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Today's Lecture

» Controlling exposure
* High-dynamic-range imaging

« Tonemapping

Disclaimer: The material and slides for this lecture were borrowed from
—loannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class
—Wojciech Jarosz's CS 89.15/189.5 “"Computational Aspects of Digital Photography” class
—Derek Hoiem's CS 498 “Computational Photography” class



Light, exposure and dynamic range

« Exposure: how bright is the scene overall?

« Dynamic range: contrast in the scene

* ratio of brightest to darkest intensity



Today's Lecture

» Controlling exposure
« High-dynamic-range imaging

e Tonemapping



Exposure control



What is exposure?

Roughly speaking, the “brightness” of a captured image given a fixed scene.

Exposure = Gain x Flux x Time

* Flux is controlled by the aperture.
« Time Is controlled by the shutter speed.
* @Gain is controlled by the ISO.



Exposure controls brightness of image

Aperture

Exposure

Shutter



Exposure controls brightness of image

Aperture

Exposure




Shutter speed

Controls the length of time that shutter remains
open.

Incoming
light

shutter I

Sensor I I A I

closed shutter



Shutter speed

Controls the length of time that shutter remains
open.

Incoming
light

shutter I I

Sensor I I I I |

open shutter
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Nikon D3s



Shutter speed

Controls the period of time that shutter remains
open.

Incoming
light

shutter I I

Sensor I I I I |

What happens to the image as we increase shutter speed?

open shutter
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Side-effects of shutter speed

Moving scene elements appear blurry.

Shutter speed: 1/8 Shutter speed: 1/50 Shutter speed: 1/100

How can we “simulate” decreasing the shutter speed?

Shutter speed: 1/250

13



Motion deblurring

Shah et al. High-quality Motion Deblurring from a Single Image, SIGGRAPH 2008 14



Exposure controls brightness of image

Exposure

Shutter
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Aperture size

Controls area of lens that lets light pass through.
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Aperture size

Controls area of lens that lets light pass through.

— I
= $ Also determines
- circle of confusion.

po—————

_ _ _ > " € >
In-focus object distance S focal length f
<€ > <€ >

actual object distance O sensor distance S’
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Aperture size

Most lenses have apertures of variable size.
* The size of the aperture is expressed as the “f-number”: The bigger this
number, the smaller the aperture.

f/1.4 f/2.8 f/4 f/8

You can see the aperture by removing the lens and looking inside It.

18



Side-effects of aperture size

Depth of field decreases as aperture size increases.
* Having a very sharp depth of field is known as “bokeh”.
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How can we simulate bokeh?
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How can we simulate bokeh?

Infer per-pixel depth, then blur with depth-dependent kernel.
« Example: Google camera “lens blur” feature

Barron et al., “Fast Bilateral-Space Stereo for Synthetic Defocus,” CVPR 2015 21



How can we simulate bokeh?

Employ a learning-based strategy, I.e. an Image-to-image translation mode|

/Zhang et al., “Synthetic Defocus and Look-Ahead Autofocus for Casual Videography,” SIGGRAPH 2019 22



Exposure controls brightness of image

Aperture

Exposure

Shutter

23



The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal
processor (ISP) to convert a RAW image into a “conventional” image.

—_ @ — analog front- = |
end
RAW image

(mosaiced,
_ linear, 12-bit)
—— | denoising | €—— CFA. «— S <
demosaicing balance
color tone . final RGB
—> | transforms | — > | reproduction | —> | compression f——> Ilmggreéngﬁ)
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Analog front-end

analog analog
voltage voltage

discrete discrete
signal signal

>

analog amplifier (gain):

analog-to-digital
converter (ADC):

gets voltage In range
needed by A/D converter.
accommodates ISO
settings.

accounts for vignetting.

« depending on sensor,
output has 10-16 bits.
* most often (?) 12 bits.

look-up table (LUT):

e corrects non-linearities in
SEeNsor's response
function (within proper
exposure).

« corrects defective pixels.
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Side-effects of increasing ISO

Image becomes very grainy because noise is amplified.




Note about the name ISO

ISO is not an acronym.
* |t refers to the International Organization for Standardization.

« |SO comes from the Greek word (cog, which means equal.
* |tis pronounced (roughly) eye-zo, and should not be spelled out.

27



Camera modes

Aperture priority (“A"): you set aperture, camera sets everything else.
* Pros: Direct depth of field control.

« Cons: Can require impossible shutter speed (e.g. with /1.4 for a bright scene).

Shutter speed priority (“S"): you set shutter speed, camera sets everything else.
* Pros: Direct motion blur control.

« (Cons: Can require impossible aperture (e.g. when requesting a 1/1000 speed for a dark
scene)

Automatic ("AUTO"): camera sets everything.

* Pros: Very fast, requires no experience.
« (Cons: No control.

Manual (“M"): you set everything.
e Pros: Full control.

« Cons: Very slow, requires a lot of experience.

generic camera mode dial
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Camera modes

Aperture priority (“A"): you set aperture, camera sets everything else.
* Pros: Direct depth of field control.

« Cons: Can require impossible shutter speed (e.g. with /1.4 for a bright scene).

Shutter speed priority (“S"): you set shutter speed, camera sets everything else.
* Pros: Direct motion blur control.

« (Cons: Can require impossible aperture (e.g. when requesting a 1/1000 speed for a dark
scene)

Automatic ("“AUTO"): camera sets everything.

* Pros: Very fast, requires no experience.
« (Cons: No control.

Manual (“M"): you set everything.
e Pros: Full control.

« Cons: Very slow, requires a lot of experience.

generic camera mode dial
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Light metering



Light metering in modern cameras

SLR cameras use a separate low-
resolution sensor that is placed at the
focusing screen.

Mirrorless cameras use measurements
directly from the main sensor.

mG:B Sensor

1.675mm(67)
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Sensor pitch: 1005-pixel arrangement

Horizontal: 0.025mm Vertical: 0.075mm



Light metering in modern cameras

Measurements are averaged to produce a single intensity estimate, which is assumed to
correspond to a scene of 18% reflectance (the “key”).

Exposure is set so that this average is exposed at the middle of the sensor’s dynamic
range.

Averaging can be done in many ways:
1. Center-weighed.
2. Spot.

3. Scene-specific preset
(portrait, landscape, horizon).

4. "Intelligently” using proprietary algorithm.
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Metering challenges: low resolution

Low-resolution can make it difficult to correctly meter the scene and set exposure.
* In which of these scenes is it OK to let the brightest pixels be overexposed?

33



Metering challenges: low resolution

Low-resolution can make it difficult to correctly meter the scene and set exposure.
* In which of these scenes is it OK to let the brightest pixels be overexposed?




Today's Lecture

» Controlling exposure
« High-dynamic-range imaging

e Tonemapping
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Light, exposure and dynamic range

« Exposure: how bright is the scene overall?

« Dynamic range: contrast in the scene

* ratio of brightest to darkest intensity

36



Our devices do not match the world



The world has a high dynamic range
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a dark room lit by a monitor to 2,000,000 looking at the Sun.
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The world has a high dynamic range

common real-world scenes

100

adaptation range of our eyes
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(Digital) sensors also have a low dynamic range

Sensor

10° 106
common real-world scenes

adaptation range of our eyes
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(Digital) images have an even lower dynamic range

low exposure

Image

/

10° 106
common real-world scenes

adaptation range of our eyes
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(Digital) images have an even lower dynamic range

high exposure

Image

10°

\

common real-world scenes

100

adaptation range of our eyes
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The dynamic range challenge

Inside Is too dark

Sun overexposed Outside is too bright
Foreground too dark




Low Dynamic Range (LDR)

Longer exposure

[Durand and Dorsey 02] [Durand and Dorsey 02]

V' detail in shadows V' detail in highlights
X clipped highlights X noisy/clipped shadows



(Digital) images have an even lower dynamic range

low exposure

Image

/

10° 106
common real-world scenes

adaptation range of our eyes
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(Digital) images have an even lower dynamic range

high exposure

Image

10°

\

common real-world scenes

100

adaptation range of our eyes
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(Digital) images have an even lower dynamic range

Any guesses about the dynamic range of a standard 0-255 image?

pure black pure white
47



(Digital) images have an even lower dynamic range

Any guesses about the dynamic range of a standard 0-255 image?

about b0x
brighter

pure black pure white
48



Our devices do not match the real world

e 10:7 photographic print (higher for glossy paper)
e 20:7 artist's paints

« 200:1 slide film

« 500:1 negative film

* 1000:1 LCD display

« 2000:1 digital SLR (at 12 bits)

* 100000:1 real world

Two challenges:

1. HDR imaging — which parts of the world do we measure in the 8-14 bits available to our sensor?

2. Tonemapping — which parts of the world do we show in the 4-10 bits available to our display?

49



Our devices do not match the real world

 10:1 photographic print (higher for glossy paper)
« 20:1 artist's paints

« 200:1 slide film

* 500:1 negative film

* 1000:1 LCD display

« 2000:1 digital SLR (at 12 bits) _ _ _ .
HDR imaging and tonemapping are distinct

* 100000:1  real world techniques with different goals
Two challenges: HDR imaging compensates for sensor limitations

1. HDR imaging — which parts of the world do we measure in the 8-14 bits available to our sensor? ‘

2. Tonemapping — which parts of the world do we show in the 4-10 bits available to our display? ‘

Tonemapping compensates for display limitations



High dynamic range imaging
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-2 stops




2 stops
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HDR
contrast
reduction
(scaling)
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Keyidea

Exposure bracketmg Capture multiple LDR images at different exposures

.’.’
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2. Merging: Combine them into a single HDR image
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“Sunset from Rigi Kaltbad” [Wojciech Jarosz 2014]



“Sunset from Rigi Kaltbad”



“Camogli Lighthouse”
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“Camogli Lighthouse” [Wojciech Jarosz 2012]
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"Florence” [Wojciech Jarosz 2011]



"Florence” [Wojciech Jarosz 2011]
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"Matterhorn and Riffelsee” [Wojciech Jarosz 2010]



Key idea

1. Exposure bracketing: Capture multiple LDR images at different exposures




Multiple exposure photography

low contrast

10° 10°
T I R I I N
- |
’/’ |
106 106
| | | | | | | | | | | real
world

high dynamic range
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Multiple exposure photography

& T

low contrast

10° 10°
I 0 I S
109 - = 108
| | | | | | | | | | | real
world

high dynamic range
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Multlple exposure photography
E TR

10° 10°
I I S Y o
// //
// //
// ///
/// //

10® - - 10°

| | | | | | | | | | | real
world

high dynamic range
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Multiple exposure photography

5 E T

106 106
T T Y | mage
/7 /7
/7 /
/7 7/
/ /
/7 /7
/7 /
10° ‘ ‘ 10°
| | | | | | | | | | _ real
world

high dynamic range
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Multiple exposure photography

N‘QF L

> Image

10 108
I I I N I , real

high dynamic range world




Multiple exposure photography

9.5 ~
§

100

I R R R I A A ] + image
: :
| |
| |

106 ' 108

I N B [ | | I , real

high dynamic range world 73




Ways to vary exposure

1. Shutter speed

2. F-stop (aperture, Iris)

3. 1SO

4. Neutral density (ND) filters

Pros and cons of each for HDR?

74



Ways to vary exposure

1. Shutter speed
— Range: about 30 sec to 1/4000 sec (6 orders of magnitude)

— Pros: repeatable, linear
— Cons: noise and motion blur for long exposure
2. F-stop (aperture, iris)
— Range: about /0.98 to /22 (3 orders of magnitude)
— Pros: fully optical, no noise
— Cons: changes depth of field
3. 1SO
— Range: about 100 to 1600 (1.5 orders of magnitude)
— Pros: no movement at all
— Cons: noise
4. Neutral density (ND) filters
— Range: up to 6 densities (6 orders of magnitude)

— Pros: works with strobe/flash
— Cons: not perfectly neutral (color shift), extra glass (interreflections, aberrations),

need to touch camera (shake)

75



Exposure bracketing with shutter speed

Note: shutter times usually obey a power series — each “stop” Is a factor of 2
1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec
usually really Is
1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

Questions:
1. How many exposures?
2. What exposures?
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Exposure bracketing with shutter speed

Note: shutter times usually obey a power series — each “stop” Is a factor of 2
1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec
usually really Is
1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

Questions:
1. How many exposures?
2. What exposures?

Answer: Depends on the scene, but a good default is b exposures,
the metered exposure and +/- 2 stops around that.

77



Key idea

1. Exposure bracketing: Capture multiple LDR images at different exposures




The image processing pipeline

The sequence of image processing operations applied by the camera’s image signal
processor (ISP) to convert a RAW image into a “conventional” image.

— @ s analog front- | _
end
RAW image
(mosaiced,
| linear, 12-bit)
— | denoising | €— CFA - < white <
demosaicing balance
color tone | | final RGB
> | transforms > | reproduction | > | compression f——> 'lmggreg?gp[;
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The image processing pipeline

The sequence of image processing operations applied by the camera’s image signal
processor (ISP) to convert a RAW image into a “conventional” image.

— @ : analog front- | _
end

RAW image
(mosaiced,
| linear, 12-bit)

— | denoising | €— CFA - < white <

demosaicing balance

color tone | | final RGB
> | transforms > | reproduction | > | compression f——> Ilmggreéng%
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RAW images have a linear response curve

Colorchecker: Great tool for radiometric :
and color calibration. linear RAW
Tl e X
P 4
x°

O b o e e e e e e e e e e e e

o X

= P

) — 4

2 £

;cD P

---/-)( when not over/under exposed

v

0 64 128 196 255

\ \ '\ 7‘ . pixel value

Patches at bottom row have log-
reflectance that increases linearly.
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Over/under exposure

In highlights we are
limited by clipping

b

In shadows we are
limited by noise




RAW (linear) image formation model

Real scene flux for image pixel (x,y):  ®(X, y)

Exposure time:
t5

What is an expression for the image |;.../(X,y) as a function of O(x,y)?
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RAW (linear) image formation model

Real scene flux for image pixel (x,y):  ®(X, y)
Exposure time:

N,

| For each image |,

- radiance gets multiplied by exposure factor t;
(depends on shutter speed, aperture, 1SO)

- noise gets added

o - values above 1 get clipped

4 (d@

What is an expression for the image |;.../(X,y) as a function of O(x,y)?

U Scene radiance @O(x,y) reaches the sensor at a pixel x,




RAW (linear) image formation model

Real scene flux for image pixel (x,y):  ®(X, y)

Exposure time:
t5

:;{', e

What is an expression for the image |;.../(X,y) as a function of O(x,y)?

[ linearX,Y) = clipl t; - O(X,y) + noise | }
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RAW (linear) image formation model

Real scene flux for image pixel (x,y):  ®(X, y)

Exposure time:
t5

:;{', e

What is an expression for the image |;.../(X,y) as a function of O(x,y)?

[ linearX,Y) = clipl t; - O(X,y) + noise | }

How would you merge these images into an HDR one?
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2-image example

Simple in principle:

- ImageA = 1/30th second (“brighter” image)

- ImageB = 1/120th second (“darker” image)

- ImageHDR = average(4-imageB, remove-clipped(imageA))

- assumes images have been linearized

A e
o R
o

imageHbR

¥




Merging RAW (linear) exposure stacks

For each pixel:

1. Find “valid” images How would you

. . | implement steps 1-2?
2. Weight valid pixel values appropriately

3. Form a new pixel value as the weighted average of valid pixel values
%,
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Merging RAW (linear) exposure stacks

For each pixel:

1. Find “valid” images <€—— (noise) 0.05 < pixel < 0.95 (clipping)
2. Weight valid pixel values appropriately noise
e valid

3. Form a new pixel value as the weighted average of valid pixel values e clipped

89



Merging RAW (linear) exposure stacks

For each pixel:

1. Find “valid” images <€—— (noise) 0.05 < pixel < 0.95 (clipping)

2. Weight valid pixel values appropriately — (pixel value) / t.

3. Form a new pixel value as the weighted average of valid pixel values
%,

U5

:;{', e
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Merging result (after tonemapping)
Ll
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What if | cannot use raw?

92



Radiometric calibration



The image processing pipeline

« (Can you foresee any problem when we switch from RAW to rendered images?

: analog front-
— @ end
RAW image
(mosaiced,

linear, 12-bit)

— s — CFA , white

denoising demosaicing balance <€
color tone | | final RGB
> | transforms > | reproduction | > | compression f——> Ilirpggre E(Bngp[;
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The image processing pipeline

« (Can you foresee any problem when we switch from RAW to rendered images?
 How do we deal with the nonlinearities?

: analog front-
— @ end
RAW image
(mosaiced,

linear, 12-bit)

— s — CFA , white

denoising demosaicing balance <€
color tone | | final RGB
> | transforms > | reproduction | > | compression f——> Ilirpggre E(Bngp[;
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Radiometric calibration

The process of measuring the camera’s response curve. Can be done in three ways:
« Take images of scenes with different flux while keeping exposure the same.
« Take images under different exposures while keeping flux the same.

« Take images of scenes with different flux and under different exposures.
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Same camera exposure, varying scene flux

Colorchecker: Great tool for radiometric e.g. JPEG
and color calibration.
----------------------------- X

known reflectance

0 64 128 196 255

. \ '\ U /' I— pixel value

Patches at bottom row have log- Different values correspond to patches
reflectance that increases linearly. of increasing reflected flux.
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Same scene flux, varying camera exposure
White balance card: Great tool for white e.g. JPEG

balancing and radiometric calibration.

§ e = i = i = i = B » &
/
o [T X
2 7/
N
R X
& v
c o 24
2
: ’
~ | ___ x
> '
0 64 - 128 196 209
pixel value

Different values correspond to images
taken under increasing camera
exposure.

All points on (the white part of) the
target have the same reflectance.
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Varying both scene flux and camera exposure

You can do this using the LDR exposure stack itself.

Different scene flux, same camera exposure

Same scene flux, different camera exposure
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Non-linear image formation model

Real scene flux for image pixel (x,y): O(x, vy)

Exposure time: t.
1 7/
7/
/
K
& v
P 7/
G /
o 7
o v
E ' 4
[ " 4
-
S e
s
e = = L
0 64 128 196 255
pixel value

linearX,Y) = clipl t; - O(X,y) + noise |

|non—Iinear(Xry) =1l |Iinear(xry) ]

How would you merge the non-linear images into an HDR one?
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Non-linear image formation model

Real scene flux for image pixel (x,y): O(x, vy)

Exposure time: t.
1 7/
7/
v
#
S v
& v
S v
g 7
Q v
k& 4
o v
v
S e
Cvf
I 1
0 64 128 196 255
pixel value

linearX,Y) = clipl t; - O(X,y) + noise |

|non—Iinear(Xry) =1l |Iinear(xry) ] lest(Xry) = f1[ Inon—Iinear(Xry) ]

Use inverse transform to estimate linear image, then proceed as before
101



Linearization
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Merging non-linear exposure stacks

1. Calibrate response curve
2. Linearize images

For each pixel:

3. Find “valid” Images <—— (noise) 0.05 < pixel < 0.95 (clipping)

4 4. Weight valid pixel values appropriately o ____ (pixel value) / t.

. Form a new pixel value as the weighted average of valid pixel values

> Same steps as in the RAW case.
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What if | cannot measure the response curve?
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You may find information in the image itself

If you cannot do calibration, take a look at the image’s
EXIF data (if available).

Often contains information about tone reproduction
curve and color space.

~ JPEG Exif

General | Permissions }Meta Info ]P[eview

Comment:

Creation Date:
Creation Time:
Dimensions:
Exposure Time:
JPEG Quality:
Aperture:

Color Mode:
Date/Time:
Flash Used:
Focal Length:
ISO Equiv.:
JPEG Process:
Camera Manufacturer:
Metering Mode:
Camera Model:
Orientation:

05-01-14

12:38:36 am

2560 x 1920 pixels
0.100 (1/10)
Unknown

/3.3

Color

05-01-14 12:38:36 am
Off

6.3 mm

100

Baseline

PENTAX Corporation
Pattern

PENTAX Optio WP

1

| Cancel |
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Tone reproduction curves

The exact tone reproduction curve depends on the camera.
« Often well approximated as LY, for different values of the power y (“gamma”).
« Agooddefaultisy=1/2.2.

W s? E_' E i-—'*r"‘ Kodak Ektachrome-100plus Green ' ' ’ . — ——e Cannon Optura
! ' = i Kodak Ektachrome-64 Green —| e ' Kodak DCS 315 Green
L 10.9

Agfachrome CTPrecisal00 Green -] | Sony DXC-950

Agfachrome RSX2 050 Blue —f 18 g
Agfacolor Futura 100 Green — {0.7 E
Agfacolor HDC 100 plus Green —} los &
Agfacolor Ultra 050 plus Green — | =

Agfapan APX 025 —

Agfa Scala 200x -T

Fuji F400 Green ~1

Fuji F125 Green ~|[f//,

Kodak Max Zoom 800 Green — "
Kodak KAI0372 CCD
Kodak KAF2001 CCD

gamma curve, ¥ =0.6
{01 gamma curve, y=1.0
W/ ] ) ) . ) ) > [~ gamma curve, y=1.4
0 01 02 03 04 05 06 07 08 09 TI— gammacurve, V=18
Normalized Irradiance

before gamma after gamma

If nothing else, take the square of your image to approximately remove effect of tone

reproduction curve. 106



What if | cannot measure the response curve?

* Predict an approximated camera response function from the observed images.
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The Approach

» Get pixel values Z; for image with shutter time At; (i*" pixel location, j*" image)
* Exposure Is radiance Integrated over time:

E. =R -At; = InE, =InR +InAt,

* To recover radiance R;, we must map pixel values to log exposure: In(E,)= g(Z;)

« Solve for R, g by minimizing:

> wZ)|InR, +InAt, - g(Z,)f +4 D w(2)g"()

i=1 ]:1 Z:Zmin
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The objective

Solve for radiance R and mapping g for each of 256 pixel values to
miniMmize:

>

P

W(Z,)|InR, +InAt, —g(Z,)f + 2 Z"fw(z) o"(z)

i=1 ]:1 —“min
give pixels near 0 known shutter exposure should smoothly
or 255 less weight time for image | Increase as pixel intensity
Increases

radiance at particular  exposure, as a function of
pixel site is the same  pixel value

for each image
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The Math

 Let g(z) be the discrete inverse response function

« For each pixel site 1 In each image |, want:
In Radiance, +In At = g(Z,)

» Solve the overdetermined linear system:

N P L
> In Radiance, +InAt, - g(Z)f + 1Y g'(2)’

i=1 j=I z=2 i

- J & J
Y v

fitting term smoothness term
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Matlab Code

e 21 lines of code!

gsolve.m - Solve for imaging system response function

Given a set of pixel values observed for several pixels in several
images with different exposure times, this function returns the

imaging system’s response function g as well as the log film irradiance
values for the observed pixels.

Assumes:
Zmin = 0
Zmax = 255

Arguments:

Z(i,j) is the pixel values of pixel location number i in image j

B(J) is the log delta t, or log shutter speed, for image j

1 is lamdba, the constant that determines the amount of smoothness
w(z) is the weighting function value for pixel value z

Returns:

g(z) is the log exposure corresponding to pixel value z
1E(i) is the log film irradiance at pixel location i

0\° 0\° o\® 0 o\® o\° o\ o\® o\ o\® 0\® o\® o\° o\® O\ o\ o\°® 0° o\® O o\ o o° o\ o

function [g,lE]=gsolve(Z,B,1,w)

n = 256;
A = zeros(size(z,1)*size(%Z,2)+n+l,n+size(2,1));
b = zeros(size(A,1),1);

%% Include the data-fitting equations

k =1;
for i=l:size(Z,1)
for j=l:size(Zz,2)
wij = w(Z(i,j)+1);
A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
k=k+1;
end
end

%% Fix the curve by setting its middle value to 0O

A(k,129) = 1;
k=k+1;

%% Include the smoothness equations

for i=1l:n-2
A(k,i)=1l*w(i+l); A(k,i+l)=—-2*%1*w(i+l); A(k,i+2)=1l*w(i+l);
k=k+1;

end

%% Solve the system using SVD

x = A\b;

g = x(1:n);
1E = x(n+l:size(x,1));




lllustration

Exposure stack

| L

At = At = At = At =
1/64 sec 1/16 sec 1/4 sec 1 sec 4 sec

Pixel Value Z = f(Exposure)
Exposure = Radiance * Dt

log Exposure = log Radiance + log Dt
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Response Curve

Assuming unit radiance After adjusting radiances to obtain
for each pixel a smooth response curve
O ...... o ...... o -
= AT/ = /
> / s 2 ., >
[0 [0
x s X
P o

log Exposure log Exposure



Response Curve

Kodak DCS460
1/30 to 30 sec

—

Pixel value

Recovered response curve

250

200

150 -

100

50|

-5

log Exposure

0
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Radiance Image

Recovered response curve

ST I8 G0
(@)

log Exposure
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Radiance Image

W/sr/m2 ‘
121741
28.869

Kodak Gold ASA 100, PhotoCD



Recovered Response Curves

250 R d = 2501
200 9 200
O O
= =
C>U 150+ § C>U 150
[0} [0}
5 100 g 5 100+
ol ol
50 i 501
0 L 1 0 1 1
-10 -5 0 5 -10 -5 0
log Exposure log Exposure
250 Bl 250+
200 Bl 200+
) O
= =
g 150+ § C>U 150
[0} [0}
X 100+ § X 100
ol ol
507 — 50,
0 L L 0 L L L L L L
-10 -5 0 5 -5 -4 -3 -2 -1 0 1

log Exposure log Exposure



Other aspects of HDR imaging



Relative vs absolute flux

Final fused HDR image gives flux only up to a global scale
* |f we know exact flux at one point, we can convert relative HDR image
to absolute flux map

HDR image spotmeter (absolute absolute
(relative flux) flux at one point) flux map
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Basic HDR approach

1. Capture multiple LDR images at different exposures

2. Merge them into a single HDR image

Any problems with this approach?
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Basic HDR approach

1. Capture multiple LDR images at different exposures

2. Merge them into a single HDR image

Problem: Very sensitive to movement
« Scene must be completely static
« Camera must not move

Most modern automatic HDR solutions include an alignment step before merging
exposures
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HDR Deghosting

Family algorithms suggested for eliminating the artefacts
occur due to moving objects/camera and/or dynamic
backgrounds during HDR reconstruction.

Mostly the motion is compensated by selecting or removing
moving objects and finding alignments between images.

DOI: 10.1111/cgf.12593
EUROGRAPHICS 2015/ K. Hormann and O. Staadt
(Guest Editors)

Volume 34 (2015), Number 2
STAR - State of The Art Report

The State of the Art in HDR Deghosting: A Survey and
Evaluation

Okan Tarhan Tursun', Ahmet Oguz Akyiiz!, Aykut Erdem? and Erkut Erdem?

IDept. of Computer Engineering, Middle East Technical University, Turkey
2Dept. of Computer Engineering, Hacettepe University, Turkey

Abstract
Obtaining a high quality high dynamic range (HDR) image in the presence of camera and object movement has
been a long-standing challenge. Many methods, known as HDR deghosting algomhms have been developed

over the past ten years to undertake this chall Each of these algorith the deghosting problem
fmm a different perspecnve, pmvtdmg solutions with different degrees of camplextry, solutions that range from
y h to 1p vision techni The proposed lly differ in two

ways: (1) how to detect ghost regions and (2) what to do to eliminate ghosl& Some algorithms choose to completely
discard moving objects giving rise to HDR images which only contain the static regions. Some other algorithms
try to find the best image to use for each dynamic region. Yet others lry to register moving objects from dtﬂ‘erem
images in the spirit of maximizing dynamic range in dynamic regions. Furth , each algorithm may i
different types of artifacts as they aim to eliminate ghosts. These artifacts may come in the form of noise, broken
objects, under- and over-exposed regions, and residual ghosting. Given the high volume of studies conducted in
this field over the recent years, a comprehensive survey of the state of the art is required. Thus, the first goal of this
paper is to provide this survey. Secondly, the large number of alganlhms brings about the need to classify them.
Thus the second goal of this paper is to propose a of degh Igorithms which can be used to group
existing and future algorithms into meaningful classes. Thirdly, the existence of a large number of algorithms
brings about the need to evaluate their as each new algorithm claims to outperform its precedents.
Therefore, the last goal of this paper is m share the results of a subjective experiment which aims to evaluate
various state-of-the-art de h

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Image Processing and Computer Vision]: Scene

Analysis—Motion

1. Introduction

The real world encompasses a wide range of luminance val-
ues that exceeds the capabilities of most image capture de-
vices. However, in general it is desirable to capture, store,
process, and display this wide range of luminance values.
The field of HDR imaging is primarily developed to address
this problem, that is to bridge the gap between what is avail-
able in the real-world in terms of light levels and what we
can do to represent it using digital equipment [RWPD10].

The first stage of the HDR imaging pipeline is acquisition.
There have been many studies in HDR image and video ac-
quisition, which can be grouped under three categories. The
first category consists of the methods that use specialized
hardware to directly capture HDR data. The second category

®© 2015 The Author(s)
Computer Graphics Forum @ 2015 The Eurographics Association and John
‘Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

consists of the based on ing an HDR
image from a set of low dynamic range (LDR) images of the
scene with different exposure settings, techniques that are
collectively called as multiple exposure methods. The third
category consists of the techniques which aim to expand the
dynamic range of a normally LDR image — be it through
pseudo-multi-exposure or inverse tone mapping [BADC11].

In general, the techniques in the first and third categories
produce inherently ghost-free HDR images as they operate
on data captured at a single time instance. The techniques
in the second category, however, must deal with moving ob-
jects as the image capture process takes a longer time due to
necessity of capturing multiple exposures. This is due to the
fact that the ensuing HDR image reconstruction process sim-
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HDR Deghosting

Family algorithms suggested for eliminating the artefacts
occur due to moving objects/camera and/or dynamic
backgrounds during HDR reconstruction.

Mostly the motion is compensated by selecting or removing
moving objects and finding alignments between images.

DOI: 10.1111/cgf. 12818
EUROGRAPHICS 2016 /J. Jorge and M. Lin Volume 35 (2016), Number 2
(Guest Editors)

An Objective Deghosting Quality Metric for HDR Images

Okan Tarhan Tursun', Ahmet Oguz Akyiiz', Aykut Erdem” and Erkut Erdem?

1Dept. of Computer Engineering, Middle East Technical University, Turkey
2Dept. of Computer Engineering, Hacettepe University, Turkey

= g A1

(a) Moving people generate blending (red) and visual difference (blue) artifacts.  (b) Over-smoothing gives rise to gradient inconsistency (green) artifacts.

Figure 1: Our metric detects several kinds of HDR deghosting artifacts. In (a), Khan et al.’s [KAR06] output is shown in the bottom-left
corner and our metric’s result in the bottom-right. The same for (b), except Hu et al.’s [HGPS13] deghosting algorithm is used. Exposure
sequences are shown on the top. Cyan color occurs due to both gradient and visual difference metrics producing high output.

Abstract

Reconstructing high dynamic range (HDR) images of a complex scene involving moving objects and dynamic backgrounds is
prone to artifacts. A large number of methods have been proposed that attempt to alleviate these artifacts, known as HDR
deghosting algorithms. Currently, the quality of these algorithms are judged by subjective evaluations, which are tedious to
conduct and get quickly outdated as new algorithms are proposed on a rapid basis. In this paper, we propose an objective
metric which aims to simplify this process. Our metric takes a stack of input exposures and the deghosting result and produces
a set of artifact maps for different types of artifacts. These artifact maps can be combined to yield a single quality score. We
performed a subjective experiment involving 52 subjects and 16 different scenes to validate the agreement of our quality scores
with subjective judgements and observed a concordance of almost 80%. Our metric also enables a novel application that we
call as hybrid deghosting, in which the output of different deghosting algorithms are combined to obtain a superior deghosting
result.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Image Processing and Computer Vision]: Scene Analysis—

Motion
1. Introduction static throughout the capture process. Otherwise, the lack of cor-
. I respondence between exposures result in what is known as ghost-
Due to its low-cost and availability, the most commonly used HDR ing artifacts. While stabilizing a camera can be achieved by us-
image capture method remains to be the multiple exposures tech- ing a tripod, ensuring a static scene is much more difficult as most
nique (MET), which involves a set of exp of a I-world scenes contain dynamic objects. Many deghosting algo-
scene into a single HDR image [DM97]. The main requirements of rithms have been proposed to address this problem ranging from

this technique are that the camera and the captured scene remain

© 2016 The Author(s)
Computer Forum © 2016 tion and Joh
Wiley & Sons Lid. Published by John Wiley & Sons Ltd.
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How do we store HDR images?

 Most standard image formats store integer 8-bit images
« Some image formats store integer 12-bit or 16-bit images
 HDR images are floating point 32-bit or 64-bit images
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How do we store HDR images?

Use specialized image formats for HDR images

32 bits

NEEEEEEEE
portable float map (.pfm)
« very simple to iImplement

LTI T TITTT]

sign  exponent mantissa
Hadiance format {.hdr) TTTTTTT] ERRREREN
« supported by Matlab
red green blue exponent

NEEEEEEEE
OpenEXR format (.exr)
 multiple extra features

LTI T TITTT]

sign  exponent mantissa
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Another type of HDR images

Light probes: place a chrome sphere in the scene and capture an HDR image
 Used to measure real-world illumination environments (“environment maps”)

Application: image-
based relighting
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Another way to create HDR images

PHYSICALLY BASED
RENDERING

From Theory to Implementation

Physics-based renderers simulate flux maps Third Edition
(relative or absolute) —

* Their outputs are very often HDR images
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Our devices do not match the real world

 10:1 photographic print (higher for glossy paper)
« 20:1 artist's paints

« 200:1 slide film

* 500:1 negative film

* 1000:1 LCD display

« 2000:1 digital SLR (at 12 bits) _ _ _ .
HDR imaging and tonemapping are distinct

* 100000:1  real world techniques with different goals
Two challenges: HDR imaging compensates for sensor limitations

1. HDR imaging — which parts of the world do we measure in the 8-14 bits available to our sensor? ‘

2. Tonemapping — which parts of the world do we show in the 4-10 bits available to our display? ‘

Tonemapping compensates for display limitations
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Today's Lecture

» Controlling exposure
« High-dynamic-range imaging

« Tonemapping
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Tonemapping



How do we display our HDR images?

100 : 106
display

I . . | \I I R N E N N
| \\\
| \\\
| S o
| \\\

6 6

10 HDR image 10

I I . I N
| |
| |
| |
| |

100 106

common real-world scenes

adaptation range of our eyes
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Tonemapping

 Called tone mapping operators

* Two general categories:
* Global (spatially invariant)
* Local (spatially varying)
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Linear scaling

Scale image so that maximum value equals 1.

| HDR image looks
© underexposed because of
| the display’s limited
- dynamic range, but is not
actually underexposed.
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Linear scaling

Scale image so that 10% value equals 1.

Can you think
of something
better?

W/st/m2 3T & U HDR image looks
| : =2 Tt saturated because of
the display’s limited
dynamic range, but is not
actually saturated.
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Photographic tonemapping

Apply the same non-linear scaling to all pixels in the image so that:
« Bring everything within range — asymptote to 1
 |eave dark areas alone — slope = 1 near 0

1

>
B _ / HDR
i display —
| | | | 1 —I_ [HDR
0 1 2 3 4 0
Ll (exact formula more complicated)

* Photographic because designed to approximate film zone system.
* Perceptually motivated, as it approximates our eye’'s response curve.
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What is the zone system?

* Technique formulated by Ansel Adams for film development.
« Still used with digital photography.

Zone Description

Pure black
Near black, with slight tonality but no texture

Textured black; the darkest part of the image in which slight detail is recorded

Average dark materials and low values showing adequate texture

Average dark foliage, dark stone, or landscape shadows

Middle gray: clear north sky; dark skin, average weathered wood

Average Caucasian skin; light stone; shadows on snow in sunlit landscapes
vii Very light skin; shadows in snow with acute side lighting
Vil Lightest tone with texture: textured snow
IX Slight tone without texture; glaring snow
X Pure white: light sources and specular reflections
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Examples

photograhi :

o_'emappin linear scaling (map 10% to1) linear scaling (map 100% to 1) .,



e
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Dealing with color

If we tonemap all channels the same, colors are washed out

Can you think of a way to deal with this?
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Intensity-only tonemapping

tonemap
Intensity

(e.g., luminance
Y In xyY)

leave color the
same (e.g., Xy
In xyY)

How would you implement this?




Comparison

Color now OK, but some details are washed out due to loss of contrast

Can you think of a way to deal with this?
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The importance of local contrast

Edward H. Adelson
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The importance of local contrast

Edward H. Adelson
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Purposes of tone mapping

Technical:

- fitting a wide range of values into a small space while preserving
differences between values as much as possible

Artistic

- reproduce what the photographer/artist feels she saw
- stylize the look of a photo
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Low-frequency intensity-only tonemapping

tonemap low-frequency
Intensity component

leave high-frequency
Intensity component
the same

leave color the same

How would you implement this?




Comparison

We got nice color and contrast, but now we've run into the halo plague

Can you think of a way to deal with this?
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Edge-aware filtering and tonemapping

' ' ~ Output
Separate base and detail using utpu

edge-preserving filtering
(e.g., bilateral filtering).

Intensity | Large scale (base layer)
Large scale
Reduce
contrast
Fast Detail
Bilateral Preserve!
Filter
Color
. Detail
Color

More in later lecture.
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Comparison

We fixed the halos without losing contrast
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150

Gradient-domain processing and tonemapping

Compute gradients, scale and merge them, then integrate (solve Poisson problem).
 More In later lecture.




£'4

Comparison (which one do you like better?)

gy

L

photographic bilateral filtering gradient-domain



Comparison (which one do you like better?)
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photographic bilateral filtering gradient-domain




Comparison (which one do you like better?)




Tonemapping for a single image

Modern DSLR sensors capture about 3 stops of dynamic range.
 Tonemap single RAW file instead of using camera’s default rendering.

result from image
processing pipeline
(basic tone
reproduction)

tonemapping using
bilateral filtering
(I think)
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Tonemapping for a single image

Modern DSLR sensors capture about 3 stops of dynamic range.
 Tonemap single RAW file instead of using camera’s default rendering.

|

Careful not to “tonemap” noise.
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Some notes about HDR imaging and tonemapping



Our devices do not match the real world

 10:1 photographic print (higher for glossy paper)
« 20:1 artist's paints

« 200:1 slide film

* 500:1 negative film

* 1000:1 LCD display

« 2000:1 digital SLR (at 12 bits) _ _ _ .
HDR imaging and tonemapping are distinct

* 100000:1  real world techniques with different goals
Two challenges: HDR imaging compensates for sensor limitations

1. HDR imaging — which parts of the world do we measure in the 8-14 bits available to our sensor? ‘

2. Tonemapping — which parts of the world do we show in the 4-10 bits available to our display? ‘

Tonemapping compensates for display limitations
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A note about terminology

“High-dynamic-range imaging” is used to refer to a lot of different things:

Using single RAW images.

Performing radiometric calibration.

Merging an exposure stack.

Tonemapping an image (linear or non-linear, HDR or LDR).
Some or all of the above.

ok wh =

Technically, HDR imaging and tonemapping are distinct processes:

« HDR imaging is the process of creating a radiometrically linear image, free of
overexposure and underexposure artifacts. This is achieved using some combination of
1-3, depending on the imaging scenario.

« Tonemapping (step 4) process of mapping the intensity values in an image (linear or non-
linear, HDR or LDR) to the range of tones available in a display.

But:

* |n consumer photography, “HDR photography” is often used to refer to both HDR
Imaging (steps 1-3) and tonemapping (step 4).
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Another note about terminology

Tonemapping is just another form of tone reproduction.
 Many ISPs implement the tonemapping algorithms we discussed for tone
reproduction.

— @ : analog front- | _
end
RAW image
(mosaiced,
| linear, 12-bit)
— | denoising | €— CFA - < white <
demosaicing balance
color tone | final RGB
transforms > | reproduction | T | compression |——> Ilirpggre E(Bﬂglr;;
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A note of caution

 HDR photography can produce very visually compelling results.
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A note of caution

 HDR photography can produce very visually compelling results.

* |tis also a very routinely abused technique, resulting in awful results.
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A note of caution

 HDR photography can produce very visually compelling results.
* |tis also a very routinely abused technique, resulting in awful results.

« The problem typically is tonemapping, not HDR imaging itself.
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A note about HDR today

Most cameras (even phone cameras
have automatic HDR modes/apps.

Popular-enough feature that phone
manufacturers are actively competing
about which one has the best HDR.

The technology behind some of those apps
e.g., Google's HDR+) is published in
SIGGRAPH and SIGGRAPH Asia

conferences.

Burst photography for high dynamic range and low-light imaging
on mobile cameras

Samuel W. Hasinoff Dillon Sharlet
Jonathan T. Barron Florian Kainz

Ryan Geiss Andrew Adams
Jiawen Chen Marc Levoy

Google Research

Figure 1: A camparison of a conventional camera pipeline (left, middie) and our burst photography pipeline (right) running on the same
cell-phone camera. In this low-light setting (abowt 0.7 lux). the conventional camera pipeline underexposes (left). Brightening the image

(middle) reveals heavy spatial denoising. which results in loss of detail and an unpleasantly blotchy appearance.

using a burst of images

increases the signal-to-noise ratio, making aggressive spatial denoising unnecessary. We encourage the reader to zoom in. While our pipeline

excels in low

ight and high-dvnamic-range scenes (for an example of the latter see figure 10), it is computationally efficient and reliabiy

artifact-free, so it can be deploved on a mobile camera and used as a substitute for the conventional pipeline in almost all circumstances. For
readability the figure has been made uniformly brighter than the original photographs.

Abstract

Cell phone cameras have small apertures, which limits the number

of photons they can gather, leading to noisy images in low light.

They also have small sensor pixels, which limits the number of
clectrons cach pixel can store, leading to limited dynamic range. We
describe a computational photography pipeline that captures, aligns,
and merges a burst of frames to reduce noise and increase dynamic
range. Our system has several key features that help make it robust
and efficient. First, we do not use bracketed exposures. Instead,
we capture frames of constant exposure, which makes alignment
more robust, and we set this exposure low enough to avoid blowing
out highlights. The resulting merged image has clean shadows and
high bit depth, allowing us to apply standard HDR tone mapping
methods. Second, we begin from Bayer raw frames rather than
the demosaicked RGB (or YUV) frames produced by hardware
Image Signal Processors (ISPs) common on mobile platforms. This
gives us mare bits per pixel and allows us to circumvent the ISP's
unwanted tone mapping and spatial denoising. Third, we use a novel
FFT-based alignment algorithm and a hybrid 2D/3D Wiener filter
to denoise and merge the frames in a burst. Our implementation
is built atop Android’s Camera2 API, which provides per-frame
camera control and access to mw imagery, and is written in the
Halide domain-specific language (DSL). It runs in 4 seconds on
device (for a 12 Mpix image), requires no user intervention, and
ships on several mass-produced cell phones.

Keywords: computational photography, high dynamic range

Concepts: *Computing methodologies — Computational pho-
tography; Image processing;

1 Introduction

The main technical impediment to better photographs is lack of light.
In indoor or nighttime shots, the scene as a whole may provide
insufficient light. The standard solution is either to apply analog or
digital gain, which amplifies noise, or to lengthen expasure time,
which causes motion blur due to camen shake or subject motion.
Surpnsingly, daytime shots with high dynamic range may also suffer
from lack of light. In particular, if exposure time is reduced to avoid

Permission 1o make digital or hard copies of all or pant of this work for
personal o clissroom use i granted without fee provided fhat copies are not
made or distributed for profit or commercial advantage and that copies bear
this natice and the full citation on the fisst page. Copyrights for components
of this work owned by others than the suthor(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, 10 post on servers
o 10 redistribute 1o lists, requires prior specific permission and/or a fee.
Request permissions from permissions @acm.org. © 2016 Copyright held by
the ownerfauthor(s). Publication rights licensed 10 ACM

SA ' 16 Technical Papers, December 05 - 08, 2016, Macso

ISBN: 978-1-4503-4514-9/16/12

DOL: hap:#dx doiorg/10.1145/2980179.2980254
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Optimal weights for HDR merging



Merging non-linear exposure stacks

1. Calibrate response curve
2. Linearize images

For each pixel:

3. Find “valid” Images <—— (noise) 0.05 < pixel < 0.95 (clipping)

4 4. Weight valid pixel values appropriately o ____ (pixel value) / t.

. Form a new pixel value as the weighted average of valid pixel values

> Same steps as in the RAW case.

Note: many possible weighting schemes
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Many possible weighting schemes

“Confidence” that pixel is noisy/clipped

* \What are the optimal weights for (1. _0.5)
merging an exposure stack? w. = exp| —4 lin;
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RAW (linear) image formation model

(Weighted) radiant flux for image pixel (x,y): o - P(x,y)
Exposure time:

t5
4
What weights should we use to merge these Different images in the
Images, so that the resulting HDR image Is an exposure stack will have

optimal estimator of the weighted radiant flux? different noise characteristics
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Simple estimation example

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel
intensity) with variance o[x]? and o[y]?.

\What does unbiased mean?
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Simple estimation example

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel
intensity) with variance o[x]? and o[y]?.

What does unbiased mean?
E[x] =E[y] =1
Assume we form a new estimator from the convex combination of the other two:
Zz=a-x+(1-a)-y

|s the new estimator z unbiased?
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Simple estimation example

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel
intensity) with variance o[x]? and o[y]?.

What does unbiased mean?
E[x] = E[y] =1
Assume we form a new estimator from the convex combination of the other two:
Zz=a-x+(1-a)-y
|s the new estimator z unbiased? — Yes, convex combination preserves unbiasedness.
E[z] =E[a-x+(1-a)-y]=a-E[x]+(1-a):E|y]=1
How should we select a?
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Simple estimation example

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel
intensity) with variance o[x]? and o[y]?.

What does unbiased mean?
E[x] =E[y] =1
Assume we form a new estimator from the convex combination of the other two:
z=a-x+((1-a)-y
|s the new estimator z unbiased? — Yes, convex combination preserves unbiasedness.
E[z]=Ela-x+ (1-a)-y]=a-E[x]+ (1-a)-E[ly] =1
How should we select a? — Minimize variance (= expected squared error for unbiased
estimators). gz _1y2] = E[z2] - 2 - E[z] - | + I2 = E[2?] - E[2]? = o[2]?

\What is the variance of z as a function of a?
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Simple estimation example

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel
intensity) with variance o[x]? and o[y]?.

What does unbiased mean?
E[x] = E[y] =1
Assume we form a new estimator from the convex combination of the other two:
z=a-x+((1-a)-y

|s the new estimator z unbiased? — Yes, convex combination preserves unbiasedness.

E[z]=Ela-x+ (1-a)-y]=a-E[x]+ (1-a)-E[ly] =1
How should we select a? — Minimize variance (= expected squared error for unbiased
estimators). gz _1y2] = E[z2] - 2 - E[z] - | + I2 = E[2?] - E[2]? = o[2]?
What is the variance of z as a function of a?

o[z]? = a% - o[x]? + (1 -a)?: o[y]?

What value of a minimizes o[z]?? 179



Simple estimation example

Simple optimization problem:

do[z]?

=0
da

. d(a? - o[x]2 + (1 -a)? - o|y]?) _ 0
da

= 2-a-0[x]2—2-(1-a)-o[y]?=0

and 1—a=
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Simple estimation example

Putting it all together, the optimal linear combination of the two estimators is

L o[x]%o[y]2 ( 1 1 y)
ol

oIXI + olyl2 \o[x12~ " o[yl

| ) \ )
J J

normalization weights inversely
factor proportional to variance
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Simple estimation example

Putting it all together, the optimal linear combination of the two estimators is

7 =

o[x]%o[y]2 1 1
o[x]? + o[y]2 | (G[X]Z x ¥ G[y]zy)

| ) \ )
J J

normalization weights inversely
factor proportional to variance

More generally, for more than two estimators,

N
Z 2
O'

l1 fle

This Is weighting scheme Is called Fisher weighting and i1s a BLUE estimator.
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Back to HDR

Given unclipped and dark-frame-corrected intensity measurements L[x, y] at pixel [x, y] and
exposures t, we can merge them optimally into a single HDR intensity I[x, y] as
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Back to HDR

Given unclipped and dark-frame-corrected intensity measurements L[x, y] at pixel [x, y] and
exposures t, we can merge them optimally into a single HDR intensity I[x, y] as

N
A 2 1 S
X,y W; xy [x, y1 = z X,y
Liwiix,y) & Y Sorlipmyet

o £ 1i[x, Y112 |

1

The per-pixel weights w;|x,y] should be selected to be inversely proportional to the variance
cr[tlli[x, y]]? at each image in the exposure stack.

i

« How do we compute this variance?
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Pixel noise and variance

» Recall: noise I1s characterized by Its variance

* |.e. each pixel value comes from a true value plus some noise added

* \We can calibrate this noise by taking multiple exposures, or we can
derive variance equations using pen and paper



Sources of noise

* Photon noise
e variance proportional to signal

« dominates for dark pixels

 Read noise
e constant variance

« dominates for dark pixels

 Affine noise model: I =L-g+Na4d where Madd = Nread ' 9 T Napc

» Forapixelvalue I:a()? =t-(a-® + D) - g% + 0244

e where 6214 = 0feaq - 9% + 0pc, a and 62,4 depend on the camera and 1SO



Back to HDR

Given unclipped and dark-frame-corrected intensity measurements L[x, y] at pixel [x, y] and
exposures t, we can merge them optimally into a single HDR intensity I[x, y] as

N
A 2 1 S
X,y W; xy [x, y1 = z X,y
Liwiix,y) & Y Sorlipmyet

o £ 1i[x, Y112 |

1

The per-pixel weights w;|x,y] should be selected to be inversely proportional to the variance
cr[tlli[x, y]]? at each image in the exposure stack.

i

« How do we compute this variance?

187



Back to HDR

Given unclipped and dark-frame-corrected intensity measurements L[x, y] at pixel [x, y] and
exposures t, we can merge them optimally into a single HDR intensity I[x, y] as

N
A 2 1 S
X,y W; xy [x, y1 = z X,y
Liwiix,y) & Y Sorlipmyet

o £ 1i[x, Y112 |

1

The per-pixel weights w;|x,y] should be selected to be inversely proportional to the variance
G[%Ii[X, y]]? at each image in the exposure stack.

 How do we compute this variance? — Use affine noise model.

ol=1[x,y]]2="?

i
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Back to HDR

Given unclipped and dark-frame-corrected intensity measurements L [x, y] at pixel [x, y] and
exposures t, we can merge them optimally into a single HDR intensity I[x, y] as

N
A 2 1 S
X,y W; xy [x, y1 = z X,y
Liwiix,y) & Y Sorlipmyet

o £ 1i[x, Y112 |

1

The per-pixel weights w;|x,y] should be selected to be inversely proportional to the variance
G[%Ii[X, y]]? at each image in the exposure stack.

 How do we compute this variance? — Use affine noise model.

o[- 1[x, y]]2 = = o[l [x, y]]2

1 1

> o I[xy])?="

i
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Back to HDR

Given unclipped and dark-frame-corrected intensity measurements L[x, y] at pixel [x, y] and
exposures t, we can merge them optimally into a single HDR intensity I[x, y] as

N
i 2 1 S
X,y w; xy [x, vyl = z X, Yl
Wi,y & Vot Goliypt

o £ 1i[x, Y112

1

1

The per-pixel weights w;|x,y] should be selected to be inversely proportional to the variance
G[%Ii[X, y]]? at each image in the exposure stack.

 How do we compute this variance? — Use affine noise model.
Computing the optimal weights
1 1 e
I.[x, I.[x, regulires.
[tl e y11E = t2 ollilx y1I* 1. calibrated noise characteristics.

1 1
> oLy =25 (4 @ Blxy] - g7+ Guid)

i

2. knowing the radiant flux a - ®[x,y].
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Back to HDR

Given unclipped and dark-frame-corrected intensity measurements L[x, y] at pixel [x, y] and
exposures t, we can merge them optimally into a single HDR intensity I[x, y] as

N
A 2 1 S
X,y W; xy [x, y1 = z X,y
Liwiix,y) & Y Sorlipmyet

o £ 1i[x, Y112 |

1

The per-pixel weights w;|x,y] should be selected to be inversely proportional to the variance
cr[tlli[x, y]]? at each image in the exposure stack.

i

 How do we compute this variance? — Use affine noise model.

Computing the optimal weights
1

1 A
I.[x, I.[x, regulires.
[tl e yIlF = tl ollilxy1J* 1. calibrated noise characteristics.
1 1 2. knowing the radiant flux a - ®[x, y].
> oLy = (6 @ @x Y] g2+ Opudd) 0 L34
‘ ‘ This is what we wanted to estimate1!91



Simplification: only photon noise

If we assume that our measurements are dominated by photon noise, the variance
becomes:

1 1
G[Zli[xJY]]z — iz (t;i-a- P[x,y] - g°+ 0,942 =7

1
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Simplification: only photon noise

If we assume that our measurements are dominated by photon noise, the variance
becomes:

1 1 1
o[> Ii[x, y]I* =5 (¢ a- @[x,¥] - g*+ 0a0d®) = T P[x,y] - g°

By replacing in the merging formula and assuming only valid pixels, the HDR estimate
becomes:

N
I[x,y]= N 1 Zl ;ili[x,y]
1 —_
Tiaomylgr S
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Simplification: only photon noise

If we assume that our measurements are dominated by photon noise, the variance
becomes:

1 1 1
o[> Ii[x, y]I* =5 (¢ a- @[x,¥] - g*+ 0a0d®) = T P[x,y] - g°

1

By replacing in the merging formula and assuming only valid pixels, the HDR estimate
becomes:

2

N
1 1 } 1
I[x,y] = 1 ' 1 "t Ii[x,y] — TN " 'Z:Ii[XJ’]
] . " i i=1%i i—1
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Simplification: only photon noise

If we assume that our measurements are dominated by photon noise, the variance
becomes:

1 1 1
o[> Ii[x, y]I* =5 (¢ a- @[x,¥] - g*+ 0a0d®) = T P[x,y] - g°

1

By replacing in the merging formula and assuming only valid pixels, the HDR estimate
becomes:

2

N
1 1 L 1
Ilx,y] = 1 A = lilx,y1 = TN " 'Z:Ii[XJ’]
. . . i:]. [ i:1

Notice that we no longer weight each image in the exposure stack by its exposure time!
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original weights optimal weights assuming
only photon noise




More general case

If we cannot assume that our measurements are dominated by photon noise, we can
approximate the variance as:

1 1 1
G[;Ii[x:Y]]z — 72 (ti-a-P[x,y]- 92+ Oadd?) = 7z (I;[x,y] - g + 0.44°)

i i

Where does this approximation come from?
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More general case

If we cannot assume that our measurements are dominated by photon noise, we can
approximate the variance as:

1 1 1
G[;Ii[x:Y]]z — 72 (ti-a-P[x,y]- 92+ Oadd?) = 7z (I;[x,y] - g + 0.44°)

i i

Where does this approximation come from?
* We use the fact that each pixel intensity (after dark frame subtraction) is an unbiased

estimate of the radiant flux, weighted by exposure and gain:

E[;[x,y]]=ti-a- ®[x,y]- g
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optimal weights ground-truth

Some
comparisons

tone-mapped merged HDR
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hat about ISO?

Noise-Optimal Capture for High Dynamic Range Photography

Samuel W. Hasinoff

Frédo Durand

William T. Freeman

Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory

Abstract

Taking multiple exposures is a well-established approach
both for capturing high dynamic range (HDR) scenes and
for noise reduction. But what is the optimal set of photos
to capture? The typical approach to HDR capture uses a
set of photos with geometrically-spaced exposure times, at
a fixed ISO setting (typically ISO 100 or 200). By contrast,
we show that the capture sequence with optimal worst-case
performance, in general, uses much higher and variable

ISO settings, and spends longer capturing the dark parts of

the scene. Based on a detailed model of noise, we show that
optimal capture can be formulated as a mixed integer pro-
gramming problem. Compared to typical HDR capture, our
method lets us achieve higher worst-case SNR in the same
capture time (for some cameras, up to 19 dB improvement
in the darkest regions), or much faster capture for the same
minimum acceptable level of SNR. Our experiments demon-
strate this advantage for both real and synthetic scenes.

rameters of an exposure sequence, and we show that this
reduces to solving a mixed integer programming problem.
In particular, we show that, contrary to suggested practice
(e.g., [5]), using high ISO values is desirable and can enable
significant gains in signal-to-noise ratio.

The most important feature of our noise model is its ex-
plicit decomposition of additive noise into pre- and post-
amplifier sources (Fig. 1), which constitutes the basis for
the high ISO advantage. The same model has been used
in several unpublished studies characterizing the noise per-
formance of digital SLR cameras [7, 20], supported by ex-
tensive empirical validation. Although all the components
in our model are well-established, previous treatments of
noise in the vision literature [13, 18] do not model the de-
pendence of noise on ISO setting (i.e., sensor gain).

To the best of our knowledge, varying the ISO setting
has not previously been exploited to optimize SNR for high
dynamic range capture. However, in the much simpler con-
text of single-shot photography, the expose to the right tech-

We need to separately account for
read and ADC noise, as read noise
IS gain-dependent.

We can optimize our exposure
bracket by varying both shutter
speed and ISO
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Real capture results

bright region dark region

tone-mapped merged HDR

input
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Recap

* High dynamic range (HDR) imaging is useful, and a new aesthetic

* pbut Is not necessary In all photographic situations

* Low dynamic range (LDR) tone mapping methods can also be applied
to HDR scenes

* but reducing very HDR scenes to 8 bits for JPEG using only global
methods Is hard

» Local methods reduce large-scale luminance changes (across the
Image) while preserving local contrast (across edges)

» use edge-preserving filters to avoid halos
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Next Lecture:
Edge-aware filtering



