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Today's Lecture

Gaussian filtering

Sharpening

Bilateral filter

Non-local means filter

RegCov smoothing

Rolling guidance filter

Disclaimer: The material and slides for this lecture were borrowed from
— loannis Gkioulekas' 15-463/15-663/15-862 “Computational Photography” class

— Wojciech Jarosz's CS 89.15/189.5 “Computational Aspects of Digital Photography” class
— Steve Marschner’'s CS6640 “Computational Photography” class

— Kaiming He's slides on Guided Image Filtering



Filtering

 The name "“filter” is borrowed from frequency domain processing
» Accept or reject certain frequency components

e Fourier (1807):
Periodic functions
could be represented
as a weighted sum of
sines and cosines




Signals

* A signal iIs composed of low and high frequency components

low frequency components: smooth / piecewise smooth

Neighboring pixels have similar brightness values
You're within a region

high frequency components: oscillatory

Neighboring pixels have different brightness values
You're either at the edges or noise points




Slide adapted from K. Grauman

Image Filtering

 [dea: Use the information coming from the neighboring pixels for processing

* Design a transformation function of the local neighborhood at each pixel in the
Image

* Function specified by a “filter” or mask saying how to combine values from
neighbors.

 Various uses of filtering:
 Enhance an image (denoise, resize, etc)
» Extract information (texture, edges, etc)
» Detect patterns (template matching)



Filtering

* Processing done on a function

* can be executed in continuous form (e.g. analog circuit)

e but can also be executed using sampled representation

« Simple example: smoothing by averaging

» Can be modeled mathematically by convolution

continuous smoothing filter

| | I
Ay X Xrr

discrete smoothing filter
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Discrete convolution

« Simple averaging:

1 1=+7r
bsmooth[i] — o + 1 Z b[J]
J=t—r

e every sample gets the same weight

« Convolution: same idea but with weighted average
(axb)[i) = aljlbli — j]
j
» each sample gets its own weight (normally zero far away)

* This is all convolution iIs: It Is a moving weighted average




Filters

Sequence of weights a[j] is called a filter

Filter is nonzero over its region of support
e usually centered on zero: support radius r

Filter 1Is normalized so that it sums to 1.0
» this makes for a weighted average, not just any old
welighted sum
Most filters are symmetric about O

 since for images we usually want to treat left and
right the same

® O ¢ o
2r+ 1
+—o
-r 0
a box filter



Convolution and filtering

« Convolution applies with any sequence of weights
« Example: bell curve (gaussian-like) [..., 1,4, 6, 4, 1, ...]/16

++-001464100 -



Discrete filtering in 2D

Same equation, one more index

(axb)[i,j] = ald,j'1bli — ', — §']
il)j/
now the filter is a rectangle you slide around over a grid of numbers

Usefulness of associativity
often apply several filters one after another: (((a *b;) *b,) * bs)
this Is equivalent to applying one filter: a* (b; * b, * bs)
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Slide credit: S. Seitz

Moving Average |n 2D

Flz, y]

Glz, y]
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Slide credit: S. Seitz

Moving Average |n 2D

Flz, y]

Glz, y]
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Slide credit: S. Seitz

Moving Average In 2D

Flz, y]
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Slide adapted from K. Grauman

Averaging Filter

* \What values belong in the kernel H for the moving average example?

F[ZC,y] X Hlu,v] G[x,y]
1 1 1 01020 3o|r$.i
l 1 (2] 1
9 .
1 1 1
“"box filter”

G=HQXF



Slide adapted from K. Grauman

Smoothing by averaging

=

depicts box filter:
white = high value, black = low value

original

filtered

15



Gaussian Filtering



Slide credit: S. Seitz

Gaussian Filter

* \What if we want nearest neighboring pixels to have the most influence on the
output?

This kernel Is an
approximation of a 2d
Gaussian function:

1| 2 1 1 _uQ—I—fu2
L 2| a2 h(u,fv)=2 ¢
16 mTo

1 2 1

Flz,y]

 Removes high-frequency components from the image (“low-pass filter”).

17



Smoothing with a Gaussian




Slide adapted from K. Grauman

Smoothing with a Gaussian

Parameter o is the “scale” / “width"” / “spread” of the Gaussian kernel, and
controls the amount of smoothing.

0 10 20 30 0 10 20 30

19



Strategy for Smoothing Images

* [mages are not smooth because adjacent pixels are different.
« Smoothing = making adjacent pixels look more similar.

« Smoothing strategy
pixel ~ average of its neighbors

20



Sharpening



Slide adapted from F. Durand

How can we sharpen?

e Blurring was easy

« Sharpening is not as obvious

22



Slide adapted from F. Durand

How can we sharpen?

Blurring was easy

Sharpening is not as obvious

|dea: amplify the stuff not in the blurry image

output = 1nput + k*(input-blur(input))

23



Slide adapted from F. Durand

Sharpening

blurred

high pass

sharpened
Image

24



Slide adapted from F. Durand

Sharpening: kernel view

e Recall

fr=Ff+k«(f-f&g)

fis the input

" Is a sharpened image

g Is a blurring kernel

K I1s a scalar controlling the strength of sharpening

25



Slide adapted from F. Dura

Sharpening: kernel view

e Recall

fr=Ff+kx(f=f@g)

* Denote 6 the Dirac kernel (pure impulse)

f=foo

26



Sharpening: kernel view

e Recall

fr=Ff+k«(f-f®g)
ff=feditkx(féi-fog)
ff=re(k+1)s-g)

. * Sharpening is also a convolution



Slide adapted from F. Durand

Sharpening kernel

* Note: many other sharpening kernels exist
(Just like we saw multiple blurring kernels)

 Amplify the difference between a pixel and its neighbors

fr=re(k+1)5-g)

-

blue: positive
red: negative

28



Slide adapted from F. Durand

Alternate interpretation

« out = 1nput + k*(input-blur(input))
(1 + K*1nput - k*blur(input)
lerp(blur(input), input, 1+k)

e OUt

e OUt

linearly extrapolate from the blurred image “past” the original input image

29



Slide adapted from F. Durand

Sharpening

blurred

high pass

sharpened
Image

30



Slide adapted from F. Durand

Unsharp mask

« Sharpening is often called “unsharp mask” because photographers used to
sandwich a negative with a blurry positive film in order to sharpen

Negative

Unsharp Mask

uptioesd plusie spacer prodeces i pap
1o canteod amouss of sharpness

http://www.tech-diy.com/UnsharpMasks.htm



Unsharp

mask

Flg.4: The two
examples here shaw
a detail of the brick-
work 10 the left of
the church door. The
one on the left was
printed with the
negative alone - the
one on the right was
printed with both
nogative and mask
as a sandwich. The
Increase in local
contrast and edge
sharpness s minute,
but clearty visible.
Grade 2.5 was used
for the straight print
bt incroased to 4.5
for the sandwiched
Image 10 compon-
sate for the reduced
contrast,

Flg.5: These two
examples show a
dotail of the lower
right hand side of
the church door.
Here the difference
In sharpness |s
clearly visible
between the (left)
negative and (right)
sandwich prints,

Al photos © Reliph W Loambraoht
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Slide adapted from F. Durand

Problem with excess

* Haloes around strong edges

33



Bilateral Filter



Gaussian Filter

|dea: weighted average of pixels.

per-pixel multiplication

output

GBI1], = Z_Iq

qes 1

normalized
Gaussian function

1
oI -

35



Spatial Parameter

GBI[I], = ZG:(H p—ql)I,

f

small o

limited smoothing

>

qes

size of the window

A

large o

strong smoothing

36



Properties of Gaussian Blur

* \Weights independent of spatial location
* linear convolution
» well-known operation
» efficient computation (recursive algorithm, FFT...)

* Does smooth images

« But smoothes too much:
edges are blurred.
* Only spatial distance matters
 No edge term

GB(11, = > CRUIBEall ,

qesS space
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Blur Comes from Averaging across Edges

Same Gaussian kernel everywhere.

38



Bilateral Filter: No Averaging across Edges

output

The kernel shape depends on the image content.

[Aurich 95, Smith 97, Tomas1 98]

39



Bilateral Filter: An Additional Edge Term

Same idea: weighted average of pixels.

new

not new new

BF[I], =

normalization space weight range weight

: .

40



Bilateral Filter: An Additional Edge Term

Same idea: weighted average of pixels.

new

not new new

BF[I], =

normalization space weight range weight

: .

favor similar pixels

favor nearby pixels

41



Space and Range Parameters

> (lp-al)G, (11, -1, 1)1,

1
O S

* space o,: spatial extent of the kernel, size of the considered neighborhood.

BF[I], =

* range o, : "minimum” amplitude of an edge

42



Gaussian filtering visualization

him,n| = fim+k,n+1
[m, n k,l_[ ]

7
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Output Gaussian Filter

Input
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Bilateral filtering visualization

hlm, n] = o S Gl ffm + K, +

mn.

Spatial range I p Intensity range

Output Bilateral Filter Input
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Exploring the Parameter Space

o, = 0.1 o, =0.25

ihput

O, =0
(Gaussian blur)
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Bilateral Filtering Color Images

For gray-level images Intensity difference

BF[I], = Wi >G, (Ip—al) G, ()R

p 4qsS scalar

For color imaages .
d color difference

BFIT, = - 3G, (Ip-al)G, (RS

p ass 3D vector
(RGB, Lab)

46



Hard to Compute

 Nonlinear BF[[]p —

qes

« Complex, spatially varying kernels
« Cannot be precomputed, no FFT...

» Brute-force implementation is slow > 10min

Additional Reading: S. Paris and F. Durand, A Fast Approximation of the
Bilateral Filter using a Signal Processing Approach, In Proc. ECCV, 2006

> G, (Ip-al) CRN

47



Denoising

noisy input bilateral filtering median filtering

48



Contrast enhancement

How would you use bilateral filtering for sharpening?

‘ AT ' RV 5 AT Py 2 e & 4 Sl SOV AR Poa L 0 S B X  RE
INput sharpening based on sharpening based on
bilateral filtering Gaussian filtering

49
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Photo retouch




Photo retouching

original digital pore removal (aka bilateral filtering)
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Before







Close-up comparison

original

digital pore removal
(aka bilateral filtering)
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Cartoonization

cartoon rendition




Cartoonization

How would you create this effect?

56



Cartoonization

edges from bilaterally filtered image bilaterally filtered image

WL R A

(\( \ 3 N Z

Note: Image cartoonization and abstraction are very active research areas.

57



|s the bilateral filter:

Linear?

Shift-invariant?

58



|s the bilateral filter:

Linear?

 No.

Shift-invariant?

 No.

Does this have any bad implications?

59



The bilateral grid

Real-time Edge-Aware Image Processing with the Bilateral Grid

Jiawen Chen Sylvain Paris Frédo Durand

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Figure 1: The bilateral grid enables edge-aware image manipulations such as local tone mapping on high resolution images in real time.
This 15 megapixel HDR panorama was tone mapped and locally refined using an edge-aware brush at 50 Hz. The inset shows the original
input. The process used about 1 MB of texture memory.

Data structure for fast
edge-aware Image
processing.
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Flash/no-flash photography
via bilateral filtering
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Motion Blur &,
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Image acquisition

Lock Focus
& Aperture

time
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Image acquisition

\
Lock Focus No-Flash Image
& Aperture

1/30 s
ISO 3200

time
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Image acquisition

'

Flash Image

Lock Focus No-Flash Image
& Aperture

1/30 s
ISO 3200

time

A 4

71



Denoising Result
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No-Flash



Denoising Result




Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image
 How would you do this using the image editing techniques we’ve learned about?

75



Joint bilateral filtering



Denoising with bilateral filtering

noisy input bilateral filtering median filtering
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Denoising with bilateral filtering

spatial kernel

A PNACETD
p(col) — d
k(p(c l))p —

Ir(Ap(cory = Ap'(cot)) Ap’ (con)

Intensity kernel

e However, results still have noise or blur (or both)

| Bilateral
filter

78



Denoising with joint bilateral filtering

gr(Fp(col) — p’(col))Ap'(col)

* [n the flash image there are many more details
» Use the flash image F to find edges

79



Denoising with joint bilateral filtering

NR —

1
A = E (p—=2')
p(col) ga\lPp — P
k(p(col)) o
9r (Fpeot) = Fp'con) )Ap' con)

s

Bilateral The difference | Joint Bilateral
filter filter




Not all edges in the flash image are real

Can you think of any types of edges that may exist in the flash image but
not the ambient one?

81



Not all edges in the flash image are real

specularities

shadows

* May cause over- or under-blur in joint bilateral filter
* \We need to eliminate their effect

82



Detecting shadows

» Observation: the pixels in the flash shadow should be similar to the ambient image.

 Not identical;
1. Noise.

2. Inter-reflected flash.

1 when FLn — Alin < 7
« Compute a shadow mask. Mshed = { Shad

0 otherwise.
* Take pIX8| P If FL(col) AL p(col) = T.S‘hadow
* Tshadow 1S Manually adjusted

 Mask i1s smoothed and dilated

83



Detecting specularities

« Take pixels where sensor input Is close to maximum (very bright).

» Over fixed threshold Tspec
» Create a specularity mask.
» Also smoothed.

* M —the combination of shadow and specularity masks:

Where M =1, we use AB2¢. For other pixels we use ANR.

84



Detail transfer

Denoising cannot add details missing in the ambient image

Exist in flash image because of high SNR

* \We use a quotient image: 2 N Reduces the
FDetail _ p(col) T € effect of
p(col) Fg(‘éfﬁ) + € noise in F
« Multiply with ANR to add the details E;ﬂggﬁ
* Masked In the same way Why does this quotient

Image make sense for
detall?



Detail transfer

* Denoising cannot add detalls missing in the ambient image

» Exist in flash image because of high SNR

* \We use a quotient image:

FDetail _ D

p

F

(col) +& ——

o R

)+8

Reduces the
effect of
noise in F
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Detail transfer

LR

Orig. (top Shadow an

No-Flash Detail Transfer w/ Denoising




Full pipeline

A F
No-Flash - Flash
Image Image | . .
FLm A Lin
Bilateral J oint Bilateral Shadow _&
Filter Bilateral Filter Specularity
Filter Detection
FBase
ABase ] ANR FDetail Mask M
Artifact
Denoising Detail Transfer detection

AFinal — (1_M)ANRFDetail + MABase




Demonstration

ambient-only

joint bilateral and detail transfer
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Joint bilateral filtering
other applications
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Edge-aware depth denoising

1 !
Ap(cor) = k(p(col)) pze:ﬂgd(lp —rD Use joint bilateral filtering, with

the Input Image as quide.
Ir(Fp(eot) = Fp'(cot )Ap’ (cot) P J J

One of two input
Images

Depth from disparity Guided filtering

104



Other applications of joint bilateral filtering

Deep Bilateral Learning for Real-Time Image Enhancement

MICHAEL GHARBI, MIT CSAIL

JIAWEN CHEN, Google Research

JONATHAN T. BARRON, Google Research

SAMUEL W. HASINOFF, Google Research

FREDO DURAND, MIT CSAIL / Inria, Université Cote d’Azur

LOW-RES COEFFICIENT PREDICTION S8l featiresil!

& @

§3.2 bilateral grid
of coefficients

& ...
§3.1.4 fusion

F

full-res input I low-res input I §3.1.1 low-level features S* §3.1.3 global features (ck

FULL-RES PROCESSING

PPT A

§3.4.2 fu.llh-rés‘dutputo

§3.4.1 guidance mapg §3.3 sliced coefficients A
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Tonemapping
via bilateral filtering



Display the information

» Recall our HDR class
* Match limited contrast of the medium while preserving details

low contrast
6 6
2 sl Id'm display 10
ealworld. | | | | | | | | | | |

/

_6 6
| 10 HDR image 10
Photo/display: | | | | | | | | | | |

high dynamic range

107



Display the information

» Recall our HDR class
* Match limited contrast of the medium while preserving details

low contrast
6 6
2 sl Id'm display 10
ealworld. | | | | | | | | | | |

/

_6 6
| 10 HDR image 10
Photo/display: | | | | | | | | | | |

high dynamic range

Tonemapping

108



Tonemapping

 Called tone mapping operators

* Two general categories:
* Global (spatially invariant)
* Local (spatially varying)

109



Tone mapping for very HDR scenes

* sun overexposed

» foreground too dark




Tone mapping for very HDR scenes

» Scene has >100,000:1
dynamic range,
JPEG has 255:1

« How can we
compress the scene’s
dynamic range?’ ~—




Tone mapping for very HDR scenes

» Scene has >100,000:1
dynamic range,
JPEG has 255:1

« How can we
compress the scene’s
dynamic range? —

» Scale linearly?

* If we scaled linearly @&
from 100,000:1 to N . .
255:1, everything but ' .
the sun would be
black!




Tonemapping w/ Simple Gamma

e gamma correction, |
applied independently
on R, G, B:

[=1

 global tonemapping

e colors are washed out

113



Tonemapping w/ Simple Gamma

.

 gamma In Intensity
only!

* [ntensity detalls lost




Oppenheim 1968, Chiu et al. 1993

Reduce contrast of low-
frequencies, preserve
high frequencies




The halo nightmare

For strong edges:;
because they contain
high frequency




The halo nightmare

Similar to unsharp mask
of luminance in log
domain




Tonemapping w/ Bilateral Filter ourand and porsey, 200

* Don't blur across edges,
decompose using
bilateral filter

large scale

Reduce large scale

118



Tonemapping w/ Bilateral Filter ourandand porsey, 2002

Input HDR

Contrast too high!

119



Tonemapping w/ Bilateral Filter ourand and porsey, 200

Intensity
= 0.3R+0.6G+0.1B

R'=R/intensity Important to use ratios
G'=G/intensity (makes it luminance
B'=B/intensity Invariant)

120



Tonemapping w/ Bilateral Filter ourand and porsey, 200

)R

large scale

——

Bilateral
Filter

In log

| Spatial sigma: 2-5% image size
| Range sigma: 0.4 (in log 10)

121



Tonemapping w/ Bilateral Filter ourand and porsey, 200

large scale

Bilateral
Filter

In log

detall = log intensity - large scale
(residual)

122



Tonemapping w/ Bilateral Filter ourand and porsey, 200

large scale

Bilateral
Filter

In log

Reduce

contrast

large scale
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Tonemapping w/ Bilateral Filter ourand and porsey, 200

large scale

Bilateral
Filter

In log

Reduce

contrast

Preserve!

large scale
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Reduce
contrast

Bilateral

Filter Preservel!

In log




Log domain

* VVery important to work in the log domain
» Recall: humans are sensitive to multiplicative contrast

* \With log domain, our notion of “strong edge” always corresponds to
the same contrast

126



Scale decomposition in log domain

* inLog = logglintensity)

* InLoglarge = bilateralFilter(inLog)

* InLogDetall = iInLog - iInLoglLarge

* hence:
- InLog = InLogDetall + iInLoglarge, or

- intensity — 1 (QinLogDetail * 1 (inLoglarge

 Now manipulate large-scale and detail separately

127



Contrast reduction in log domain
{ outLog = inLogDetall +[E]Mogl_arge — max(inLogLargeﬂ) }

 Normalize so that the biggest value 1s O in log

« Set target large-scale contrast (e.g. targetRange = log,,(100))

- l.e. In linear output, we want 1:100 contrast for large scale

~
« Compute range of input’s large-scale layer: multiplication in log

- largeRange = max(inLoglLarge) — min(inLoglLarge) =
Yy exponent In linear
» Scale factor k = targetRange / largeRange N J
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Contrast reduction in log domain

{outLog = detallAmp*inLogDetall + k*(inLoglLarge — max(inLogLarge))}

 Normalize so that the biggest value 1s O in log

« Set target large-scale contrast (e.g. targetRange = log,,(100))

- l.e. In linear output, we want 1:100 contrast for large scale

« Compute range of input’s large-scale layer:

- largeRange = max(inLoglLarge) — min(inLoglLarge)
» Scale factor k = targetRange / largeRange

* Optional: amplify detail by detaillAmp

129



Contrast reduction in log domain

{outLog = detallAmp*inLogDetall + k*(inLoglLarge — max(inLogLarge))}

» outintensity

* Recall that R',G",B" Is the intensity-normalized RGB color

- outR=out
- outG=out
- outB=out

— 1 (QoutlLog

ntensity * R’
ntensity * G’
ntensity * B’

130



What matters

» Spatial sigma: not very important
« Range sigma: quite important
» Use of the log domain for range: critical

- Because HDR and because perception sensitive to multiplicative
contrast

131



Modern edge-aware filtering: domain transform

Domain Transform for Edge-Aware Image and Video Processing

Eduardo S. L. Gastal* Manuel M. Oliveira'
Instituto de Informética — UFRGS

(d) Stylization (e) Recoloring (f) Pencil drawing (g) Depth-of-field

Lots of great examples at: https://www.inf.ufrgs.br/~eslgastal/DomainTransform/,




Modern edge-aware filtering: guided filter

Guided Image Filtering

Kaiming He, Member, IEEE, Jian Sun, Member, IEEE, and Xiaoou Tang, Fellow, IEEE

a4 )

filtering input p

spatial kernel G,(x;-x;)

' bilateral kernel GG,

range kernel G,(I-1)
\_ J

fllterlng output g
filtering input p

guide /

i

filtering output ¢

1

qgi=al; + b

133



Guided Image Filtering

g =pi-n minimize E(ag, by) = Z ((arli + by, — pz’)2 + eay)

1EWY
N; : noise / texture l

Linear regression

filtering output g +
qu.: aVl1 1 |U1|Zz‘ewk Lipi — ppr
« ap = :
g ot + €

filtering input p

gi=al,+b

guide /

Bilateral/joint bilateral filter does b = Dr — G fbg
not have this linear model
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Guided Image Filtering

e Extend to the entire Definition
Image _
. o] Dicwn LiPi — HkDk
In all local windows w,, a; = 7

2
compute the linear Op, T €
coefficients

- Compute the average by = Dr. — ag ik

Of ak|i+bk N a” Wy that
covers pixel g

q; =

2 i+ b

klicwy,

w1 - 2r

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius 7,
regularization e
Output: filtering output q.
1: mean; = f Inoan( )
mean, = f mean (p )
Corry = f mean( * 1 )

COITyy = fmean (I & p)
2: vary = Ccorry — mean;y. * meanj

COV[p = COITp, — Imeany. * mearny,
3: g = covjp./(var] +€)
b= mean, — a. * meany
4. mean, — fmean(a)
mean, = fmean(b)
5: ¢ = mean,. * [ + mean,
/* fmean 18 @ mean filter with a wide variety of O(N) time
methods. */
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Guided Image Filtering

Edge-preserving filter

O(1) time, fast,
accurate

Gradient preserving

Parameters
- Window radius r
- Regularization €

g;

wl B Zr

Definition
. ﬁ ZZ‘@% Iz'pz — :uk:ﬁk
ar = 0_2 e ,
k
b, = P, — Q.

A mPILCEEL

klicwy,

Algorithm 1. Guided Filter.
Input: filtering input image p, guidance image I, radius 7,
regularization e
Output: filtering output q.
1: mean; = f Inoan( )
mean, = f mean (p )
Corry = f mean( * 1 )

COITyy = fmean (I & p)
2: vary = Ccorry — mean;y. * meanj

COV[p = COITp, — Imeany. * mearny,
3: g = covjp./(var] +€)
b= mean, — a. * meany
4. mean, — fmean(a)
mean, = fmean(b)
5: ¢ = mean,. * [ + mean,
/* fmean 18 @ mean filter with a wide variety of O(N) time
methods. */
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£=0.2?

Bilateral .Filter | Guided Filter
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Example: Tonemapping

Original HDR Guided Filter Bilateral Filter
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Example: Flash/No-Flash Photography

Guidaqce I

, Guided Filter

JL
Ful

D .

Filter Input p Joint Bilateral Filter 140



Non-Local Means Filter



Redundancy in natural images
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NL-Means Filter (Buades 2005)

« Same goals: ‘Smooth within Similar Regions’

« KEY INSIGHT: Generalize, extend ‘Similarity’

 Bilateral:
Averages neighbors with similar intensities;

 NL-Means:
Averages neighbors with similar neighborhoods!
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 For each and
every pixel p
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NL-Means Method

* For each and
every pixel p:

* Define a small, simple
fixed size neighborhood;
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NL-Means Method

0.74
0.32
0.41
P 0.55

<
|

e Foreachand L
every pixel p:

* Define a small, simple
fixed size neighborhood;

» Define vector Vp: a list of neighboring pixel values.
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NL-Means Method

‘Similar’ pixels p, g

- SMALL
vector distance;

H Vp _ Vq HZ
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NL-Means Method

‘Dissimilar’ pixels p, g

- LARGE
vector distance;

H Vp - Vq HZ
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NL-Means Method

‘Dissimilar’ pixels p, g

- LARGE
vector distance;

H Vp - Vq HZ

Filter with this!

149



NL-Means Method

P, g neighbors define
a vector distance;

H VIO - Vq HZ

Filter with this: f ¥ é
No spatial term! Q| g{ -
1\

NLMFI, = - 2 Gp=<all) 1,

S
pAc 150



NL-Means Method

pixels p, g neighbors
Set a vector distance;

H Vp _ Vq HZ

Vector Distance to p sets
weight for each pixel g

NLMFI[I], = Wi
p
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NL-Means Method




NL-Means Method

* Noisy
source
Image:
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NL-Means Method

 Gaussian Filter

Low noise,
Low detall
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NL-Means Method

* Anisotropic
Diffusion

Note ‘stairsteps':
~ plecewise constant
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NL-Means Method

e Bilateral Filter

Better, but similar
‘stairsteps:
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NL-Means Method

 NL-Means:

Sharp,
Low noise,
Few artifacts.
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NL-Means Method

Figure 4. Method noise experience on a natural image. Displaying of the image difference u — Dy, (). From left to
right and from top to bottom: original image, Gauss filtering, anisotropic filtering, Total variation minimization,
Neighborhood filtering and NL-means algorithm. The visual experiments corroborate the formulas of section 2.
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NL-Means Method

original noisy, standard deviation 15 denoised

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
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RegCov Smoothing



Slide credit: P. Milanfar

From pixels to patches and to images

Patches

Pixels

Similarities can be defined at different scales..
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redit: P. Milanfar

Slide ¢

Pixelwise similarity metrics

* To measure the similarity of two pixels, we can consider
» Spatial distance
» Gray-level distance

Gray-level A

T?TTT

Spatial A
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redit: P. Milanfar

Slide ¢

Fuclidean metrics

* Natural ways to incorporate the two As:
* Bilateral Kernel [Tomasi, Manduchi, ‘98] (pixelwise)
* Non-Local Means Kernel [Buades, et al. ‘0b] (patchwise)

“Euclidean” distance

Gray-level A

<T7ITT

Spatial A

X
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Bilateral Kernel (BL) [Tomasi et al. '98]

}

2
— x|
Spatial similarity

v —yl®

l\
4

Pixels

= exp {_

Y, Y)

p)

X

K(xb

| x;
{

Pixel similarity
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Smoothing effect
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Structure-Texture Decomposition

 Decomposing an image into structure and texture components

Input Image
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Structure-Texture Decomposition

 Decomposing an image into structure and texture components

Structure Component
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Structure-Texture Decomposition

 Decomposing an image into structure and texture components

Texture Component




Structure-Texture Decomposition

 Decomposing an image into structure and texture Components

Structure

Input Image

Texture
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Structure-Texture Decomposition

Fx,y) = ¢(Lxy)

\ ¢

oI oI 0?1 0?1 T
‘ F(iﬂay):[f(ﬂf,y) O |31/' 92 0y? L y}
Cr= — S e — )z — )"

R_”_lzzo k— WI\Zr — W

Tuzel et al., ECCV 2006
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Structure-Texture Decomposition

« Region covariances capture local structure
and texture information.

« Similar regions have similar statistics.

n un =
r ‘
i ¥
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RegCov Smoothing - Formulation

I=5+1T « Structure-texture decomposition via
smoothing

« Smoothing as weighted averaging

e Different kernels (Wpg) result in different
types of filters.

* Three novel patch-based kernels for structure
texture decomposition.

« |. Karacan, A. Erdem, E. Erdem, “Structure

Preserving Image Smoothing via Region
Covariances”, ACM TOG 2013
(SIGGRAPH Asia 2013)
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RegCov Smoothing — Model 1

* Depends on sigma-points representation of covariance matrices
(Hong et al.,CVPR'09)

C = LL?Y Cholesky Decomposition

S._{ avdL; if 1<i<d

— . Sigma Points
S =18i} —aVdL; if d+1<i<2d

Final representation

U(C) = (14,S81,---,Sd,Sd+1,--- ,SQd)T

Resulting kernel function

IV (Cp) — ‘P(Cq)HQ)
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RegCov Smoothing — Model 2

* An alternative way Is to use statistical similarity measures.
* A Mahalanobis-like distance measure to compare to image patches.

d(p,a) = v/(tp — pa)C 1 (tp — piq)”

C=C,+ Cq

d(p, q)2>

Resulting kernel Wpq X €XP (— 952
O
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RegCov Smoothing — Model 3

* \We use Kullback-Leibler(KL)-Divergence measure from probability theory.

« A KL-Divergence form is used to calculate statistical distance between two
multivariate normal distribution

1

- - det C
drr(P,q) = 9 (”(Cq 1Cp) + (pp — :“q)TCq 1(“1’ — Hg) =k = ln(det Cp)>
a

Resulting kernel I dk1(P,q)
= 207

resulted from a discussion with Rahul Narain (Berkeley University)
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RegCov Smoothing — Smoothing Kernels

~oo=
[
r s
B = o —
ai
.

POOYI0qQUSTIIN T I°POIN
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Results

Input
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Results
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Model2 Structure




Input

MWMMM

Texture

e

Model2 Texture
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Results




Experimental evaluation
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Experimental evaluation

TV

Rudin et al. 1992
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Experimental evaluation

Bilateral
Filter
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Experimental evaluation

Envelope

Extraction
~ J Subretal. 2009

J&’

%

>

~~~~
.............
..........
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Experimental evaluation

RTV

Xu et al. 2012

189



Experimental evaluation

190



Experimental evaluation
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Experimental evaluation
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Experimental evaluation

| ocal Exrema

Shading preserved Structure preserved No unintuitive edge




Multiscale decomposition




Multiscale decomposition




Multiscale decomposition




Multiscale decomposition




Model2
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Challenging cases

Model2 Texture Model2+Model1
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Edge detection




Edge detection




Edge detection

Canny edges of original image Canny edges of smoothed image
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Image abstraction
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Image abstraction
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Detail boosting




Image composition s |




Inverse Halftoning
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Inverse Halftoning

Smoothed image
(Model 2)
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Inverse Halftoning

Smoothed image
(Model 2 + Shock filter)

209




Inverse Halftoning

Model2+Shock Filter - Input halftone image Kopf and Lischinski 2012
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lmage Retargeting
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Smoothed image
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lmage Retargeting

Input image Smoothed image
Extracted Seams Extracted Seams

Seam Carving, Avidan and Shamir 2007 212



lmage Retargeting

'-'.-1":_ :

Input image Smoothed image
Retargeting result Retargeting result

A,'_3

Seam Carving, Avidan and Shamir 2007 213



Rolling Guidance Filter



Scale-Aware Filtering

Small Scale ¥ '|

Large Scale &

1 -




Notion of Scale in Filtering

texture white dots the eye
Input image disappear disappear disappears

S

As the Gaussian kernel gets larger, more and more structures disappear.

s=38 = 14
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Main Ildea

» Scale Space Theory [Lindeberg, 1994]:

* An object of size 1, will be largely smoothed away with Gaussian filter of
variance
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RGF: A scale-aware Filter

Small
Structures
Removal

Edge Recovery

218



Step 1: Small Structures Removal

Gaussian Filter

219



Step 2: Edge Recovery

* A

Original Input The output of

Adance on . A

Re pw Output
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Rolling Guidance

Ch
Unchanged _W anging ‘

Rolling Guidance

Guidance
Joint Bilateral Filter

)|

N
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Rolling Guidance

Guidance for the 1st
Iteration

222



Rolling Guidance

Guidance for the 2nd
iteration
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Rolling Guidance

Guidance for the 3rd
iteration
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Rolling Guidance

Guidance for the bth
iteration
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Rolling Guidance

Small structures are .
Large structure are blurred.
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Implementation

Rolling Guidance Filter (RGF) has only of code

1 Mat rollingGuidanceFilter(Mat im, float scale, int iter){
2 Mat res = im.mul(9);

(iter--) res = bilateralFilter(im,res,scale,SIGMA R);
res;
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Small Structure

Input Guidance (output of )

0 20

60 80 100

. 2
exp ( — HI?2—QQH It becomes a Gaussian f lter
o)
gEN (p) °

‘ Joint Bilateral Filter
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Large Structure

Input Image

IF .

0 20 40 60 80 100

Result of Step 1

v

0 20 10 P geN(p)o 100 5

l. ' i

_ 2
05y t+1 ' Hp— CIH
o , _7,2 QXp(_— 052 |

175 (p) —Jt(Q)H2)

2
207

Due to
It generates

results than Gaussian!
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Processing

Input Image Guidance Image

1 1

0.5 1 0‘5/

Oo 20 40 60 80 160 OO 20 10 50 80 150

Input Intermediate iterations Previous guidance image

1 i " u r 1 i " ' ' 1 ' ;
05 | o.aI 05'/
Oo 20 10 60 80 100 OO 20 40 60 80 100 0 20 40 0 Ce ico
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Processing

Input Image

F .
o5} /
0 : :

0 20 40 60 80 100

Guidance Image

20 40 60 80

2 llteratiom

100
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Large Structure

1 " ' ' : 1F T T T
0.5 -j__" 05f /
Ot : . . . . 0 : " . : .
O 20 40 60 80 100 0 20 40 60 80 100

Take-home message

Rolling guidance recovers an edge as long as
it still exists in the blurred image after Gaussian smoothing.
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Rolling Guidance Filter

Rolling

Gaussian Guidance

Large Structure

1 T T T T 1F 1
05 —/— 25 /— 05 —J—
0 ] ot ] 0 . ‘ .
0 20 40 60 80 100

0 20 40 60 80 100 0] 20 40 60 80 100

Small Structure

0 20 40 60 80 100
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Result Comparison

[Xu et al.]
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Performance Comparison

For 4 Megapixel Image
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Performance Comparison

Algorithms Time (seconds/Megapixel)
Local Extrema [Subr et al., 2009] 95
RTV [Xu et al., 2012] 14
Region Covariance [Karacan et al., 2013] 240
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Texture Removal




Texture Removal
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Halftone Image




Halftone Image
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Boundary detection

Boundary Detection Filtered Input Boundary Detection
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Multi-Scale Filtering

30

determine the scale.
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Limitations

» Sharp corners could be rounded

* [t is because sharp corner presents high frequency change.
* [n other words, sharp corners are small-scale structures.
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Recap

* Filtering plays a key role for many applications.

 Filtering by taking into account image content generally gives better
results.
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Next Lecture:
Gradient-domain image
processing



