosite response

The photosite response Is mostly linear, but:

* non-linear when potential well is saturated
(over-exposure)

e non-linear near zero (due to noise)

We will see how to deal with these issues In
a later lecture (high-dynamic-range imaging).

under-exposure
(non-linearity due tc
Sensor noise)

over-exposure
(non-linearity due
to sensor saturation)

number of electrons

saturation

v QE
.

>

number of photons

Saturation means that the potential
well is full before exposure ends.
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Two main types of imaging sensors

Do you know them?
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Silicon Photodiode Anatomy

Drain Incomin
Voltage  Pixel Photonsg

Control

Transfer CCD —
Gate OCates "

Channel

Buried
Channel

Lateral

Overflow ppotodiode

Drain
mEe':g:a‘ed Potential

Figure 5 Potenti ?Well Barrier p-Silicon

Charged coupled device (CCD):
row brigade shifts charges row-by-row
amplifiers convert charges to voltages
row-by-row

Two main types of imaging sensors

Anatomy of the Active Pixel Sensor Photodiode

Mlcrolens7/ =
Red

Color
Filter

Reset
Transistor

/I

Amplifier 4 :
Translstor—.—-& — Row
c \ ,’ ’ — < 4 Select
olumn : Bus
Bus / = /
Transistor
Photodiode

Silicon
Substrate

Potential
Well

Figure 3

per-pixel amplifiers convert charges to voltages
multiplexer reads voltages row-by-row

Can you think of advantages and disadvantages of each type?

Complementary metal oxide semiconductor (CMOS):
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Two main types of imaging sensors

Charge-Coupled Device
Image Sensor

Camera
(Printed Circuit Board)
=== == -
I Bias Clock & :
I : Timing
| | Generation Generation | |
| l :
|
| | Oscillator ;';::(s |
' |
T |
I s | Gain | |
Driver N
|
—_— — _\T I
Analog-to-Digital
To Frame .
Grabber Conversion

Photon-to-Electron
Conversion
Electron-to-Voltage
Conversion

Charged coupled device (CCD):
row brigade shifts charges row-by-row
amplifiers convert charges to voltages

row-by-row

. Ca!ner_o Complementary Metal Oxide Semiconductor
(Printed Circuit Board) Image Sensor
______ I
| N o o o
| Clock & | Bl el e el sl e
' o |1 | Timing /:/
: = £ || | = Generation E]t I_I__'_k I:'_It Qa |
sl 2 .2 e 8 I
2 o [I 1| 8% 21la \ Y 5 \ N
E([8] 1|22 5H3 |
[}
N {HEE g
| 2 I | e || g N N N o N I
|
| : : Oscillator [Yh li | [1 [1 ]K |
| - b
______ | — | Column Amps |
| Line Gain | [ I [ |
: Driver A —| Column Mux |

To Frame  Analog-to-Digital
Grabber Conversion

Photon-to-Electron
Conversion

Electron-to-Voltage
Conversion

Complementary metal oxide semiconductor (CMOS):
per-pixel amplifiers convert charges to voltages
multiplexer reads voltages row-by-row

Can you think of advantages and disadvantages of each type?
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Two main types of imaging sensors

Camera Charge-Coupled Device (Printedcg:::euri? Board) complemema“;::ézl s%’,‘ff; semiconductor
(Printed Circuit Board) Image Sensor | | ____ __ | Moo - —————

——————————— 1 ——— e e = = = — g | [ ] s

i s Clock& || e : | i | Slock & | LALR A m/ll/ 88
i A o imi Y 5
: Generation Gel:\:::gon | : ] I : 5 ‘=:1 : ! §_ Generation H : E]t Q I:'_It Qa : gg
| = iR i 0 A |5 | CHCNERCALY | 2
[ osctaror | | ook || | 1811g] 1| 8 HIH -
o o] — NIRRT EEE R
| I x| | , N St : L L T Cotumn Ames 1
__1'____\?___“ ________ A= : DLrIi'\‘r:r_ A | o — l C:alumnlMuxl ' §U
Analog-to-Digital Photon-to-Electron | _! =

To Frame Conversion Conversion - Jj _____ 1 __________________

Grabber

Eledron-to-\./o"age To Frame  Analog-to-Digital
Conversion Grabber Conversion
Charged coupled device (CCD): Complementary metal oxide semiconductor (CMOS):
* row brigade shifts charges row-by-row « per-pixel amplifiers convert charges to voltages
« amplifiers convert charges to voltages  multiplexer reads voltages row-by-row
row-by-row
higher sensitivity faster read-out
lower noise lower cost

17



Artifacts of the two types of sensors

sensor bloom smearing artifacts

Which sensor type can have these artifacts?
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Artifacts of the two types of sensors
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sensor bloom smearing artifacts
(CMOS and CCD) (CCD only)

Overflow from saturated pixels
e mitigated by more electronics to contain charge
(at the cost of photosensitive area)
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CCD vs CMOS

Modern CMOS sensors
have optical
performance comparable
to CCD sensors.

Most modern
commercial and
Industrial cameras use
CMOS sensors.

BFLY-PGE-2356M-C (SONY IMX249) 1920 X 1200
FL3-GE-2854M-C (SONY ICX687) 1928 X 1448
GS3-U3-120S6M~-C (SONY ICX834) 4240 X 2824
BFLY-PGE-12A2M-CS (APTINAARO134) 1280 X 960
FL3-U3-1352M-CS (SONY IMX035) 1328 X 1048
GS3-PGE-23S6M-C (SONY IMX174) 1920 X 1200
CM3-U3-2854M-CS(SONY ICX818) 1928 X 1448
GS3-U3-2386M-C (SONY IMX174) 1920 X 1200
GS3-U3-3254M-C (SONY IMX252) 2048 X 1536
GS3-U3-5155M-C (SONY IMX250) 2448X 2048
GS3-U3-91S6M-C (SONY ICX814) 3376 X 2704
GS3-U3-4154M-C (SONY ICX808) 2024X 2024
GS3-U3-600S6M-C (SONY ICX694) 2736 X 2192
GS3-U3-60S6M-C (SONY ICX694) 2736 X 2192
GS3-U3-1555M-C (SONY ICX825) 1384 X 1032
GS3-U3-12356M~C (SONY IMX253) 4096 X 3000
GS3-PGE-60S6M-C (SONY ICX694) 2736 X 2192
BFS-U3-51S5M-C (SONY IMX250) 2448 X 2048
BFLY-PGE-3184M-C (SONY IMX265) 2048X 1536
BFLY-PGE-09S2M-CS (SONY ICX692) 1288 X728
GS3-U3-89S6M~-C (SONY IMX255) 4096 X 2160
CM3-U3-3154M-CS (SONY IMX265) 2048 X 1536
BFLY-PGE-0552M-CS (SONY ICX693) 808 X 608
BFLY-PGE-13H2M-CS (SHARPRJ33J4CA3DE)  1288X 964
FL3-GE-03S1M-C(SONY ICX618) 648 X 488
BFLY-PGE-50S5M~C (SONY IMX264) 2448 X 2048
CM3-U3-50S5M-CS (SONY IMX264) 2448 X 2048
GS3-U3-28S4M-C (SONY ICX687) 1928 X 1448
CM3-U3-1352M-CS (SONY ICX445) 1288 X 964
GS3-U3-2855M-C (SONY ICX674) 1920 X 1440
FL3-U3-3252M-CS (SONY IMX036) 2080 X 1552
BFLY-PGE-1352M-CS (SONY ICX445) 1288 X 964
FL3-U3-20E4M-C (E2V EV76C570) 1600 X 1200
BFLY-PGE-50A2M-CS (APTINAMT9PO31) 2592 X 1944
BFLY-U3-1352M-C (SONY ICX445) 1288 X 964
FL3-U3-13Y3M-C (ON SEMI VITA1300) 1280 X 1024
FL3-GE-1352M~C (SONY ICX4465) 1288 X 964
BFLY-PGE-13E4M~CS (E2V EV76C560) 1280 X 1024
FL3-GE-50S5M~C (SONY ICX655) 2448 X 2048
FL3-U3-13E4M-C (E2VEV76C560) 1280 X 1024
BFS-U3-13Y3M-C (ON SEMIPYTHON 1300) 1280 X 1024
CM3-U3-13Y3M-CS (ON SEMI PYTHON 1300) 1280 X 1024
FL3-GE-20S4M-C (SONY ICX274) 1624 X 1224
GS3-U3-50S5M-C (SONY ICX625) 2448 X 2048
BFLY-PGE-50H5M-C (SHARPRJ32S4AA0DT) 2448 X 2048
GS3-PGE-50S5M-C (SONY ICX625) 2448 X 2048
GS3-U3-41C6NIR-C (CMOSIS CMV4000 NIR) 2048 X 2048
GS3-U3-14S5M-C (SONY ICX285) 1384 X 1036
BFLY-U3-0352M-C (SONY ICX424) 648 X 488
GS3-U3-41C6M~C (CMOSIS CMV4000) 2048 X 2048
FL3-GE-14S3M-C (SONY ICX267) 1384 X 1032
BFLY~-PGE-20E4M-CS (E2V EV76C5670) 1600 X 1200
FFMV-03M2M-CS (APTINAMT9VO22177ATC) 752 X 480
BFLY-PGE-0352M-CS (SONY ICX424) 648 X 488
FL3-GE-0852M-C (SONYICX204) 1032 X776
BFLY-PGE-03S3M-CS (SONY ICX414) 648 X 488

M cco
M cMos @Losan
B CMOS RoLune)
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BFLY-PGE-03S3M-CS(SONY ICX414) 648 X 488
BFLY-PGE-0352M-CS (SONY ICX424) 648 X 488
BFLY-U3-03S2M-CS(SONY ICX424) 648 X 488

GS3-U3-1555M-C (SONY ICX825) 1384 X 1032
GS3-U3-14S5M-C (SONY ICX285) 1384 X 1036
BFLY-PGE-05S2M~CS (SONY ICX693) 808 X 608
FFMV-03M2M-CS (APTINAMT9VO22177ATC) 752 X 480
BFLY-PGE-2356M~C (SONY IMX249) 1920 X 1200
GS3-PGE-2356M-C (SONY IMX174) 1920 X 1200
GS3-U3-2356M-C (SONY IMXT74) 1920 X 1200
FL3-GE-03S1M-C (SONY ICX618) 648 X 488
GS3-U3-41C6NIR-C (CMOSIS CMV4000 NIR) 2048 X 2048
GS3-U3-41C6M-C (CMOSIS CMV4000) 2048 X 2048
FL3-U3-13E4M-C (E2VEV76C560) 1280 X 1024
BFLY-PGE-13E4M-CS (E2V EV76C560) 1280 X 1024
FL3-U3-13Y3M-C (ON SEMI VITA1300) 1280 X 1024
CM3-U3-13Y3M~-CS (ON SEMIPYTHON 1300) 1280 X 1024
BFS-U3-13Y3M~C (ON SEMI PYTHON 1300) 1280 X 1024
FL3-GE-0852M-C (SONY ICX204)  1032X 776
FL3-GE-14S3M-C (SONY ICX267) 1384 X 1032
GS3-PGE-60S6M-C (SONY ICX694) 2736 X 2192
GS3-U3-28S5M-C (SONY ICX674) 1920 X 1440
GS3-U3-600S6M-C (SONY ICX694) 2736 X 2192
GS3-U3-60S6M-C (SONY ICX694) 2736 X 2192
BFLY-PGE-20E4M-CS (E2V EV76C570) 1600 X 1200
FL3-U3-20E4M-C (E2V EV76C570) 1600 X 1200
FL3-GE-20S4M-C (SONY ICX274) 1624 X 1224
BFLY-PGE-09S2M-CS (SONY ICX692) 1288 X 728
BFLY-PGE-12A2M-CS (APTINA ARO134) 1280 X 960
BBFLY-PGE-13H2M-CS (SHARP RJ33J4CA3DE)  1288X 964
BFLY-PGE-1352M-CS (SONY ICX445) 1288 X 964
BFLY-U3-1352M-CS (SONY ICX445) 1288 X 964
CM3-U3-1352M-CS (SONY ICX445) 1288 X 964
BFLY-PGE-13H2M-CS (SHARP RJ33J4CA3DE) 1288 X 964
FL3-GE-1352M-C (SONY ICX445) 1288 X 964
CM3-U3-2854M-CS (SONY ICX818) 1928 X 1448
FL3-GE-2854M-C (SONY ICX687) 1928 X 1448
GS3-U3-9156M-C (SONY ICX814) 3376 X 2704
GS3-U3-2854M-C (SONY ICX687) 1928 X 1448
FL3-U3-1352M-CS (SONY IMX035) 1328 X 1048
GS3-U3-12386M-C (SONY IMX253) 4096 X 3000
GS3-U3-89S6M~C (SONY IMX255) 4096 X 2160
BFLY-PGE-3154M-C (SONY IMX265) 2048 X 1536
BFLY-PGE-50S5M-C (SONY IMX264) 2448 X 2048
CM3-U3-3154M-CS (SONY IMX265) 2048 X 1536
CM3-U3-50S5M-CS (SONY IMX264) 2448 X 2048
BFLY-PGE-50HSM-C (SHARP RJ32S4AAODT) 2448 X 2048
FL3-GE-50S5M-C (SONY ICX655) 2448 X 2048
BFS-U3-51S5M-C (SONY IMX250) 2448 X 2048
GS3-U3-51S5M-C (SONY IMX250) 2448 X 2048
GS3-PGE-50S5M-C (SONY ICX625) 2448 X 2048
GS3-U3-5085M-C (SONY ICX625) 2448 X 2048
GS3-U3-3254M-C (SONY IMX252) 2048 X 1536
GS3-U3-4154M-C (SONY ICX808) 2024X 2024
GS3-U3-120S6M-C (SONY ICX834) 4240 X 2824
FL3-U3-3252M-CS (SONY IMX036) 2080 X 1552
BFLY-PGE-50A2M-CS (APTINAMT9PO31) 2592 X 1944

MAX
RESOLUTION

PIXEL
SIZE

Mcco

M cMOS aLosan
[l CMOS RoLLING)

o 5000 10000 15000
FULL WELL DEPTH (e-)

20000 25000 30000 33105
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What does an imaging sensor do?

When the camera shutter opens, the sensor:

« at every photosite, converts incident photons into
electrons

e stores electrons into the photosite’s potential well
while it is not full

. until camera shutter closes. Then, the analog front-end:

* reads out photosites’ wells, row-by-row, and converts ==
them to analog signals g (B[] g | oot | || [EHCHCNEHED 8
_ | _ _ I ARIE §13 | CHCHEMCNLY 1 2°
* applies a (possibly non-uniform) gain to these analog IRIEAE Al 4 [ i
! L e | CACAEAEE 3
Slgﬂa|S Lot o : U o e | gg
.. . i Dl:i’\'::« A Gain | | T Cotumn M : éo

 converts them to digital signals — P

e corrects non-linearities
. and finally returns an image.
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Remember these?

helps photosite * Lenslets also filter the image
collect more light to avoid resolution artifacts.
/ (also called lenslet)  Lenslets are problematic
when working with coherent
light.
 Many modern cameras do not

photosite photosite

have lenslet arrays.
7

7
silicon for read- / stores emitted / \ made of silicon, emits
out etc. circuitry electrons electrons from photons

We will see what the color filters are for later in this lecture.

22



Color primer
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Color

* Very high-level of color as it relates to digital
photography.

* We could spend an entire course covering color.

* We will discuss color in more detail in later today.

color is complicated

24



Color is an artifact of human perception

« “Color” is not an objective physical property of light (electromagnetic radiation).
* Instead, light is characterized by its wavelength.

< Increasing Frequency (v)

2

, _ electromagnetic
Y rays X rays uv IR Microwave |FM AM Long radio waves
Radio waves S p e Ct rum
| | | , | I o | | | I I | | |
0% 107 10 107¢ 10 ! 100 107 1072 10° 10° 10* 10° 10® A (m)

- -
R e
-
-
-

~~~~~~~~~~~ Increasing Wavelength (A) —

el viEblERe, 00 e '
VWhat we call “color” is how we

subjectively perceive a very small
range of these wavelengths.

] ) i
400 500 600 700

Increasing Wavelength (A) in nm —




White light through a prism

“white light”
(broad spectrum)

Spectral “colors”

v v \

450nm 600nm 650nm

Isaacv Newton
1’704 - Opticks

Relative Power

« Light is separated into “monochromatic” light at different wave lengths.
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Biology of color sensations

Light Response Spectra for Human Light Receptors (Cones)

Short, Medium,
Retina

A
|
|
|
|
I
Long Cones 2
.2
Optical nerve =
c
Q
1))
|
|
! < [ﬂug_Qqnes (B)
E)’e Green Cones (G)
< Red Cones (R) =

T SR Ty c ) [ P L P, [ ey p S ey LR S e T (S e e (e o T B QT Tou e Ly

400 450 500 550 600 650 700
Wavelength (nm)

* QOur eye has three receptors (cone cells). The different cones respond to different ranges
of the visible light spectrum.
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Cones and rods

« \We have additional light-sensitive cells called rods that are not responsible for color.
Rods are used in low-light vision.
« Cone cells are most concentrated around the fovea of the eye.

retina ' Cone

Density in thousands per square mm

80 60 40 20 0 20 60 80
Angular separation from fovea (degrees)

Fovea

Human eye .
region
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Spectral Power Distribution (SPD)

« Most types of light “contain” more than one wavelengths.

* \We can describe light based on the distribution of power over different wavelengths.

Daylight Incandescent Fluorescent
~2700 K
60 W Incandescent 3500 K ‘ 80 i 80
. 13 WiEluorescent _ﬁ i!: Sl

. 5500 K wavelength [nm wavelength (nm

v Fluorescent B Halogen | Warm White LED

We call our E L
sensation of all of
these distributions ‘ ‘ o
“white” |
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Spectral Sensitivity Function (SSF)

* Any light sensor (digital or not) has different sensitivity to different wavelengths.
* This is described by the sensor’s spectral sensitivity function f()\)

* When measuring light of a some SPD ®(\), the sensor produces a scalar
response:

light SPD sensor SSF

I
s R— [ ®(\)F(N)dA
A

Weighted combination of light's SPD: light contributes more at
wavelengths where the sensor has higher sensitivity.



Spectral Sensitivity Function of Human Eye

 The human eye is a collection of light sensors called cone cells.
* There are three types of cells with different spectral sensitivity functions.

 Human color perception iIs three-dimensional (tristimulus color).

1.0}

“short” S — / SNSA)AA L
A

0.6

‘medium”M = [ ®(A)M(N\)dA |
s |

cone diStribUtiOn 0 4(I)O 450 500 550 600 650 700
for normal vision
64% L, 32% M)
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Color filter arrays (CFA)

* To measure color with a digital sensor, mimic cone cells of human vision system.

 “Cones” correspond to pixels that are covered by different color filters, each with its
own spectral sensitivity function.

photosite photosite photosite

32



What color filters to use?

Two design choices:

« \What spectral sensitivity functions f()\) to use for each color filter?

 How to spatially arrange (“mosaic”) different color filters

: Canon 50D

——— Canon40D

SSF for
Canon 50D

Bayer
mosaic

02

Pixel Quanturn Efficiency

o
—_
m

o
=

005

W h y maore G enera | |y d O Not 4hoo 45:00 50;00 ssinn BU:DD : ssﬁn 7000

green Wavelength (A)
) , match human LMS.
pixels: f()\)



What color filters to use?

Two design choices:

« \What spectral sensitivity functions f()\) to use for each color filter?

 How to spatially arrange (“mosaic”) different color filters

Bayer
mosaic

"
P e e e PP AT P OO T YT Y A A Y Y A O T Y v

P s

http://www.currentprotocols.com/Wil DA/CPUnit/refld-ns0204.html

SSF for
Canon 50D

Pixel Quanturn Efficiency

Generally do not
match human LMS.

02

o
—_
m

o
=

005

: Canon 50D

——— Canon40D

0 1
4000 4500 5000

Wavelength (A)

fA)
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Many different CFAs

Finding the “best” CFA mosaic is an active research area.

CYGM RGBE
Canon IXUS, Powershot Sony Cyber-shot

How would you go about designing your own
CFA? What criteria would you consider?

35



Many different spectral sensitivity functions

Each camera has its more or less unique, and most of the time secret, SSF.
« Makes it very difficult to correctly reproduce the color of sensor measurements.
 \We will see more about this today

Canon Nikon

Images of the same scene captured using 3 different cameras with identical settings.
36



What does an imaging sensor do?

When the camera shutter opens, the sensor:

« at every photosite, converts incident photons into
electrons|using mosaic's SSF

« stores electrons into the photosite’s potential well
while it is not full

. until camera shutter closes. Then, the analog front-end:

* reads out photosites’ wells, row-by-row, and converts e T T R
. | : : Clocka | Dmmm@/gg
them to analog signals g (B[] g | oot | || [EHCHCNEHED 8
_ | _ _ I ARIE §13 | CHCHEMCNLY 1 2°

* applies a (possibly non-uniform) gain to these analog IRIEAE Al 4 [ i
! L o= [T s
Slgﬂa|S Lot o : L L = coumname: | gg

.. . i Dl:i’\'::« A Gain | | T Cotumn M : éo

« converts them to digital signals { ----- T

e corrects non-linearities
. and finally returns an image.
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After all of this, what does an image look like?

lots of % mosaicking

noise artifacts

« Kind of disappointing.
* \We call this the RAW image.

38



Today's Lecture

« Standard camera pipeline

39



The modern photography plpellne

optics and optical
controls

—

sensor, analog
front-end, and
color filter array

post-capture processing

—>

In-camera Image
processing
pipeline

40



The in-camera image processing pipeline

41



In-camera rendering

« The image directly captured from the camera’s sensor needs to be processed.
* \We can call this process “rendering,” as the goal is to render a digital image
suitable for viewing.

Sensor image

Final rendered Intermediate states of the image being “rendered” to sRGB
image in sRGB

42



Image signal processor (ISP)

* An ISP is dedicated hardware that renders the sensor image to produce the final output.

 Companies such as Qualcomm, HiSilicon, Intel (and more) sell ISP chips (often as part of
a System on a Chip — SoC).

Companies can customize the |SP.
 Many ISPs now have neural processing units (NPUs).

Snapdragon

5]

SAMSUNG i . 4
EXynos i 3 8+
i i Genl

Samsung Huawei Apple Samsung/Pixel/OnePlus/Xiaomi/...
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The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal
processor (ISP) to convert a RAW image into a “conventional” image.

— @ : analog front- | _
end
RAW image
(mosaiced,
| linear, 12-bit)
— | denoising | €— CFA - < white <
demosaicing balance
color tone | | final RGB
transforms 2 reproduction —> | compression | ——> ||mggreg(3rj§ir;)-
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Quick notes on terminology

« Sometimes the term image signal processor (ISP) is used to refer to the image
processing pipeline itself.

* The process of converting a RAW image to a “conventional” image is often called
rendering (unrelated to the image synthesis procedure of the same name In
graphics).

« The inverse process, going from a “conventional” image back to RAW is called
derendering.
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The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal
processor (ISP) to convert a RAW image into a “conventional” image.

analog front- | _
1 @ — end
RAW image

(mosaiced,
linear, 12-bit)
. CFA white
denoising E demosaicing balance <
Later today
fone final RGB

— — - — —t+—> |Mmage (non-
reproduction Iinegr, S-bit)
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The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal

processor (ISP) to convert a RAW image into a “conventional” image.

__,@_,

analog front-

end
. CFA white
denoising E demosaicing balance <

tone
reproduction

RAW image
(mosaiced,
linear, 12-bit)

final RGB

——> Image (non-

linear, 8-bit)
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Slide credit: Todd Zickler

White balancing

Human visual system has chromatic adaptation:
* \We can perceive white (and other colors) correctly under different light sources.
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Slide credit: Todd Zickler

White balancing

Human visual system has chromatic adaptation:
* \We can perceive white (and other colors) correctly under different light sources.
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Slide credit: Todd Zickler

White balancing

Human visual system has chromatic adaptation:

* \We can perceive white (and other colors) correctly under different light sources.

Retinal vs
perceived color.
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White balancing

Human visual system has chromatic adaptation:
* \We can perceive white (and other colors) correctly under different light sources.

« (Cameras cannot do that (there is no “camera perception”).

White balancing: The process of removing color casts so that colors that we would
perceive as white are rendered as white in final image.

~2700 K \\r; z 1““~ | f .‘- :' : 5
d A

60 W Incandescent

' 3500 K
’ 1SMWiEluorescent

;%CC()"I »
RO 2 -
nzg
>

. 5500 K

13 W Fluorescent

. : Image captured | Image white-
ditferent whites under fluorescent balanced to daylight
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How does white balance (WB) work?

Sensor's
response to
illumination (£)

| 0.2

=10.8
3 0.8 = |
raw-RGB sensor image “White-b _
(pre-white-balance correction) raw-RGB image

_ Twp 1/'€T‘ 0 0 r
White-balance [gwb‘ zl 0 1/¢, O ]M
b 0

b% :5

diagonal matrix
J 0 1/¢,|lb

wb
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White balancing

 The challenging part for white-balance is determining the proper
white-balance setting!

« Users can manually set the white balance
« (Camera specific white-balance matrices for common illuminations

 These can be manually selected by the user

« (Otherwise auto white balance (AVWB) is performed
* |n computer vision, we often refer to AWB as "illumination

estimation’
« Since the hard part is trying to determine what the illumination in

the scene |Is.
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White balancing presets

Cameras nowadays come with a large number of presets: You can select which light you
are taking images under, and the appropriate white balancing is applied.

WB SETTINGS COLOR TEMPERATURE LIGHT SOURCES
10000 - 15000 K Clear Blue Sky
a O 6500 - 8000 K Cloudy Sky / Shade
T 6000 - 7000 K Noon Sunlight
o 5500 - 6500 K Average Daylight
5 5000 - 5500 K Electronic Flash
S 4000 - 5000 K Fluorescent Light
o 3000 - 4000 K Early AM / Late PM
B S 2500 - 3000 K Domestic Lightning

—— 1000 - 2000 K Candle Flame



Examples of manual WB matrices

Nikon D7000

Sunny Incandescent Shade
20273 0 0 1.3047 0 0 24922 0 0
0  1.0000 0 0 10000 0 0  1.0000 0
0 0 13906 0 0 22148 0 0 1.1367
ioh Canon 1D
Daylight Tungsten Shade
2.0938 0 0 1.4511 0 0 2.4628 0 0
0 10000 0 0 1.0000 0 0 1.0000 0
0 0 1.5020 0 0  2.3487 0 0 1.2275
Sony A57K
Daylight Tungsten Shade
26836 0 0 1.6523 0 0 31953 0 0
0 1.0000 0 0 1.0000 0 0  1.0000 0
0 0 1.5586 0 0 2.7422 0 0 1.2891

Pre-calibrated white-balance matrices for different brands of cameras.
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Manual vs automatic white balancing

Manual white balancing:
« Select a camera preset based on lighting.

™

EZ7////II%

Can you think of any other way to do manual white balancing?
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Manual vs automatic white balancing

Manual white balancing:
« Select a camera preset based on lighting.

 Manually select object in photograph that is color-neutral and use it to normalize.

AN, ‘ -
5 <
-

W

B2/ I\

How can we do automatic white balancing?
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Manual vs automatic white balancing

Manual white balancing:
« Select a camera preset based on lighting.
 Manually select object in photograph that is color-neutral and use It to normalize.

- -"; ‘.
L.

-
-

(////1 | \\\\w

Automatic white balancing:

« Grey world assumption: force average color of scene to be grey.

« White world assumption: force brightest object in scene to be white.

« Sophisticated histogram-based algorithms (what most modern cameras do).
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Automatic white balancing

Grey world assumption:

« Compute per-channel average.
 Normalize each channel by its average.
 Normalize by green channel average.

. R’ -Gavg/Ravg 0 0 - R
white-balanced > || = 0 1 0 c : sensor
RGB , RGB
B 0 0 Gavg/Bavg_ B
White world assumption:
« Compute per-channel maximum.
 Normalize each channel by its maximum.
 Normalize by green channel maximum.
_ R’ -Gmax/Rmax 0 0 R .
Wh|teF—%t§|I§mced q'| = 0 1 0 G : SgrésBo
B’ 0 0 Gmax/Bmax_ B
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Automatic white balancing example

INput Image grey world white world
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The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal
processor (ISP) to convert a RAW image into a “conventional” image.

—_ @ — analog front- | _|
end
RAW image

(mosaiced,
linear, 12-bit)
. CFA white
denoising E demosaicing E balance <
fone final RGB
am— —_— . —_ ——> Image (non-
reproduction linear. 8-bit)
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CFA demosaicing

Produce full RGB image from mosaiced sensor output.

Any ideas on how to do this?
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Half-resolution demosaic

» |dea 1: treat each block of four pixels as a pixel

Easy to code up in one line of Matlab. But what is wrong with this?

1. throws away too much resolution -- make a half-resolution image
2. produces subpixel shifts in color planes!
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block

71



Centered half-resolution

« Average pixels in groups that all have the same “center of gravity”
avoids major color fringing
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bayer
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block
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centered
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Naive full-resolution interpolation

 What if we don’t want to throw away so much sharpness?
Produce full RGB image from mosaiced sensor output.

Interpolate from neighbors:
* Bilinear interpolation (needs 4 neighbors).
« Bicubic interpolation (needs more neighbors, may overblur).

 Edge-aware interpolation (more on this later).
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Demosaicing by bilinear interpolation

Bilinear interpolation: Simply average your 4 neighbors.

. .+.+.+.
A

Neighborhood changes for different channels:

=gt
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centered
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naive full-res
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naive full-res
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Image: Sang-wook Park and Jong-hyun Kim

Newer CFA/Bayer patterns

 Newer sensors are starting to use different patterns.
« Quad/Tetra (2x2) and Nona (3x3) are now common on smartphones.

* |n low-light situations, the 2x2 or 3x3 layouts are “binned” into a single pixel (a
process called binning).

O | B [
Tetra CFA Nona CFA



Demosaicing In practice

The prior examples are illustrative algorithms only

Camera IPSs use more complex and proprietary algorithms.
Demosaicing can be combined with additional processing

« Highlight clipping
« Sharpening
* Noise reduction

« Demosalcing Is an active research area!
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The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal

processor (ISP) to convert a RAW image into a “conventional” image.

__,@_,

analog front-

reproduction

end
. CFA white
SEmeEing ; demosaicing E balance <
tone

RAW image
(mosaiced,
linear, 12-bit)

final RGB

——> Image (non-

linear, 8-bit)
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Noise Iin Images

Can be very pronounced in low-light images.




Three types of sensor noise

1) (Photon) shot noise:

« Photon arrival rates are a random process (Poisson distribution).

« The brighter the scene, the larger the variance of the distribution.

2) Dark-shot noise:

 Emitted electrons due to thermal activity (becomes worse as sensor gets hotter.)
3) Read noise:

« (Caused by read-out and AFE electronics (e.g., gain, A/D converter).

Bright scene and large pixels: photon shot noise is the main noise source.
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How to denoise?




How to denoise?

Look at the neighborhood around you.

« Mean filtering (take average):

.+I2+I3+I4+I5

« Median filtering (take median):

|'5 = median(. ) |2 , |3 , |4 ) |5 |7 ) |8 ) . )

Large area of research. \We will see some more about (edge-aware) filtering in a later lecture.
98
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The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal

processor (ISP) to convert a RAW image into a “conventional” image.

__,@_,

analog front-

end
. CFA white
SEmeEing E demosaicing balance <

tone
reproduction

RAW image
(mosaiced,
linear, 12-bit)

final RGB

——> Image (non-

linear, 8-bit)
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Perceived vs measured brightness by human eye

We have already seen that sensor response is
linear.

Human-eye response (measured brightness) Is
also linear.

However, human-eye perception (perceived
brightness) is non-linear:
 More sensitive to dark tones.
0% « Approximately a IY function.
0% 25% 50% 75% 100%
INPUT: Actual Luminance
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Gamma encoding

After this stage, we perform compression, which includes changing from 12 to 8 bits.
Apply non-linear curve to use available bits to better encode the information human

VvIsion IS more sensitive to.

A

e
~
[

o
)

Perceived brightness: L*

0.25f /

Perceived brightness: L*

v

0.25

0.5 0.75

Luminance (Y)

©
~
[

o
3

0.251 |

v

0.25

0.5

Luminance (Y)

0.75
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Demonstration

original (8-bits, 256 tones)

Can you predict what will happen if we linearly encode this tone range with only 5 bits?

Can you predict what will happen if we gamma encode this tone range with only 5 bits?
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Demonstration

original (8-bits, 256 tones)

linear encoding (b-bits, 32 tones) J

| I
all of this range gets all of these tones
mapped to just one tone look the same

Can you predict what will happen if we gamma encode this tone range with only 5 bits?
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Demonstration

original (8-bits, 256 tones)

linear encoding (b-bits, 32 tones) J

| I
all of this range gets all of these tones
mapped to just one tone look the same

gamma encoding (b-bits, 32 tones) -

tone encoding becomes a lot
more perceptually uniform
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Tone reproduction pipeline

Sensor: ISP: concave display: convex
linear curve gamma curve gamma curve
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Tone reproduction pipeline

SEensor: ISP: concave display: convex net effect:
linear curve gamma curve gamma curve linear curve
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Tone reproduction pipeline

net effect:
linear curve

sSensor:
linear curve

gamma encoding gamma correction
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Tone reproduction pipeline

human visual
system: concave
gamma curve

Image a human
would see at
different stages of
the pipeline
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RAW pipeline

gamma encoding
Is skipped!

display still applies
gamma correction!

human visual
system: concave
gamma curve

Image a human
would see at
different stages of
the pipeline

RAW image appears very
dark! (Unless you are
using a RAW viewer)
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Historical note

CRT displays used to have a response curve that was (almost) exactly equal to the
iInverse of the human sensitivity curve. Therefore, displays could skip gamma correction
and display directly the gamma-encoded images.

It Is sometimes mentioned that gamma encoding is done to undo the response curve of
a display. This used to (?) be correct, but it is not true nowadays. Gamma encoding Is
performed to ensure a more perceptually-uniform use of the final image’s 8 bits.

110



Gamma encoding curves

The exact gamma encoding curve depends on the camera.
« Often well approximated as LY, for different values of the power y (“gamma”).
« Agooddefaultisy=1/2.2.

W ’? ;_' E iﬁﬂr“ 0 Kodak Ektachrome-100plus Green : . . . — —r Cannon Optura
. - i Kodak Ektachrome-64 Green — — i Kodak DCS 315 Green
X 10.9
Agfachrome CTPrecisal00 Green — /%003’ DXC-950
Agfachrome RSX2 050 Blue —¥f 108 5
Agfacolor Futura 100 Green —
Agfacolor HDC 100 plus Green —}
Agfacolor Ultra 050 plus Green —
Agfapan APX 025 —
Agfa Scala 200x -T
Fuji F400 Green - ‘
Fuji F125 Green ~|[ff/,
Kodak Max Zoom 800 Green — [/
Kodak KAI0372 CCD
Kodak KAF2001 CCD

“
Jo7 B
&

e
=N

S o
- n
SSQUIYSLIg PAzI

= s
W

gamma curve, ¥ =0.6
{01 gamma curve, y=1.0
[~ gamma curve, Y=1.4
T— gamma curve, Y=1.8

Normalized Irradiance

before gamma after gamma

Warning: Our values are no longer linear relative to scene radiance!

111



The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal

processor (ISP) to convert a RAW image into a “conventional” image.

__,@_,

analog front-

end
—— | denoising | €—— CFA.. < velniie <€
demosaicing balance

tone
reproduction

RAW image
(mosaiced,
linear, 12-bit)

final RGB

——> Image (non-

linear, 8-bit)
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Some general thoughts
on the image processing pipeline



Do | ever need to use RAW?



Do | ever need to use RAW?

Emphatic yes!

* Every time you use a physics-based computer vision algorithm, you need linear
measurements of radiance.

 Examples: photometric stereo, shape from shading, image-based relighting, illumination
estimation, anything to do with light transport and inverse rendering, etc.

* Applying the algorithms on non-linear (i.e., not RAW) images will produce completely
Invalid results.
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What if | don't care about physics-based vision?



What if | don't care about physics-based vision?

You often still want (rather than need) to use RAW!

* |f you like re-finishing your photos (e.g., on Photoshop), RAW makes your life much
easier and your edits much more flexible.
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Are there any downsides to using RAW?



Are there any downsides to using RAW?

Image files are a lot bigger.
* You burn through multiple memory cards.
* Your camera will buffer more often when shooting in burst mode.

* Your computer needs to have sufficient memory to process RAW images.
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Is it even possible to get access to RAW images?



Is it even possible to get access to RAW images?

Quite often yes!

* Most high-end cameras provide an option to store RAW image files.
« (Certain phone cameras allow, directly or indirectly, access to RAW.

« Sometimes, it may not be “fully” RAW. The Lightroom app provides images after
demosaicking but before tone reproduction.
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| forgot to set my camera to RAW, can | still get
the RAW file?

Nope, tough luck.

The image processing pipeline is lossy: After all the steps, information about the original
Image Is lost.

Sometimes we may be able to reverse a camera’s image processing pipeline if we
know exactly what it does (e.g., by using information from other similar RAW images).

The conversion of PNG/JPG back to RAW is known as “derendering” and is an active
research area.
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Image credits: Conde et al. (top) Xing et al. (bottom)

Derendering

RAW

RGB

Overall pipeline

........................................

Invertible block (| First split
JPEG simulator [ | Second split

Rendered RGB

Forward pass

Differentiable
JPEG Simulator

f fr

Demosaiced RAW

Bayer RAW

Inverse pass

Compressed RGB
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The image processing pipeline

What | described today is an “idealized” version of what we think commercial cameras do.

« Almost all of the steps in both the sensor and image processing pipeline | described
earlier are camera-dependent.

* Even if we know the basic steps, the implementation details are proprietary information
that companies actively try to keep secret.
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The hypothetical image processing pipeline

The sequence of image processing operations applied by the camera’s image signal
processor (ISP) to convert a RAW image into a “conventional” image.

1 S analog front- |
end?

RAW image
(mosaiced,
_ linear, 12-bit)

—— | denoising? | €—— CFA. «— white <

demosaicing? balance?

color tone final RGB
S —_— . —> | compression? | ——> Image (non-
transforms? reproduction? linear. 8-bit)
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How do | open a RAW file in Python?

You can't (not easily at least). You need to use one of the following:

« dcraw — tool for parsing camera-dependent RAW files (specification of file formats are
also kept secret).

« Adobe DNG - recently(-ish) introduced file format that attempts to standardize RAW file
handling.

See Homework 1 for more details.
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Is this the best image processing pipeline?

It depends on how you define “best”. This definition is task-dependent.
« The standard image processing pipeline is designed to create “nice-looking” images.

* |f you want to do physics-based vision, the best image processing pipeline is no pipeline
at all (use RAW).

« What if you want to use images for, e.g., object recognition? Tracking? Robotics SLAM?
Face identification? Forensics?

Developing task-adaptive image processing pipelines is an active area of research.
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Today's Lecture

 Noise
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Noise Iin Images

Results In “grainy” appearance.




The (in-camera) image processing pipeline

Which part introduces noise?

__,@_,

analog front-

end T
RAW image
(mosaiced,
linear, 12-bit)

isi CFA , white

—— | denosing | <—— demosaicing balance <€
E color tone | | final RGB
transforms . reproduction —> | COMpression | =—t+—> ||mggreg(3rj§ir;)-
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Which part introduces noise?

Noise Is introduced in the green part.

__,@_,

analog front-

end
. CFA white
SEmeEing E demosaicing balance <
color tone .
transforms reproduction COMPpression

The (in-camera) image processing pipeline

RAW image
(mosaiced,
linear, 12-bit)

final RGB

——> Image (non-

linear, 8-bit)
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The noisy image formation process

/

What are the various parts?
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The noisy image formation process

scene radiant

flux ©
analog analog discrete
voltage L voltage G signal |
dark > > >
current D /

sensor (exposure t, analog amplifier analog-to-digital
quantum efficiency a) (gain g = k - ISO) converter (ADC)
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The noisy image formation process

scene radiant
flux ©

analog analog discrete
voltage L voltage G signal |

dark
current D

/

sensor (exposure t, analog amplifier analog-to-digital
quantum efficiency a) (gain g = k - ISO) converter (ADC)
\ ) \ ) \ )
| | |
Introduces photon Introduces Introduces
noise and dark noise read noise ADC noise

 We will be ignoring saturation, but it can be modeled using a clipping operation.
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Background: Normal distribution

Is it a continuous or discrete probability distribution?
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Background: Normal distribution

Is it a continuous or discrete probability distribution?
* |t is continuous.

How many parameters does it depend on?
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Background: Normal distribution

Is it a continuous or discrete probability distribution?

e |t is continuous.

How many parameters does it depend on?
« Two parameters, the mean p and the standard deviation o.

What is its probability distribution function?
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Background: Normal distribution

Is it a continuous or discrete probability distribution?

, 02202, =—— ]
. 02210, =— ]
, 02=50, -]
, 2:0'5,_ |

e |t is continuous.

How many parameters does it depend on? S
* Two parameters, the mean u and the standard deviation o.
What is its probability distribution function? I
1 —w?
n ~ Normal(u,0) ©® p(n =x; u,0) = e 202

oV 2T
\What are its mean and variance?
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Background: Normal distribution

Is it a continuous or discrete probability distribution?

, 02202, =—— ]
. 02210, =— ]
, 02=50, -]
, 2:0'5,_ |

e |t is continuous.

How many parameters does it depend on?
« Two parameters, the mean p and the standard deviation o.

What is its probability distribution function?

n ~ Normal(y,0) @ p(n =x;u,0) =

oV 2T

\What are its mean and variance?
 Mean: u(n) =n
 Variance: o(n)? = o?

What is the distribution of the sum of two independent Normal random variables?
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Background: Normal distribution

Is it a continuous or discrete probability distribution?

, 02202, =—— ]
. 02210, =— ]
, 02=50, -]
, 2:0'5,_ |

e |t is continuous.

How many parameters does it depend on?
« Two parameters, the mean p and the standard deviation o.

What is its probability distribution function?

n ~ Normal(y,0) @ p(n =x;u,0) =

oV 2T

\What are its mean and variance?
 Mean: u(n) =n
 Variance: o(n)? = o?

What is the distribution of the sum of two independent Normal random variables?

n, ~ Normal(0, g,),n, ~ Normal(0,0,) = n, + n, ~ Normal (O,\/alz + 022)
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Background: Poisson distribution

Is it a continuous or discrete probability distribution?
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Background: Poisson distribution

Is it a continuous or discrete probability distribution?
* |tis discrete.

How many parameters does it depend on?
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Background: Poisson distribution

Is it a continuous or discrete probability distribution?

* |t Is discrete.

How many parameters does it depend on?
* One parameter, the rate A.

What is its probability mass function?
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Background: Poisson distribution

Is it a continuous or discrete probability distribution?
* |tis discrete.

How many parameters does it depend on?
* One parameter, the rate A.

What is its probability mass function?
N ~ Poisson(d) & P(N = k; A) =

\What are its mean and variance?

0.40—

0.35+

0.30F
2 0.20f
o

0.15F

0.10f

0.05t

0.00

Nee—4

k!
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Background: Poisson distribution

ls it a continuous or discrete probability distribution? 035
0.30F

* |t is discrete. 025}

. % 0.20}
How many parameters does it depend on? &0 1sl

0.10f
0.05f
0.00

Nee—4

k!

« One parameter, the rate A.

What is its probability mass function?

N ~ Poisson(d) & P(N = k; A) =

\What are its mean and variance?

* Mean: u(N) =A The mean and variance of a Poisson
« Variance: o(N)2 =2 random variable both equal the rate A.

What is the distribution of the sum of two independent Poisson random variables?
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Background: Poisson distribution

0.40—

ls it a continuous or discrete probability distribution? 035
0.30F

* |t is discrete. 025}

. % 0.20}
How many parameters does it depend on? &0 1sl

0.10f
0.05f
0.00

Nee—4

k!

« One parameter, the rate A.

What is its probability mass function?

N ~ Poisson(d) & P(N = k; A) =

\What are its mean and variance?

* Mean: u(N) =A The mean and variance of a Poisson
« Variance: o(N)2 =2 random variable both equal the rate A.

What is the distribution of the sum of two independent Poisson random variables?

N, ~ Poisson(1,), N, ~ Poisson(1,) = N; + N, ~ Poisson(1; + 4,)
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The noisy image formation process

scene radiant
flux ©

analog analog discrete
voltage L voltage G signal |

dark
current D

/

sensor (exposure t, analog amplifier analog-to-digital
quantum efficiency a) (gain g = k - ISO) converter (ADC)
\ ) \ ) \ )
| | |
Introduces photon Introduces Introduces
noise and dark noise read noise ADC noise

 We will be ignoring saturation, but it can be modeled using a clipping operation.
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Photon noise

A consequence of the discrete (quantum) nature of light.
 Photon detections are independent random events.

« Total number of detections is Poisson distributed.

* Also known as shot noise and Schott noise.

Ndetections ~ Poissonlt - a - D]

simulated mean
#photons/pixel




Photon noise

photon noise depends on

scene flux and exposure
A consequence of the discrete (quantum) nature of light. T~

* Photon detections are independent random events. Nyetoctions ~ Poisson[t - a - ®
« Total number of detections is Poisson distributed.

 Also known as shot noise and Schott noise.

simulated mean
#photons/pixel




Dark noise

A consequence of “phantom detections” by the sensor.
* Electrons are randomly released without any photons.
« Total number of detections is Poisson distributed.

* Increases exponentially with sensor temperature (+6°C = doubling).

Ndetections ~ POiSSOﬂ[t ) D]

150



Dark noise

dark noise depends on
exposure but not on scene

T~

Ndetections ~ POiSSOﬂ\’[ ) D

A consequence of “phantom detections” by the sensor.
* Electrons are randomly released without any photons.
« Total number of detections is Poisson distributed.

* Increases exponentially with sensor temperature (+6°C = doubling).

Can you think of examples when dark noise is important?
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Dark noise

dark noise depends on

exposure but not on scene
A consequence of “phantom detections” by the sensor. T~

* Electrons are randomly released without any photons. Nyetections ~ Poisson|t - D
« Total number of detections is Poisson distributed.

* Increases exponentially with sensor temperature (+6°C = doubling).

Can you think of examples when dark noise is important?

* Very long exposures (astrophotography, pinhole camera) il

Can you think of ways to mitigate dark noise?




Da I‘k nOise dark noise depends on

exposure but not on scene
A consequence of “phantom detections” by the sensor. T~
* Electrons are randomly released without any photons. Nyetections ~ Poisson|t - D
« Total number of detections is Poisson distributed.
* Increases exponentially with sensor temperature (+6°C = doubling).

Can you think of examples when dark noise is important?
* Very long exposures (astrophotography, pinhole camera) il

Can you think of ways to mitigate dark noise?

* Cool the sensor.

—_——

Passive and TE-Cooled
Scientific CCD Cameras




The noisy image formation process

scene radiant
flux ©

analog analog discrete
voltage L voltage G signal |

dark
current D

/

sensor (exposure t, analog amplifier analog-to-digital
quantum efficiency a) (gain g = k - ISO) converter (ADC)
\ ) \ ) \ )
| | |
Introduces photon Introduces Introduces
noise and dark noise read noise ADC noise

 \What is the distribution of the sensor readout L?
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The distribution of the sensor readout

We know that the sensor readout is the sum of all released electrons:

L = Nphoton_detections + Nphantom_detections

What is the distribution of photon detections?
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The distribution of the sensor readout

We know that the sensor readout is the sum of all released electrons:

L = Nphoton_detections + Nphantom_detections

What is the distribution of photon detections?

Nphoton_detections =~ Poisson(t tac CD)

What is the distribution of phantom detections?

156



The distribution of the sensor readout

We know that the sensor readout is the sum of all released electrons:

L = Nphoton_detections + Nphantom_detections

What is the distribution of photon detections?

Nphoton_detections =~ Poisson(t tac CD)

What is the distribution of phantom detections?

Nphantom_detections =~ POiSSOD(t ' D)

\What is the distribution of the sensor readout?
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The distribution of the sensor readout

We know that the sensor readout is the sum of all released electrons:

L = Nphoton_detections + Nphantom_detections

What is the distribution of photon detections?

Nphoton_detections =~ Poisson(t tac CD)

What is the distribution of phantom detections?

Nphantom_detections =~ POiSSOD(t ' D)

\What is the distribution of the sensor readout?

L ~ Poisson(t-(a-® + D))
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The noisy image formation process

analog voltage L,
L ~ Poisson(t - (a-® + D))

scene radiant
flux ©

analog discrete
voltage G signal |

N\

dark
current D

/

sensor (exposure t, analog amplifier analog-to-digital
quantum efficiency a) (gain g = k - ISO) converter (ADC)
\ ) \ ) \ )
| | |
Introduces photon Introduces Introduces

noise and dark noise read noise ADC noise
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Read and ADC noise

A consequence of random voltage fluctuations before and after amplifier.

« Both are independent of scene and exposure.
« Both are normally (zero-mean Guassian) distributed.
* ADC noise includes quantization errors.

Very important for dark pixels.

Nreag ~ NOrmal(0, 0,559

nADC ~ Normal(O, OADC)

e 00 0O

[X| Plot

8 750000-

""" sooo00-

8 150000~

e File Options

1D3 ISO 800 read noise

|
1000 1010

|
1020

ADU

|
1030

|
1040

1050
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The noisy image formation process

analog voltage L,
L ~ Poisson(t - (a-® + D))

scene radiant -
flux ©

N\

dark
current D

sensor (exposure t,
quantum efficiency a)

\ J

!

Introduces photon
noise and dark noise

>

analog
voltage G

analog amplifier

(gain g = k - ISO)

\

Introduces
read noise

 How can we express the voltage G and discrete intensity |7

>

discrete
signal |

analog-to-digital

converter (ADC)

\

J

!

Introduces
ADC noise

>
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Expressions for the amplifier and ADC outputs

Both read noise and ADC noise are additive and zero-mean.

 How can we express the output of the amplifier?
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Expressions for the amplifier and ADC outputs

Both read noise and ADC noise are additive and zero-mean.

 How can we express the output of the amplifier?

don't forget to account for
G=L-g+neaq-g < the ISO-dependent gain

* How can we express the output of the ADC?
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Expressions for the amplifier and ADC outputs

Both read noise and ADC noise are additive and zero-mean.

 How can we express the output of the amplifier?

don't forget to account for
G=L-g+neaq-g < the ISO-dependent gain

* How can we express the output of the ADC?

I:G+TlADC
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The noisy image formation process

analog voltage L, analog voltage G = L - g + Nyeaq * g, discrete signall = G + napc,
L ~ Poisson(t-(a-® + D)) Nyead ~ Normal(0, peaq) napc ~ Normal(0, aapc)
scene radiant -
- \ \ \
dark > > >
current D

sensor (exposure t, analog amplifier analog-to-digital

quantum efficiency a) (gain g = k - ISO) converter (ADC)

\ ) \ ) \ )

| | |
Introduces photon Introduces Introduces

noise and dark noise read noise ADC noise
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Putting it all together

Without saturation, the digital intensity equals:

L ~ Poisson(t - (a - ® + D))
I =L-g+neeaq g+ Napc where Nread ~ Normal(0, 0reaq)
napc ~ Normal(0, oapc)

What is the mean of the digital intensity (assuming no saturation)?

E() =

166



Putting it all together

Without saturation, the digital intensity equals:

L ~ Poisson(t - (a - ® + D))
I =L-g+neeaq g+ Napc where Nread ~ Normal(0, 0reaq)
napc ~ Normal(0, oapc)

What is the mean of the digital intensity (assuming no saturation)?

E(I) — E(L ' g) + E(nread ' g) + E(”ADC)
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Putting it all together

Without saturation, the digital intensity equals:

L ~ Poisson(t - (a - ® + D))
I =L-g+neeaq g+ Napc where Nread ~ Normal(0, 0reaq)
napc ~ Normal(0, oapc)

What is the mean of the digital intensity (assuming no saturation)?

E(I)=E(L 'g) +E(nread 'g) +E(”ADC)
=t-(a-®+D)-g

What is the variance of the digital intensity (assuming no saturation)?
o(I)? =
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Putting it all together

Without saturation, the digital intensity equals:

L ~ Poisson(t - (a - ® + D))
I =L-g+neeaq g+ Napc where Nread ~ Normal(0, 0reaq)
napc ~ Normal(0, oapc)

What is the mean of the digital intensity (assuming no saturation)?

E(I)=E(L 'g) +E(nread 'g) +E(”ADC)
=t-(a-®+D)-g

What is the variance of the digital intensity (assuming no saturation)?

0-(1)2 — O-(L ' g)z + O-(nread ' g)z + U(nADC)Z
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Putting it all together

Without saturation, the digital intensity equals:

L ~ Poisson(t - (a - ® + D))
I =L-g+neeaq g+ Napc where Nread ~ Normal(0, 0reaq)
napc ~ Normal(0, oapc)

What is the mean of the digital intensity (assuming no saturation)?

E(I)=E(L 'g) +E(nread 'g) +E(”ADC)
=t-(a-®+D)-g

What is the variance of the digital intensity (assuming no saturation)?
dg(D)? =0(L-g)*+0Myeng - 9)° + c(Mapc)?
g read * Y ADC
— 2 2 2 2
—t(aCD-l-D)g +Gread'g +O_ADC
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How do we compute mean and variance in practice?
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How do we compute mean and variance in practice?

Mean: capture multiple linear images with identical settings and average.

— 1 A N—o0
[=— I, — E(I)

n=1
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How do we compute mean and variance in practice?

Mean: capture multiple linear images with identical settings and average.

— 1 A N—o0
[=— I, — E(I)

n=1

Variance: capture multiple linear images with identical settings and form variance estimator.
N
5= —— ) (.- =300y
2 = z L, —1 ol
N—1 "
n=1
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The noisy image formation process

analog voltage L, analog voltage G = L - g + Nyeaq * g, discrete signall = G + napc,
L ~ Poisson(t-(a-® + D)) Nyead ~ Normal(0, peaq) napc ~ Normal(0, aapc)

scene radiant
flux © ’:
OO ¢C
OO C
dark :::" > > >
current D Ty s
&<
sensor (exposure t, analog amplifier analog-to-digital
quantum efficiency a) (gain g = k - ISO) converter (ADC)
discrete image intensity (with saturation): Intensity mean and variance (without saturation):

I =min(L - g + Npeag - 9 + "apc, Imax) E(l)=t-(a-®d+D)-g
saturation level - o(D?=t-(a-®+D) g%+ 0faq 9%+ dancC
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Affine noise model

Combine read and ADC noise into a single additive noise term:

I =L-g+nyq where Nadd = Mread " d T NADC

\What is the distribution of the additive noise term?
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Affine noise model

Combine read and ADC noise into a single additive noise term:

I =L-g+nyq where Nadd = Mread " d T NADC

\What is the distribution of the additive noise term?
« Sum of two independent, normal random variables.

Nadd ~ Normal(O,\/arzead - g%+ JKDC)
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Affine noise model

analog voltage L,
L ~ Poisson(t - (a-® + D))

discrete signall = L - g + 1,44,
Nadd ~ Normal(0, 0,344)

scene radiant
flux @ \ \
dark T >
current D
sensor (exposure t, analog amplifier analog-to-digital
quantum efficiency a) (gain g = k - ISO) converter (ADC)

discrete image intensity (with saturation):

I = min(L - g + nyqq, Imax)

Intensity mean and variance (without saturation):
ED=t-(a-®+D) g
o()?=t-(a-®+D) g?+0,
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Some observations

|s image intensity an unbiased estimator of (scaled) scene radiant flux?
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Some observations

|s image intensity an unbiased estimator of (scaled) scene radiant flux?

* No, because of dark noise (term t- D - g in the mean).
* Averaging multiple images cancels out read and ADC noise, but not dark noise.

When are photon noise and additive noise dominant?
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Some observations

|s image intensity an unbiased estimator of (scaled) scene radiant flux?

* No, because of dark noise (term t- D - g in the mean).
* Averaging multiple images cancels out read and ADC noise, but not dark noise.

When are photon noise and additive noise dominant?
* Photon noise Is dominant in very bright scenes.
« Additive noise is dominant in very dark scenes.

Can we ever completely remove noise?
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Some observations

|s image intensity an unbiased estimator of (scaled) scene radiant flux?

* No, because of dark noise (term t- D - g in the mean).
* Averaging multiple images cancels out read and ADC noise, but not dark noise.

When are photon noise and additive noise dominant?
* Photon noise Is dominant in very bright scenes.
« Additive noise is dominant in very dark scenes.

Can we ever completely remove noise?

* \We cannot eliminate photon noise.
« Super-sensitive detectors have pure Poisson photon noise.

single-photon avalanche photodiode (SPAD)
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Summary: noise regimes

regime dominant noise notes
bright pixels photon noise scene-dependent
dark pixels read and ADC noise scene-independent
low ISO ADC noise post-gain
high ISO photon and read noise pre-gain
long exposures dark noise thermal
dependence
discrete image intensity (with saturation): Intensity mean and variance (without saturation):

I = min(L - g + Nyeaq * 9 + "apc) Imax) E)=t-(a-®+D)-g
o(D?=t-(a-®+D) g%+ 0faq- 9%+ 0Znc
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Summary: noise regimes

regime dominant noise notes
Does this
bright pixels photon noise scene-dependent [ Mean rt]hart]
: : - using hig
dark pixels read and ADC noise scene-independent EXPOSUTE
_ _ makes
low [SO ADC noise post-gain images
high ISO photon and read noise pre-gain more
“noisy”?
long exposures dark noise thermal
dependence
discrete image intensity (with saturation): Intensity mean and variance (without saturation):

I = min(L - g + Nyeaq * 9 + "apc) Imax) E)=t-(a-®+D)-g
o(D?=t-(a-®+D) g%+ 0faq- 9%+ 0Znc
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Signal-to-noise ratio
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Variance versus signal-to-noise ratio

Variance?
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Variance versus signal-to-noise ratio

Variance is an absolute measure of the (squared) magnitude of noise:

o(D? =E ((1 _ E(I))2> — E(I1%) — E(])?

Signal-to-noise ratio (SNR)?
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Variance versus signal-to-noise ratio

Variance is an absolute measure of the (squared) magnitude of noise:

o(D? =E ((1 _ E(I))2> — E(I1%) — E(])?
Signal-to-noise ratio (SNR) is a relative measure of the (inverse squared) magnitude of noise:

E(I)?

SNR =
a(1)?

\When noise decreases:

 The variance...
« The SNR...
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Variance versus signal-to-noise ratio

Variance is an absolute measure of the (squared) magnitude of noise:

o(D? =E ((1 _ E(I))2> — E(I1%) — E(])?
Signal-to-noise ratio (SNR) is a relative measure of the (inverse squared) magnitude of noise:

E(I)?

SNR =
a(1)?

\When noise decreases:
 The variance decreases.
e The SNR increases.
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The case of sensor noise

Assuming for simplicity that there is no dark current:
(t-a-d-g)°

2 2
t'a'cb'gz_l'o-read'gz_l'O-ADC

SNR = 0'(1)2=t'a'q)'gz+o-r2ead'gz+o-£DC

What happens when the exposure time or flux are very large?
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The case of sensor noise

Assuming for simplicity that there is no dark current:
(t-a-d-g)°

2 2
t'a'cb'gz_l'o-read'gz_l'O-ADC

SNR = 0'(1)2=t'a'q)'gz+o-r2ead'gz+o-£DC
What happens when the exposure time or flux are very large?
* \We can ignore additive (read and ADC) noise terms.

(t-a-2-g)°

SNR = =t-a-d o(D?=t-a-d- g?
t.a.q).gz a () 'g

What happens when the flux or exposure time are very small?
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The case of sensor noise

Assuming for simplicity that there is no dark current:
(t-a-d-g)°

2 2
t'a'cb'gz_l'o-read'gz_l'O-ADC

SNR =

What happens when the exposure time or flux are very large?
* \We can ignore additive (read and ADC) noise terms.
(t-a-®-g)°

SNR = =t-a-d o(D?=t-a-d- g?
t.a.q).gz a () 'g

What happens when the flux or exposure time are very small?
* \We can ignore scene-dependent noise terms.

(t-a-®-g)°

2 2 2
Oread " 9 +GADC

SNR = 0-(1)2 — rzead ' gz + O'KDC

0'(1)2=t'a'q)'gz+o-r2ead'gz+o-£DC
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The case of sensor noise

Assuming for simplicity that there is no dark current:

(t-a-P-g)*

SNR = c(D?=t-a -®-g>+ 0.4 9%+ Anc

0B G2 ¥ Ofag 97 + TR

re

SNR




The case of sensor noise

As flux or exposure time increase:

* The noise variance Iincreases.
e The SNR also increases.

Even though the absolute magnitude of noise increases, its relative magnitude compared to
the signal we are measuring decreases.

— QOur measurements become less noisy as flux or exposure time increase.

(For the case of exposure time, we need to be careful to also take into account dark noise.)
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Effects of exposure time

Exposure: 0.5s Exposure: 0.1s

=g AMSES I X ) o

—

Incorrect white balance

fewer photons captured

T

Slide credit: Chen et al.



Effects of exposure time

Exposure: 5s Exposure: 0.5s Exposure: 0.1s
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Noise calibration
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How can we estimate the various parameters?

analog voltage L,
L ~ Poisson(t - (a-® + D))
scene radiant

analog voltage G = L - g + Nyead * 9,

Nread ~ Normal(0) Gpeaq)

N\

flux © ‘:
GO
D @ DG
dark PSS
current D Ny \";

sensor (exposure t,
quantum efficiency a)

discrete image intensity (with saturation):

I =min(L - g + Nyead - 9 + Nabpc) Imax)

/

saturation level

> >

discrete signal I = G + nppc,
napc ~ Normal(O, O-ADC]

N\

analog amplifier
(gain g = k - ISO)

analog-to-digital
converter (ADC)

Intensity mean and variance:

E(l)=t-(a-®d+D)-g

o()?=t-(a-®+D) -g°+ 05,4 9>

>

2
+ OADpC
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Estimating the dark current

Can you think of a procedure for estimating the dark current D?
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Estimating the dark current

Can you think of a procedure for estimating the dark current D?
« Capture multiple images with the sensor completely blocked and
average to form the dark frame.

Why is the dark frame a valid estimator of the dark current D?
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Estimating the dark current

Can you think of a procedure for estimating the dark current D?

« Capture multiple images with the sensor completely blocked and
average to form the dark frame.

Why is the dark frame a valid estimator of the dark current D?
* By blocking the sensor, we effectively set ® = 0.

« Average intensity becomes:
E(l)=t-(a-0+D)-g=t-D-g

* The dark frame needs to be computed separately for each [SO setting, unless
we can also calibrate the gain g.

For the rest of these slides, we assume that we have calibrated D and removed it

from captured images (by subtracting from them the dark frame).
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Noise model before dark frame subtraction

analog voltage L, analog voltage G = L - g + Nyeaq * g, discrete signall = G + napc,
L ~ Poisson(t-(a-® + D)) Nyead ~ Normal(0, 0peaq) napc ~ Normal(0, oapc)

scene radiant
flux © ‘:
OO ¢C
OO C
dark :::" > > 5>
current D Ty s
>
sensor (exposure t, analog amplifier analog-to-digital
quantum efficiency a) (gain g = k - ISO) converter (ADC)
discrete image intensity (with saturation): Intensity mean and variance:

I =min(L - g + Npeag - 9 + "apc, Imax) E(l)=t-(a-®d+D)-g
saturation level - o(D?=t-(a-®+D) g%+ 0faq 9%+ dancC
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Noise model before dark frame subtraction

analog voltage L, analog voltage G = L - g + Nyeaq * g, discrete signall = G + napc,
L ~ Poisson(t - (a - ®)) Nyead ~ Normal(0, 0peaq) napc ~ Normal(0, oapc)

NN N

> >

scene radiant
flux ©

sensor (exposure t, analog amplifier analog-to-digital
quantum efficiency a) (gain g = k - ISO) converter (ADC)
discrete image intensity (with saturation): Intensity mean and variance:

I =min(L - g + Npeag - 9 + "apc, Imax) E()=t-(a-®):g
saturation level - o(D?=t-(a D) g?+ 0fnaq 9% + Ganc
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Affine noise model after dark frame subtraction

analog voltage L,
L ~ Poisson(t - (a - ®))
scene radiant
flux ©

discrete signall = L - g + 1,44,

Nayqq ~ Normal(0 0,44)

N\

sensor (exposure t,
quantum efficiency a)

discrete image intensity (with saturation):

I = min(L - g + nyqq, Imax)

/

analog amplifier

(gainjgl= k - ISO)

N\

analog-to-digital
converter (ADC)

Intensity mean and variance:

E()=t-(a-®):g

c(D?=t-(a-P) g%+ 02y

>
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Estimating the gain and additive noise variance

Can you think of a procedure for estimating these quantities?
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Estimating the gain and additive noise variance

1. Capture a large
number of images of
a grayscale target.
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Estimating the gain and additive noise variance

1. Capture a large 2. Compute the empirical mean
number of images of and variance for each pixel, then
a grayscale target. form a mean-variance plot.
A

S

c What do you expect

2 the measurements

> to look like?

ABCDEFGHIJ%LMNOPQRSTUVWXYZ )

mean
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Estimating the gain and additive noise variance

1. Capture a large 2. Compute the empirical mean
number of images of
a grayscale target.

variance

and variance for each pixel, then
form a mean-variance plot.

A

ED=t-(a-®)g
® O'(I)2=t-(a-CI))-g2+0§dd

= o(D)?=E() - g + 024y

mean
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Estimating the gain and additive noise variance

1. Capture a large 2. Compute the empirical mean 3. Fitaline and use slope
number of images of and variance for each pixel, then and intercept to
a grayscale target. form a mean-variance plot. estimate the gain and
variance.
A

equal to line slope

O
% o(D>=E() - g+ 02y
> /
equal to line intercept
2
Oadd

>

mean
How would you modify this procedure to separately estimate read and ADC noise?
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Estimating the gain and additive noise variance

1. Capture a large 2. Compute the empirical mean 3. Fitaline and use slope
number of images of and variance for each pixel, then and intercept to
a grayscale target. form a mean-variance plot. estimate the gain and
variance.
A

equal to line slope

O
% o(D>=E() - g+ 02y
> /
equal to line intercept
2
Oadd

>

mean

How would you modify this procedure to separately estimate read and ADC noise?
« Perform it for a few different ISO settings (i.e., gains g).
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Important notes

Noise calibration should be performed with RAW images!

The above procedure assumes that all pixels have the same noise characteristics.

* |f that is not the case, then you need to capture multiple images under multiple
exposure times, and use those to form the mean-variance plot for each pixel.
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Today's Lecture

e Color
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Color and color spaces

* To understand your camera, It Is important to review how humans
perceive color in a real environment.

* \We must also understand how color is encoded by various models
and color spaces.

 One of the main roles of the in-camera hardware is to convert the
sensor image into a standard output-referred color space suitable for

sharing and display.
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Color is perceptual

 Color is not a primary physical property of an object.

* Red, green, blue, pink, orange, purple, yellow, . ..
* These are words we assign to visual sensations.
* The assignment of words can vary among cultures.

Which is the "true blue"?

213



Color is an artifact of human perception

« “Color” is not an objective physical property of light (electromagnetic radiation).
* Instead, light is characterized by its wavelength.

< Increasing Frequency (v)

2

, _ electromagnetic
Y rays X rays uv IR Microwave |FM AM Long radio waves
Radio waves S p e Ct rum
| | | , | I o | | | I I | | |
0% 107 10 107¢ 10 ! 100 107 1072 10° 10° 10* 10° 10® A (m)

- -
R e
-
-
-

~~~~~~~~~~~ Increasing Wavelength (A) —

el viEblERe, 00 e '
VWhat we call “color” is how we

subjectively perceive a very small
range of these wavelengths.

] ) i
400 500 600 700

Increasing Wavelength (A) in nm —
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Light-matter interaction

 Where spectra come from:

* |ight source spectrum
* object reflectance (aka spectral

albedo)

 multiplied wavelength by wavelength

* There are different physical processes that explain this multiplication,

e.g. absorption, interferences

IHNumination
N 1.0
%200 % 0.8
Y )
5 150 S 0.6
v .
Zz 100 X Z 0.4
= =
= S0 2 0.2
(=4 (=4

0

400 500 600 700
Wavelength (nm)

Reflectance

a -

0
400 500 600 700

Wavelength (nm)

40
30

o
S

10

Relative energy

Color signal

0
400 500 600 700

Wavelength (nm)
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Light-material interaction

L) = r(Ne(A)

spectral radiance

o A
Illuminant spectrum

spectral reflectance
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Light-material interaction

L) = r(Ne(A)

spectral radiance

I A
lluminant spectrum

spectral reflectance
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llluminant Spectral Power Distribution (SPD)

« Most types of light “contain” more than one wavelengths.
* \We can describe light based on the distribution of power over different

wavelengths.

Daylight Incandescent Fluorescent
~2700 K
60 W Incandescent 3500 K i
. 13 WiEluorescent 40

. 5500 K SORCEROGEN D ravelength (nm

13 W Fluorescent . Hclogen : : Warm White LED

We call our sensation - -\ -
of all of these g 8 i
distributions “white”.
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Light-material interaction

L) = r(Ne(A)

spectral radiance

o A
Illuminant spectrum

spectral reflectance
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Spectral reflectance

« Most materials absorb and reflect light differently at different wavelengths.

« \We can describe this as a ratio of reflected vs incident light over different wavelengths.

1

09

¢ ——
e ey white flower 1
P SN ! R e P —
—— s — Al -
S J
o 'I
-.r- - 'I. —
4 ]
lI

/
yallow flower 7

/ orange flower
J

/

|I

white petal Ji

orangs barry]

blus flower

450 500 550 600 650 700
wavelangth in nm
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Light-material interaction

e(A)
(A =r(Ne(N) ‘/\/X ~

| T A
spectral radiance illuminant spectrum

spectral reflectance
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The problem of color science

* Build a model for human color perception
* That Is, map a physical light description to a perceptual color sensation

Fluorescent Light -

| ‘ ‘)

Relative Power

Wavelength (nm)

Physical Perceptual
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Human color vision

retinal color

Cs :/ks()\)é()\)d)\ :

c(t(N) = (cs;em,ct) <

\

percelved color

object color

color names

ks(A) km(A) Ki(R)

LMS senstivity functions

E(A)I

spectral radiance

ViaN
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Retinal vs perceived color
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Retinal vs perceived color

Retinal vs
perceived color.
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An object's SPD

* |n the real world, most objects do not emit an SPD, instead, they reflect an SPD.
 As aresult, an object’'s SPD depends on the environmental illumination.

lluminant 1 SPD llluminant 2 SPD llluminant 3 SPD

f\’\/\

’
%

Tomato SPD y

é Wavelength (1)
&
!
ooo ?i 5
226
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Color constancy

« QOur visual system has an amazing ability to compensate for environmental
Illumination such that objects are perceived as the same color.

llluminant 1 SPD llluminant 2 SPD llluminant 3 SPD

.

’\'\/\

’

A

e

© ©  ©
&> (& (&>

.
.
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Retinal vs perceived color

* Qur visual system tries to “adapt” to illuminant.

 We may Interpret the same retinal color very
differently.
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Retinal vs perceived color
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The problem of color science

* Build a model for human color perception
* That Is, map a physical light description to a perceptual color sensation

Fluorescent Light -

| ‘ ‘)

Relative Power

Wavelength (nm)

Physical Perceptual
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Human color vision

We will exclusively discuss retinal color in this course

: ks(A) km(X) ki(X)
retinal color Cs = /ks(A)E(A)dA A
__ | ——
c(£(N)) = (cs,em,c1) < v
_4/ /
) LMS senstivity functions
n

pectral radiance

V e(A)Y /\,\S |

percelved color

object color

color names
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Retinal color space
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Spectral Sensitivity Function (SSF)

* Any light sensor (digital or not) has different sensitivity to different wavelengths.
* This is described by the sensor’s spectral sensitivity function f()\) .

When measuring light of some SPD ®(\), the sensor produces a scalar response:

light SPD sensor SSF

I
s R— [ ®(\)F(N)dA
A

Weighted combination of light's SPD: light contributes more at
wavelengths where the sensor has higher sensitivity.
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The eye as a measurement device

Atizus Humor S « We can model the low-level behavior of the eye
Retia. /252 NN\ by thinking of it as a light-measuring machine
AN e its optics are much like a camera
\ | * its detection mechanism is also much like a
N camera
,_,.,/,-"Incommg . Li%_ht Is measured by the photoreceptors in the
retina

Photoreceptors JOE} * they respond to visible light
— « different types respond to different
wavelengths

Magnification of Retina

Greger et al. 1995
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Retinal composition: two klnds of ceIIs

 Cones are concentrated in fovea
* high acuity, require more light
* “respond to color”

 Rods concentrated outside fovea near fovea away from fovea
* |lower acuity, require less light
* roughly 10x more sensitive
* “respond to intensity only” 50,000

160,000

Blind spot \

« 140,000 Rods v Rods
120,000 |-
£ 100,000
§ 80,000
@ 60,000 |
40,000

Number of receptors
per square milimete

20,000 [~ Cones Cones
0 I I I T 1 | | | 1 7 1 D =/ ]
70 60 50 40 30 20 10 0O 10 20 30 40 50 60 70 80

Angle (deg)
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A simple light detector

* Produces a scalar value (a number) when photons land on it
 this value depends strictly on the number of photons detected

* each photon has a probability of being detected that depends on the wavelength

« there is no way to tell the difference between signals caused by light of
different wavelengths: there is just a number

* This is a reasonable model for many detectors:
* based on semiconductors (such as in a digital camera)

* based on visual photopigments (such as in human eyes)
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A simple light detector

many —
photons incident

photons S (A)

per unit
wavelength

100
detection

efficiency r ()\)

(percent)
O -

many —

detected

photons
per unit
wavelength

e 0;.oo 00 X = /S()\) 1’()\) dA

wavelength (nanometers)

area = signal
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A simple light detector

* Light entering the detector has a spectral power distribution

(SPD), s(A)

» Detector has a spectral sensitivity/spectral response, r(A)

X:/s(
\

measured signal

Input spectrum

A)r

(A)dA
|

detector’s sensitivity
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Fraction of light absorbed

Cone responses

by each type of cone

A M * Three types of cones with broadband
201 L spectral sensitivity
159 « S cones respond to short-wavelengths (“blue”)
16 I M cones respond to medium-wavelengths
141 ("green”)
120 * L cones respond to long-wavelengths (“red”)
0B « Experimentally determined in the 1980s
o8l « S,M,L neural response is integrated w.r.t. A
ol « we'll call the response functions rg, ry, 1.
04l  Results in a trichromatic visual system
o2 S « S, M, and L are tristimulus values

0 L 1
400 440 480 520 560 600 640 680

Wavelength (nm) 939



Cone responses to a spectrum s (Math)

_ / re(A)s(A)dA
M = /rM(A)s(A) dA

_ / r1(A)s(A) dA



Cone responses to a spectrum s (Math)

1

SR

Stimulus
(arbitrary spectrum)

380 780
Wavelength, nm

1 1
2 Z
s =
2 &
[V} 15

Response curves 2 2
@ @ \
o o / \?
0 4] / \

360 780 380 780
Wavelength, nm Wavelength, nm
Multiply * *

1 1
feb] L
g 2
(=} o
@ x
o o
¢ 2
§ L § M
ol e L

380 780 380 780

Wavelength, nm

Integrate *

1 number

Wavelength, nm

\4

1 number

—_

k7
=
@
v
o
S
©
o
0
380 780
Wavelength, nm
1 *
()]
g
o
> S
o
(]
=
@
()
o
0
380 780

Wavelength, nm

¥

1 number

Start with infinite
number of values
(one per wavelength)

End up with 3 values
(one per cone type)
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Linear algebra interpretation

L M S Input

\ 1

\ |

380 780 380 780 380 780 380 780
Wavelength, nm Wavelength, nm Wavelength, nm Wavelength, nm

b

SR

o Relative sensitivity _
|
o Relative sensitivity —

o Relative sensitivity

« Sample response curves and input spectra at discrete
wavelengths to obtain vectors
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Linear algebra interpretation

L M S Input

1 1 1 1

2> 2 > f\
= 2 S
2 c 2

8 n s 24

© ) ® )

= = >

E 8 &

T i i

04 0 0 0

380 780 380 780 380 780 380 780
Wavelength, nm Wavelength, nm Wavelength, nm Wavelength, nm

cone sensitivities
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Linear algebra interpretation

L M S Input

1 1 1 1

> = > r\
= = >

Z c 2

8 n s 24

© ) ® %)
= = >

s = =

T i i

04 0 0 0

380 780 380 780 380 780 380 780
Wavelength, nm Wavelength, nm Wavelength, nm Wavelength, nm

cone sensitivities

input spectrum
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Linear algebra interpretation

L M S Input

K O
380 780 380 780 380 780 380 780
Wavelenath. nm Wavelenath. nm Wavelength, nm Wavelength, nm

—t

SR

o Relative sensitivity

o Relative sensitivity _
|
o Relative sensitivity —

* —

Tristimulus response is a
tristimulus matrix-vector multiplication

. response
cone sensitvites Integration is now summation

input spectrum
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Cone responses to a spectrum s

Integral notation: Matrix notation:

A)dA =rg-s

L — Iy, — ‘
A)dA =rp s - ] -

/ 5 — rs — | ||
/ A)dA =rp-s M| =|—ry— | |s

rs, Ny and r are N-dimensional vectors, where N = oo
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Colorimetry: an answer to the problem

* \Wanted to map a physical light description to a perceptual
color sensation

» Basic solution was known and standardized by 1930
 Though not quite In this form — more on that later

1
0.8

0.6
0.4
0.2

0

300 400 500 600 700nm

Physical Perceptual
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Colorimetry: an answer to the problem

« Different wavelength, different intensity
¢ Same response

1.00- P
0.75-
0.50-
0.25-
0.00 H

400 500 600 700
wavelength
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Response comparison

« Different wavelength, different intensity
« But different response for different cones
1.00-

0.75-
0.50-

0.25-

0.00 -

400

rs

500 600
wavelength

700
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Tristimulus color theory

« Before the biology of cone cells was understood, it was
empirically known that only three distinct colors (primaries) could
be mixed to produce other colors.

 Moses Harris (1766), Thomas Young (1803), Johann Wolfgang
von Goethe (1810), Hermann Grassman (1853), James Maxwell
(1856) all explored the theory of trichromacy for human vision.

von Goethe Grassman

Early color photography

. " is attributed to Maxwell.
From Harris “The Natural System of Colours
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Tristimulus color theory

 Grassman’s Law states that a source color can be matched by a linear
combination of three independent “primaries”.
Three lights (shown as lightbulbs) serve as

— R1 + G1 + BA1 primaries. Each light has intensity, or
- (10%) (80%) (5%) weights, R1, G1, B1 to match the source

light mixture #| light #1 perceived color.
— me thr rimaries and the weights
= R2 + G2 + B2 same three p . 9
(50%) (2% ) (50%) (R2, G2, B2) of each primary needed to
light mixture #2 match the source light #2 perceived color
If we combine source The amount of each primary needed to match the new source light
lights 1 & 2 to get #3 is the sum of the weights that matched lights sources #1 & #2.

a new source light 3
This may seem obvious now, but
Q discovering that light obeys the
} ‘ — (R1+ R2) + (G1+G2) + (B1+B2) laws of linear algebra was a huge
‘ (60%) (82%) (55%)

and useful discovery.

?

light mixture #3
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The retinal color space

C(g)\i) — (Cs, Cm,y cl)

i i 2
."./"‘ I|

ks(A) km(R) ki(A)

7\

’
e w S
R \:\\

LMS senstivity functions

“pure beam” (laser)
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The retinal color space

C(e)\z‘) — (037 Cm, cl)

1
|
|
|
|
- ‘./- \..

l
/'/- ll
,."' J .,/ .’.. '
ks(A) Em(X) Ei(X) , " Il I'
~ " XII // .__..-"' / ,lf,’ ll
. 7\ L el RS U
= 5 . = —_ 2
I — . 7
LMS senstivity functions
/RE, . "lasso curve”
Ai
—

. contained In positive octant
parameterized by wavelength

starts and ends at origin <€— why?
never comes close to M axis €— why?

|—
—:
—I
\ 4
[ ]

P
== v
°

“pure beam” (laser)
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The retinal color space

C(g)\z‘) — (037 Cm, cl)

i

ks(A) km(A) ki(X)
: - u z|' //
. JAN D e
| | ""--‘\
/ / \ . a \\‘\
7 X/ AN .

LMS senstivity functions

“pure beam” (laser)

1
|
|
|
|
st

/// nll

/ / I \

/ / |

/ | |

L

.‘/ "/ A

--‘P-F.- -
- ————

-.-P”/ i —

. starts and ends at origin

These extreme wavelengths are at the

boundaries of the visible region, beyond
which the responses are zero.
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The retinal color space

C(g)\z‘) — (037 Cm, cl)

i

1

|

|

|

|

AN l|

/) S e

. hil

.'/ { s ! |

ks(A) km(A) ki(N) |7 l' ll ll

" | o = £ e Y |

N Lot e - A |

7\ et S bt |t A |

/ \ | = -—L- M _——_-ﬁ—- — l"_ |

o v — i 7
X N 8

LMS senstivity functions

never comes close to M axis

EEEEEE
As

“pure beam” (laser)

There is no light that stimulates these cones
alone.
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The retinal color space

C(eki) — (087 Cm, Cl)

i

ks(A) km(R) ki(A)

JA

——

[\ // \
I \ // \
W] X \
ur—z — \

LMS senstivity functions

If we also consider variations in the strength
of the laser this “lasso” turns into (convex!)
radial cone with a “horse-shoe shaped”
radial cross-section

“pure beam” (laser)
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The retinal color space

C(E)\i) — (037 Cm, Cl)

i

ks(A) km(R) ki(A)

JA

-

[\ // \
I \// \
W] X \
J N

LMS senstivity functions

colors of mixed beams are at the interior
of the convex cone with boundary the
surface produced by monochromatic lights

Ai
“mixed beam”
= convex combination of pure colors
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The retinal color space

C(eki) — (087 Cm, Cl)

i

ks(A) km(R) ki(A)

/ \

——
08 1 \ / \
I \// \
W/ X \
ur—z — \

LMS senstivity functions

. distinct mixed beams can produce
the same retinal color
. these beams are called metamers

Ai
“mixed beam”
= convex combination of pure colors
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Metamers

 \We are all color blind!

Intensity

1. Take a spectrum (which is a function)

2. Eye produces three numbers 00 %30 T8 250 600 70D
3. This throws away a lot of information! (a) Wavelength (nm)

* Two different spectra can produce the
same three values/visual responses (right)

« called metamers 3 | o —
L i 4 &
400 500 600 /700

(b) Wavelength (nm)
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SPD relation to perceived color is not unique

* Due to the accumulation effect of the cones, two different SPDs
can be perceived as the same color (such SPDs are called
“metamers”).

Lettuce SPD

Lettuce SPD
stimulating
S=0.2, M=0.8,

Lettuce

Green ink

g ‘IrI'I:.;;}iI_'l‘H\".I‘\‘

g : J 'II‘v III| \‘Ill

g J I'II l‘| -.l'

s 4 |.|I / "ul II",.

g R , ) D

' L=0.8 ~ O
400 500 600 700 o
wavelength () SPD of “real lettuce” o
Green Ink SPD
i ’ Result in the same
8 I| I‘ Ill \
e III ] | '.II

Green ink SPD
stimulating
S=0.2, M=0.8,
L=0.8

color “sensation”’.

SPD of ink in a “picture of lettuce”
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Pseudo-geometric interpretation

* A dot product Is a projection

 Humans project an infinite dimensional vector (the SPD) onto
a 3-D subspace

 differences that are perpendicular to all 3 vectors are not detectable
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Pseudo-geometric interpretation

* For intuition, we can imagine a 3D analog

3D stands in for the infinite-dimensional vectors

e 2D stands in for 3D

* Then color perception Is
just projection onto a plane

spectrum —~

visual response
to spectrum

T

| |

| |

\ L | il
400 480 500 580 600 700

metamers

span of

eye’s spectral
response
functions 2



Metamerism & light sources

* Metamers under a given light source, may not be metamers under a
different lamp

» Consider two following grey patches from a book.

* They look the same under daylight but different under neon or halogen

530 580
Wavelength (nm)

Daylight Scan (neon) Hallogen
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Recap

« Spectrum is an infinity of numbers

* Projected to 3D cone-response space
 for each cone, multiply per wavelength and integrate
* a.k.a. dot product

 Metamerism: infinite-D points projected to the same 3D point
(different spectrum, same perceived color)

« affected by illuminant

* enables color reproduction with only 3 primaries
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Color matching



CIE color matching

screen

Iy
test light 5
E(A)“/\,\
" human observer
projector €435

‘\em

‘8535

“primaries”

Adjust the strengths of the primaries until they re-produce the test color. Then:
C(E()\)) — ac(€435) + ,BC(€535) + ’)’C(€625)

\ equality symbol means “has the same
retinal color as” or “is metameric to”
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CIE color matching

screen

‘ €535

“primaries”
L435 P

2625

8()\)[/_\ human observer
11 . " . t
test light | _ projecior

To match some test colors, you need to _
add some primary beam on the left c(£(A)) + ve(le2s) = ac(lyss) + fc(lsss)

(same as “subtracting light” from the right) — C(E(A)) = 040(3435) + ﬁC(€535) — ’70(5625)
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Color matching demo

Maxwell's Color Matching Experiment

Target Color Color Match Trichromatic Matching Functions
1.2

A =435

0.6

Primaries:
-0.3 0 0.6 1.2
A=615 M —
| T | |
A =525 /
| /T_\ | | 0 ®
A=445 B ——
)
| | | |
-0.3
l Hint | Answer J
) 400 500 600 700
I B ]
| | Show Curves (CHEAT!)
75
ki) (miseete) Lambda (A)

http://graphics.stanford.edu/courses/cs178/applets/colormatching.html
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CIE color matching

kazs(X) ksas(A) keas(A)

screen

Lo25
‘ €535

“primaries”

/ \
/ \
/
/ \
- \
o ‘;\/w - = h

Matching experiment matching functions

W

A

human observer

)\'i projector €435

Repeat this matching experiments for pure test beams at wavelengths A, and keep track
of the coefficients (negative or positive) required to reproduce each pure test beam.

c(Ai) = kazs(A)c(ass) + ks35(A)c(Ls35) + Kkeas(A)c(€s2s)
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CIE color matching

kass(A) ksas(X) ke2s(A)

note the
negative
values

screen

Co2s
‘ €535

“primaries”

/ \
/ \
= :\/‘V =

Matching experiment matching functions

W

A

human observer

>‘7l projector £435

Repeat this matching experiments for pure test beams at wavelengths A, and keep track
of the coefficients (negative or positive) required to reproduce each pure test beam.

c(Ai) = kazs(A)c(ass) + ks35(A)c(Ls35) + Kkeas(A)c(€s2s)
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CIE color matching

k3s(A) ksas(A) ke2s(N)

screen

; Lo25
e
£y, /‘ \ _ €535
human observer “primaries”
i projector €435

Ai

\What about “mixed beams”?
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Two views of retinal color

ks(A) Em(A) ki(A)

JA\
[\
[\ JANRN
[\ // \
/ \ /[ \
/ X A\
e N AN

LMS senstivity functions

Analytic: Retinal color is produced by
analyzing spectral power distributions
using the color sensitivity functions.

kazs(A) ksas(A) Kkeas(A)

4
4

’
4 /\
4

s

o4
3 . “
W &0 = 0 bR [0 ” "o ¢
039
049
0.8

Matching experiment matching functions

Synthetic: Retinal color is produced by

synthesizing color primaries using the
color matching functions.

\What is each view of retinal color best suited for?
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Two views of retinal color

ks(A) Em(A) ki(A)

JAAN
[\
[\ SN\
/ \ _// N\
| \// \
/ N AN
A ~____

LMS senstivity functions

Analytic: Retinal color is produced by
analyzing spectral power distributions
using the color sensitivity functions.

How do they relate to each other?

kazs(A) ksas(A) Kkeas(A)

A

L
029

\/\\ — — -

o T

Matching experiment matching functions

Synthetic: Retinal color is produced by

synthesizing color primaries using the

color matching functions.
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Two views of retinal color

ks(A) Em(A) Ki(A)

JAN
[\
[\ JANRN
[\ // \
y / \ // A\
i X A\
s N N

LMS senstivity functions

Analytic: Retinal color is produced by
analyzing spectral power distributions
using the color sensitivity functions.

kazs(A) ksas(A) Kkeas(A)

t i
144
4
0s 4
os 4
049
04

3 v v e -
4 &0 = 0 L s 4 "o N

039

049

1

Matching experiment matching functions

Synthetic: Retinal color is produced by

synthesizing color primaries using the
color matching functions.

The two views are equivalent: Color matching functions are also color sensitivity
functions. For each set of color sensitivity functions, there are corresponding color

primaries.
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Linear color spaces
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Linear color spaces

1) Color matching experimental outcome:

C()\z') = k435()\)c(£435) + k535()\)0(€535) + k625()‘)c(€625)

same in matrix form:

| | | | ka3s
C(|)\i) = 0(5435) 0(5545) C(fazs) k535

k625

how is this matrix formed?
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Linear color spaces

1) Color matching experimental outcome:

C()‘i) = k435()\)c(£435) + k535()\)0(€535) + k625()‘)c(£625)

same in matrix form:

| | | | kass
C()\i) = 0(3435) C(£545) C(fazs) k535
| | | | keos

2) Implication for arbitrary mixed beams:

| | | | [ kags(N)E(X)dA
c(f(A))| = |c(fass) c(fsa5) c(Le2 J Es3s(A)E(N)dA
| | | | [ kgas(N)E(X)dA

where do these terms come from?
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Linear color spaces

1) Color matching experimental outcome:

C()‘i) = k435()\)c(£435) + k535()\)0(€535) + k625()‘)c(£625)

same in matrix form:

| | | | kass
C()\i) = 0(3435) C(£545) C(fazs) k535
| | | | keos

2) Implication for arbitrary mixed beams:

| | | | [ kags(N)E(X)dA
c(f(A))| = |c(fass) c(fsa5) c(Le2 J Es3s(A)E(N)dA
| | | | [ kgas(N)E(X)dA

what is this similar to?
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Linear color spaces

1) Color matching experimental outcome:

C()\z') = k435()\)c(£435) + k535()\)0(€535) + k625()‘)c(€625)

same Iin matrix form:
| | | | k435
C(|)\i) = 0(5435) 0(5545) C(fazs) k535

2) Implication for arbitrary mixed beams:

| | | | A)E(A)dA
c(f(/\)) = C(£435) 0(6545) c(€625) f k535()\)€(/\)d)\
| | | | A)E(A)dA

/ ! N\

. . change of basis . .
representation of retinal Tatrix representation of retinal

color in LMS space color in space of primaries
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Linear color spaces

basis for retinal color & color matching functions & primary colors < color space

| T LR )EN)dA
C(E()\)) = |C1 Cgo C3 fkg(A)E()\)d)\
| T L Rs()EN)dA

— [ k(M) ass (M)
[ | | | } ka(A)| =M | ksas(N)

k625 ()‘)

M~'M can insert any invertible M

| | | | J Fazs(M)E(A)dA
C(E(/\)) = C(f435) 0(5545) c(@ fk535 g(/\)d)\
| | | [ kea5(X)L(N)dA

/ !

. . change of basis . .
representation of retinal Tatrix representation of retinal

color in LMS space color in space of primaries
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A few important color spaces

AN N
[ \ . 4
[\ AN o]
|\ /7 \
/I \\// \\
l | / -‘.-/\ - \ j,. it \/\~ o 1
LMS color space CIE RGB color space

\

not the “usual” RGB color
space encountered In practice
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Two views of retinal color

Analytic: Retinal color is three numbers Synthetic: Retinal color is three numbers
formed by taking the dot product of a formed by assigning weights to three
power spectral distribution with three color primaries to match the perception
color matching/sensitivity functions. of a power spectral distribution.

How would you make a color measurement device?
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How would you make a color measurement device?

Do what the eye does:

« Select three spectral filters (i.e.,
three color matching functions.).

« Capture three measurements.

1 —

?; c.‘.: o ' ~t.
Can we use the CIE RGB color ] \/

matching functions?

CIE RGB color space
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How would you make a color measurement device?

Do what the eye does:

« Select three spectral filters (i.e.,
three color matching functions.).

« Capture three measurements.

.4 — v + - —
‘11 &0 o 3 o o oy - o
Can we use the CIE RGB color - \/

matching functions? s /

Negative values are an issue
(we can’'t “subtract” light at a sensor)

CIE RGB color space
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How would you make a color measurement device?

Do what the eye does: (
« Select three spectral filters (i.e., , P
three color matching functions). ; [/ \\
Capture three measurements. | T \ PN
/ \_// N\
/ \ /[ \
03 / v \
Can we use the LMS color e N A ,
matching functions? b = T w = = T T

LMS color space
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How would you make a color measurement device?

Do what the eye does: (
« Select three spectral filters (i.e., ) AN
three color matching functions). ; I/ \\
Capture three measurements. ) T \ PN
/ \ [/ \
y / \// \
03 / \J \
Can we use the LMS color J e N A ,
matching functions? Wy - = = = = =TT

* They weren't known when CIE was doing

. . . LMS color space
their color matching experiments.
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How would you make a color measurement device?

* Derived from CIE RGB by adding enough
blue and green to make the red positive.

* Probably the most important reference
(I.e., device Independent) color space.

Remarkable and/or scary: 80+ years of CIE XY/
Is all down to color matching experiments done

with 12 “standard observers”.

-~

AN
[N
\ -
\ £\
| \ VAN
/ \/_/ A\
f N X/ \

CIE XYZ color space
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The CIE XYZ color space

* Derived from CIE RGB by adding enough ™ X
blue and green to make the red positive. | 7\ Y corresponds to
* Probably the most important reference  |..... [__\____luminance ("brightness”)
(I.e., device Independent) color space. ( \\ /A\
N | \ /N \
/ \/ _/ \
J N XL \
2008 «00 yv \L y -\Aiv 1
—  Xand Z correspond to chromaticity — —

How would you convert a color CIE XYZ color space

image to grayscale?

288



A few important color spaces

LMS color space CIE RGB color space

£\
N\

\ ~
7N,
77\

LoxE \ ,‘/ / \\‘ \

o) J LN XL N\

Q008 +00 l —‘—ﬂ_—\x‘ \x‘

»0 ox o X 0 Er Lot

[
[
|
[
/

CIE XYZ color space
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Two views of retinal color

Analytic: Retinal color is three numbers Synthetic: Retinal color is three numbers
formed by taking the dot product of a formed by assigning weights to three
power spectral distribution with three color primaries to match the perception
color matching/sensitivity functions. of a power spectral distribution.

How would you make a color reproduction device?
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How would you make a color reproduction device?

Do what color matching does:

» Select three color primaries. o 7\

» Represent all colors as mixtures of [\
these three primaries.

10000 \\
(e S \
exeE o \ >

L0k O / \ / - - \

2 000 /\ : -

A0 <00 A - \x: v v x;
" X N S0 s X o "o

Can we use the XY/Z color primaries?
CIE XYZ color space
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How would you make a color reproduction device?

Do what color matching does: o i
« Select three color primaries. 7\
» Represent all colors as mixtures of \
these three primaries. PN
" o \ N
\ [ N\
ot o \/ _/ \
o ) LN XS \
Can we use the XYZ color primaries? e w @ wm  m  m s m

 No, because they are not “real” colors
(they require an SPD with negative
values).

« Same goes for LMS color primaries.

CIE XYZ color space
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The Standard RGB (sRGB) color space

« Derived by Microsoft and HP in 1996,
based on CRT displays used at the time.

« Similar but not equivalent to CIE RGB.

Note the negative values sRGB color space

While 1t Is called “standard”, when you grab
an “RGB" image, it is highly likely itis in a
different RGB color space...
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The Standard RGB (sRGB) color space

« Derived by Microsoft and HP in 1996,
based on CRT displays used at the time.

« Similar but not equivalent to CIE RGB.

There are really two kinds of sRGB color

spaces: linear and non-linear.
* Non-linear sRGB images have the following
tone reproduction curve applied to them.

sRGB color space

C o 12.92 - Clinca.ra Clinca.r S 0.0031308
nomlinear T (1 10.055) - C2E  —0.055, Clinear > 0.0031308

linear
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A few important color spaces

7\
[\
I\ 77\
[\ 77 “\
/ \// \
/ N AN 1
S N AN
LMS color space
[\
[\
=0 I \
[\ 7 A\
00k ¢ I \ f‘/ \‘, \
/ \/ /N \
20060 ] /-\ ’j\ / \-L\\ T
3 +00 — 341‘ —_—
CIE XYZ color space sRGB color space

295



A few important color spaces

[\
[\
AN
/ \ [/ NN\
X7/ <\
/ X AN ’ 1
/ / \ \\“\\

|s there a way to
“compare” all these color

- spaces?’
A
[\
. [\ N
[\ 7 A\
[\ 7 7 <\
[ \7 7 <\ |
J N XL \ ] %
27X S

CIE XYZ color space sRGB color space
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Chromaticity



CIE xy (chromaticity)

Hue changes as one moves around
the spectral locus

0.8

Green

0.6

Yellow

\

Saturation increases as
one moves out radially
from white

Orange

y axis

0.4

White

Indigo

0.2 0.4 0.6 0.8

X axis

X
X+Y+ 2

B Y
YT XYY +2Z

(X,Y,Z) «— (z,y,Y)

chromaticity

luminance/brightness

Perspective projection of 3D retinal color
space to two dimensions.

298



CIE xy (chromaticity)

0.9- X
051 $:X+Y+Z
0.7 Y
0.6 y:X—I—Y-I—Z

500+
0.5

(X,Y,Z) «— (z,y,Y)

y 7
0.4

0.3

Note: These colors can be extremely
misleading depending on the file
origin and the display you are using
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CIE xy (chromaticity)

0.9+

0.8+

What does the boundary of the

560/ chromaticity diagram correspond to?

580

0.7

0.6

500
0.5

y -
0.4

| 620
0.3

0.2+

0.1

0.0 L T T T T T T T T T T T T 1
00 01 02 03 04 05 06 07 08
X 300



Color gamuts

0.9

0.8+ We can compare color spaces by looking at

0 what parts of the chromaticity space they can
' reproduce with their primaries.

0.6

5092. But why would a color space not be able to

y reproduce all of the chromaticity space?

0.4

| 620
0.3

0.0' - T T T T T T T T T T T T 1
00 01 02 03 04 05 06 07 08
X 301



Color gamuts

0.9

0.8+ We can compare color spaces by looking at

0 what parts of the chromaticity space they can
' reproduce with their primaries.

0.6

5092. But why would a color space not be able to

y reproduce all of the chromaticity space?

0.4

 Many colors require negative weights to be
reproduced, which are not realizable.

| 620
0.3

0.2+

0.1

0.0' T T T T T T T T T T T T 1
00 01 02 03 04 05 06 07 08
X 302



Color gamuts

520

sRGB color gamut:

* \What are the three triangle corners?
What is the interior of the triangle?
What is the exterior of the triangle?
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Color gamuts

520

sRGB color gamut

00 0. 20 : ; 6 07 08
X 304



Color gamuts

. ProPhoto RGB

- Adobe RGB

Gamuts of various common
industrial RGB spaces

What is this?

N
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The problem with RGBs visualized in
chromaticity space

0.9, - . S
520\ [ ] | Device 1

0.8- De\“ce 2 .......

Device 3 - -

0.7

0.6
500+
0.5+
y

0.4

0.3+

.
4
-
*
*
*
*
"
*

0.21

0.1+

RGB values have no meaning if the primaries
03 04 05 06 07 08 petween devices are not the same!
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Color gamuts

0.9+

0.8+

0.7

0.6

5004
0.5

)P

0.3

0.4

620

0.0' - T T T T T T T T T T T T 1
00 0.1 02 03 04 05 06 07 08

X

Can we create an RGB color space that
reproduces the entire chromaticity diagram?

What would be the pros and cons of such a
color space?

What devices would you use it for?
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Chromaticity diagrams can be misleading

Different gamuts may compare very differently when seen in full 3D retinal color
space.
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Some take-home messages about color spaces

Analytic: Retinal color is three numbers Synthetic: Retinal color is three numbers
formed by taking the dot product of a formed by assigning weights to three
power spectral distribution with three color primaries to match the perception of
color matching/sensitivity functions. a power spectral distribution.

Fundamental problem: Analysis spectrum (camera, eyes) cannot be the same as synthesis
one (display) - iImpossible to encode all possible colors without something becoming
negative

« CIE XYZ only needs positive coordinates, but need primaries with negative light.
 RGB must use physical (non-negative) primaries, but needs negative coordinates for

some colors.

Problem with current practice: Many different RGB color spaces used by different devices,
without clarity of what exactly space a set of RGB color values are in.
* Huge problem for color reproduction from one device to another.
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See for yourself

Images of the same scene captured using 3 different cameras with
identical settings, supposedly in sRGB space.
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Color calibration and affine transform estimation
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Color calibration

Apply linear scaling and translation to RGB vectors in the image:

c'=M-c+t
transformed RGB vector original RGB vector

What are the dimensions of each quantity in this equation?
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Color calibration

Apply linear scaling and translation to RGB vectors in the image:

c'=M-c+t
transformed RGB vector original RGB vector

What are the dimensions of each quantity in this equation?

How do we decide what transformed vectors to map to?
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Using (again) a colorchecker

Color patches manufactured to have
pre-calibrated XYZ coordinates.

Calibration chart can be used for:

1. color calibration

2. radiometric calibration (i.e., response curve) using the bottom row
314



100

200

300

400 -

500

600 -

700

800

Using (again) a colorchecker

Color Checke

Dark Skin ‘ Blue Sky
R=115 =194 ;-
G= 82 =150 G=122
B= 68 B=157

Orange Purple Red  Moderate Rec
R= 80 R=193
G=91 G=90
B=166 B=99

Green
R=70
G=148
B=73

Neutral 8
R=200
G=200

200 400 600

Calibration chart can be used for:

1. color calibration

Foliage
R= 87
G=108
B= 67

Purple
R=94
G= 60
B=108

800

- .I

Magenta
R=187
G= 86
B=149

Neutral 35

R= 85
G= 85
B= 85

1000

Cyan
R= 8
G=133
B=161

Color patches manufactured to have
pre-calibrated XYZ coordinates.

Can we use any colorchecker image for
color calibration?

2. radiometric calibration (i.e., response curve) using the bottom row
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Using (again) a colorchecker

Color Checke

NS el RSeY | RN Color patches manufactured to have
B » BEERE 5170 pre-calibrated XYZ coordinates.
200 Orange Purple Red  Moderate Rec Purple y
R= 80 R=193 R=94
Botes  Boga | boi00
" Can we use any colorchecker image for
500 St T color calibration?
G=148 G= 86 G=133 _ _
oy = = I - It needs to be a linear image!
e Res0 - MRe180 Regs | Res - Do radiometric calibration first.
G=200 =16 G= 85

800 B=16 B=85

200 400 600 800 1000 1200

Calibration chart can be used for:

1. color calibration

2. radiometric calibration (i.e., response curve) using the bottom row
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Color calibration

Apply linear scaling and translation to RGB vectors in the image:

c'=M-c+t
transformed RGB vector original RGB vector

What are the dimensions of each quantity in this equation?

How do we decide what transformed vectors to map to?

How do we solve for matrix M and vector t?
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Color calibration

Apply linear scaling and translation to RGB vectors in the image:

o= A
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Color calibration

Apply linear scaling and translation to RGB vectors in the image:

o= ]
| Y l\_'_]
T C
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Color calibration

Apply an affine transform to homogeneous RGB vectors in the image:

c =T-C

7 \

heterogeneous homogeneous
transformed RGB vector original RGB vector

How do we solve for an affine transformation?
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Determining the affine transform matrix

Write out linear equation for each color vector correspondence:

r

T t]_ tz t3 t4_
c'=T-C o |g'|=|ts e t; g ‘Z
b’ to t10 11 T12 1
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Determining the affine transform matrix

Rearrange into an equation involving a vectorized form of T:

oo =

S o

oo

o O

o N O

o o

oo O

S = O

Y] O O

Q © o

SO O

o9
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Determining the affine transform matrix

Stack equations from multiple color vector correspondences: | :1 ]
2

P r g b 10000000 0
g’OOOOrgblOOOOt4
b’OOOOOOOOrgbltz
Pl |- g b 1000000 0 o0
g'OOOOrgblOOOOt8
pl loooooo0o o000 r g b L
10

t11

1 £19

| , [l

b A x 323



Solving the linear system

Convert the system to a linear least-squares problem: In Matlab:

Eris = [[Az — b|° X
Expand the error:

Epps=x' (ATA)z — 22" (A"b) + ||b]|?

|
>
—~
-

Minimize the error:

Set derivative to 0 (ATA).’L' —A'b

. T —1 AT Note: You almost never want to
Solve forx I = (A A) A'b compute the inverse of a matrix.
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An example

original

color-corrected
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Quick note

If you cannot do calibration, take a look at the image’s
EXIF data (if available).

Often contains information about tone reproduction
curve and color space.

~ JPEG Exif

\general }Eermissions JMeta Info | Preview '

Comment:

Creation Date:
Creation Time:
Dimensions:
Exposure Time:
JPEG Quality:
Aperture:

Color Mode:
Date/Time:
Flash Used:
Focal Length:
ISO Equiv.:
JPEG Process:
Camera Manufacturer:
Metering Mode:
Camera Model:
Orientation:

05-01-14

12:38:36 am

2560 x 1920 pixels
0.100 (1/10)
Unknown

/3.3

Color

05-01-14 12:38:36 am
Off

6.3 mm

100

Baseline

PENTAX Corporation
Pattern

PENTAX Optio WP

1

{ OK H Cancel
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Color profiling for displays

colorimeter: device calibrated to
measure displayed radiance In some
reference color space (usually CIE XY/Z)

Exactly analogous procedure for figuring
out the color space of a display.

Note: In displays, color calibration refers
to changing the display’s primaries so
that colors are shown differently. This is
a completely separate procedure from
color profiling.

program displaying multiple color
patches with known coordinates in the
same color space as the colorimeter

Note also the discrepancy in terminology
between cameras and displays.
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Non-linear color spaces
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A few important linear color spaces

LMS color spacqd \What about non-linear color E RGB color space
spaces?

CIE XYZ color space sRGB color space
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CIE xy (chromaticity)

Hue changes as one moves around
the spectral locus

0.8

Green

0.6

\

Saturation increases as
one moves out radially
from white

Yellow

Orange

y axis

White

Indigo

-

0.2 0.4 0.6

X axis

0.8

X
X+Y+ 2

B Y
YT XYY +2Z

(X,Y,Z) «— (z,y,Y)

constancyity

luminance/brightness

CIE xyY is a non-linear color space.
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Uniform color spaces

Find map F : R® — R? such that perceptual
distance can be well approximated using Euclidean distance:

d(¢,c) = ||[F(c) — F(2)]]2
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MacAdam ellipses

0.9;

0.8+

0.7 Areas in chromaticity space of imperceptible
change:

e « They are ellipses instead of circles.

9 « They change scale and direction in different parts

y of the chromaticity space.

0.4-
0.31=
0.2-

0.1

00 0. . I : : f 7 08
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MacAdam ellipses

Note: MacAdam ellipses are almost always shown at 10x scale for visualization. In

reality, the areas of imperceptible difference are much smaller.

4
1 1 I 1 1 1 1 1 1 ! I I I I I I I
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The Lab (aka L*ab, aka L*a*b*) color space

The L* component of lightness 1s defined as

Y

L* =116f (7> , (2.105)

where Y, is the luminance value for nominal white (Fairchild 2005) and

t1/3 t> 43
f(t) = { t/(36%) +26/3 else, (2-106)

is a finite-slope approximation to the cube root with § = 6/29. The resulting 0. .. 100 scale
roughly measures equal amounts of lightness perceptibility.

In a similar fashion, the a* and b* components are defined as

sy (£)-1(F)] mar-sals () 4 (2)]. e

where again, (X, Yn, Z,) is the measured white point. Figure 2.32i—k show the L*a*b*
representation for a sample color image.
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The Lab (aka L*ab, aka L*a*b*) color space

The L* component of lightness 1s defined as

Y
L* =11 — 2.1
where Y, is the luminance value for nominal white (Fairchild 2005) and
. . t1/3 t> 43
? t) = 2.106

is a finite-slope approximation to the cube root with § = 6/29. The resulting 0. .. 100 scale
roughly measures equal amounts of lightness perceptibility.

In a similar fashion, the a* and b* components are defined as

sy (£)-1(F)] mar-sals () 4 (2)]. e

where again, (X, Yn, Z,) is the measured white point. Figure 2.32i—k show the L*a*b*
representation for a sample color image.
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Perceived vs measured brightness by human eye

Human-eye response (measured brightness) is linear.

However, human-eye perception (perceived brightness) is

non-linear:
« More sensitive to dark tones.
* Approximately a Gamma function.

-
L
—
-l
o

)
T

v
—

[
(a]
e
-
o8
-
-
o

0% 25% 50% 75% 100%
INPUT: Actual Luminance
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The Lab (aka L*ab, aka L*a*b*) color space

0.7 T I I I I I

06F

500nm

~700nn| .
0.5 TR N |

03

C.LE. 1976 U.C.S.
Chromaticity
Diagram

02

B 8740w DreamColor
B LP2480zx Dream Color
M sRGB/Rec. 709

01




Hue, saturation, and value

Do not use color space HSV! Use LCh:

« L* for “value”.
« C = sqgrt(a? + b?) for “saturation” (chroma)

e h=atan(b/a) for “"hue”.

appears to emit
more light

<
~d
-
D
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Some thoughts about color reproduction



The image processing pipeline

The sequence of image processing operations applied by the camera’s image signal
processor (ISP) to convert a RAW image into a “conventional” image.

— @ s analog front- | _
end
RAW image
(mosaiced,
| linear, 12-bit)
— | denoising | €— CFA < white <
demosaicing balance
color tone | | final RGB
> | transforms > | reproduction | > | compression f——> 'lmggreg?gp[;
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Putting it together: color processing

« Calibrate your color matrix using a carefully white-balanced image
when solving for M, constrain to ensure rows sum to 1
(then M will leave neutral colors exactly alone)

For each photograph:

. determine illuminant

apply von Kries (chromatic adaptation)
apply color matrix

apply any desired nonlinearity

. display the image!

or W=
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Color reproduction notes

To properly reproduce the color of an image file, you need to?
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Color reproduction notes

To properly reproduce the color of an image file, you need to convert it from the color space it was
stored in, to a reference color space, and then to the color space of your display.

On the camera side:

« |f the file is RAW, it often has EXIF tags with information about the RGB color space corresponding
to the camera’s color sensitivity functions.

« |f the file is not RAW, you may be lucky and still find accurate information in the EXIF tags about
what color space the image was converted in during processing.

« |f there is no such information and you own the camera that shot the image, then you can do color
calibration for the camera.

* |f all of the above fails, assume sRGB.

On the display side:

* |f you own a high-end display, it likely has accurate color profiles provided by the manufacturer.
* |f not, you can use a spectrometer to do color profiling (not color calibration).
« Make sure your viewer does not automatically do color transformations.

Be careful to account for any gamma correction!

Amazing resource for color management and photography: https://ninedegreesbelow.com/
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The METACOW spectral image database

MetaCow: Creatad by the RIT ,_ o

Amazing dataset for color management and photography:

https://www.rit.edu/cos/colorscience/rc db metacow.php
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https://www.rit.edu/cos/colorscience/rc_db_metacow.php

How do you convert an image to grayscale?
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How do you convert an image to grayscale?

First, you need to answer two questions:
1) Is your image linear or non-linear?
« |f the image is linear (RAW, HDR, or otherwise radiometrically calibrated), skip this step.
« |f the image is nonlinear (PNG, JPEG, etc.), you must undo the tone reproduction curve.
I. If you can afford to do radiometric calibration, do that.
li. If your image has EXIF tags, check there about the tone reproduction curve.
. If your image is tagged as non-linear sRGB, use the inverse of the sRGB tone reproduction curve.
Iv. If none of the above, assume sRGB and do as in (iii).

2) What is the color space of your image?
« |f it came from an original RAW file, read the color transform matrix from there (e.g., dcraw).
* |f not, you need to figure out the color space.

I. If you can afford to do color calibration, use that.
ii. If your image has EXIF tags, check there about the color space.

lil. If your image is tagged as non-linear sRGB, use the color transform matrix for linear sRGB.
Iv. If none of the above, assume sRGB and do (iii).

With this information in hand:

« Transform your image into the XYZ color space. (If it is in sSRGB, you may need to do whitepoint
adaptation!!)

« Extract the Y channel.

« |f you want brightness instead of luminance, apply the Lab brightness non-linearity.
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How do you convert an image to grayscale?

Why You Should Forget Luminance Conversion and Do Something Better

Rang M. H. Nguyen Michael S. Brown
National University of Singapore York University
nguyenho@comp.nus.edu. sg mbrown@eecs.yorku.ca
Abstract sRGB ima e Ground truth luminance
N .

One of the most frequently applied low-level operations
in computer vision is the conversion of an RGB camera im-
age into its luminance representation. This is also one of the
most incorrectly applied operations. Even our most trusted
softwares, Matlab and OpenCV, do not perform luminance
conversion correctly. In this paper, we examine the main
factors that make proper RGB to luminance conversion dif-
ficult, in particular: 1) incorrect white-balance, 2) incorrect
gamma/tone-curve correction, and 3) incorrect equations.
Our analysis shows errors up to 50% for various colors are
not uncommon. As a result, we argue that for most com-

Error due to wrong
white-balancing (2500°K)

Error due to wrong Error due to wrong
tone-curve equations (YIQ-Luma)

puter vision problems there is no need to attempt luminance s I 0.05
conversion, instead, there are better alternatives depending iy T L S
on the task. Figure 1. This figure shows examples of errors that arise due to

improper luminance conversion. The ground truth luminance for
this experiment is captured from a hyperspectral camera.
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Next Lecture:
Exposure and
high-dynamic-range imaging



