
Multiple Exposure Photo by Christoffer Relander

Lecture #06 – Gradient-Domain Image Processing
Erkut Erdem // Hacettepe University // Spring 2025

BBM444
FUNDAMENTALS OF
COMPUTATIONAL
PHOTOGRAPHY

Today’s Lecture
• Gradient-domain image processing

• Basics on images and gradients

• Integrable vector fields

• Poisson blending

• Flash/no-flash photography

• Gradient-domain rendering and cameras

Disclaimer: The material and slides for this lecture were borrowed from
—Ioannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class

—Amit Agrawal’s slides on “Gradient-Domain Based Flash/No-flash Photography”

—Adrien Gruson’s slides on “Gradient-Domain Rendering”

—Davide Scaramuzza’s tutorial on “Event-based Cameras”
2

Gradient-domain image processing

3

originals copy-paste Poisson blending
4

Application: Poisson blending

Removing Glass Reflections

Seamless Image Stitching
5

More applications

Tonemapping

Fusing day and night photos

6

Yet more applications

7

Entire suite of image editing tools

Estimation of
Gradients

Manipulation of
Gradients

Edited
Gradient Fields

Integration of
Gradient Fields Edited ImagesOriginal Images

8

Main pipeline

Basics of gradients and fields

9

Scalar field: a function assigning a scalar to every point in space.

! ", $: ℝ! → ℝ

Vector field: a function assigning a vector to every point in space.

(", $) ", $:ℝ! → ℝ!

Can you think of examples of scalar fields and vector fields?

10

Some vector calculus definitions in 2D

Scalar field: a function assigning a scalar to every point in space.

Vector field: a function assigning a vector to every point in space.

Can you think of examples of scalar fields and vector fields?
• A grayscale image is a scalar field.
• A two-channel image is a vector field.
• A three-channel (e.g., RGB) image is also a vector field, but of higher-dimensional range

than what we will consider here.

! ", $: ℝ! → ℝ

(", $) ", $:ℝ! → ℝ!

11

Some vector calculus definitions in 2D

Nabla (or del): vector differential operator.

∇ = ,
,"

,
,$

Think of this as
a 2D vector.

12

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ = ,
,"

,
,$

Gradient (grad): product of nabla with a scalar field.

Curl: cross product of nabla with a vector field.

∇! ", $ = ?

∇ . (", $) ", $ = ?

∇× (", $) ", $ = ?

Think of this as
a 2D vector.

13

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ = ,
,"

,
,$

Gradient (grad): product of nabla with a scalar field.

∇! ", $ = ,!
," ", $,!

,$ ", $

∇ . (", $) ", $ = ,(
," ", $ + ,),$ ", $

Curl: cross product of nabla with a vector field.

∇× (", $) ", $ = ,)
," ", $ − ,(,$ ", $ 23

What is the
dimension of this?

Think of this as
a 2D vector.

What is the
dimension of this?

What is the
dimension of this?

14

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ = ,
,"

,
,$

Gradient (grad): product of nabla with a scalar field.

∇! ", $ = ,!
," ", $,!

,$ ", $

∇ . (", $) ", $ = ,(
," ", $ + ,),$ ", $

Curl: cross product of nabla with a vector field.

∇× (", $) ", $ = ,)
," ", $ − ,(,$ ", $ 23

This is a
vector field.

Think of this as
a 2D vector.

This is a
scalar field.

This is a vector field.

15

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ = ,
,"

,
,$

Gradient (grad): product of nabla with a scalar field.

∇! ", $ = ,!
," ", $,!

,$ ", $

∇ . (", $) ", $ = ,(
," ", $ + ,),$ ", $

Curl: cross product of nabla with a vector field.

∇× (", $) ", $ = ,)
," ", $ − ,(,$ ", $ 23

This is a
vector field.

Think of this as
a 2D vector.

This is a
scalar field.

This is a vector field.
This is a scalar field.

16

Some vector calculus definitions in 2D

Divergence of the gradient:

Curl of the gradient:

∇ . ∇! ", $ = ?

∇×∇! ", $ = ?

17

Combinations

Divergence of the gradient:

Curl of the gradient:

∇ . ∇! ", $ = ,!
,"! ! ", $ + ,!

,$! ! ", $ ≡ ∆! ", $

∇×∇! ", $ = ,!
,$," ! ", $ − ,!

,",$! ", $

Laplacian: scalar differential operator.

∆ ≡ ∇ . ∇ = ,!
,"! +

,!
,$!

Inner product of
del with itself!

18

Combinations

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

Gradient (grad): product of nabla with a scalar field.

Curl: cross product of nabla with a vector field.

This is a
vector field.

Think of this as
a 2D vector.

This is a
scalar field.

This is a vector field.
This is a scalar field.

∇ = " #

∇! = !" !#

∇ . () = (" +)#

∇× () =)" − (# 23
19

Simplified notation

Divergence of the gradient:

Curl of the gradient:

∇ . ∇! = !"" + !## ≡ ∆!

∇×∇! = !#" − !"#

Laplacian: scalar differential operator.

∆ ≡ ∇ . ∇ = ,!
,"! +

,!
,$!

Inner product of
del with itself!

20

Simplified notation

We can treat grayscale images as scalar fields (i.e., two dimensional functions)

! ", $: ℝ! → ℝ

21

Image representation

Convert the scalar field into a vector field through differentiation.

scalar field vector field! ", $: ℝ! → ℝ ∇! ", $ = ,!
," ", $,!

,$ ", $

22

Image gradients

Convert the scalar field into a vector field through differentiation.

scalar field vector field! ", $: ℝ! → ℝ ∇! ", $ = ,!
," ", $,!

,$ ", $
• How do we do this differentiation in real discrete images?

23

Image gradients

What convolution kernel
does this correspond to?

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

,!
," ", $ = lim

$→&
! " + ℎ, $ − ! ", $

ℎ

,!
," ", $ = ! " + 1, $ − ! ", $

24

Finite differences

?
?

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

,!
," ", $ = lim

$→&
! " + ℎ, $ − ! ", $

ℎ

,!
," ", $ = ! " + 1, $ − ! ", $ 1 -1

-1 1

25

Finite differences

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

partial-x derivative filter

Note: common to use central difference, but we will not use it in this lecture.

,!
," ", $ = ! " + 1, $ − ! " − 1, $

2

,!
," ", $ = lim

$→&
! " + ℎ, $ − ! ", $

ℎ

,!
," ", $ = ! " + 1, $ − ! ", $ 1 -1

26

Finite differences

High-school reminder: definition of a derivative using forward difference.

,!
," ", $ = lim

$→&
! " + ℎ, $ − ! ", $

ℎ
For discrete scalar fields: remove limit and set h = 1.

,!
," ", $ = ! " + 1, $ − ! ", $ 1 -1

partial-x derivative filter

Similarly for partial-y derivative.

,!
,$ ", $ = ! ", $ + ℎ − ! ", $ 1

-1

partial-y derivative filter

27

Finite differences

How do we compute the image Laplacian?

∆! ", $ = ,!!
,"! ", $ + ,!!

,$! ", $

28

Discrete Laplacian

How do we compute the image Laplacian?

∆! ", $ = ,!!
,"! ", $ + ,!!

,$! ", $

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * = ?

What is this? What is this?
29

Discrete Laplacian

How do we compute the image Laplacian?

∆! ", $ = ,!!
,"! ", $ + ,!!

,$! ", $

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * =

0 1 0
1 -4 1
0 1 0

Laplacian filter

,!!
,"! ", $,!!

,$! ", $
30

Discrete Laplacian

How do we compute the image Laplacian?

∆! ", $ = ,!!
,"! ", $ + ,!!

,$! ", $

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * =

0 1 0
1 -4 1
0 1 0

Laplacian filter

,!!
,"! ", $,!!

,$! ", $

Very important to:
• use consistent

derivative and Laplacian
filters.

• account for boundary
shifting and padding
from convolution.

31

Discrete Laplacian

Very important for the techniques discussed in this lecture to:
• use consistent derivative and Laplacian filters.
• account for boundary shifting and padding from convolution.
A correct implementation of differential operators should pass the following test:

Equality holds at all pixels except boundary
(first and last row, first and last column).

=∇ " ∇

Laplacian operatorgradient operator

divergence operator

∆

Typically requires implementing derivatives
in various differential operators differently.

32

Warning!

Convert the scalar field into a vector field through differentiation.

scalar field vector field! ", $: ℝ! → ℝ ∇! ", $ = ,!
," ", $,!

,$ ", $

33

Image gradients

Convert the scalar field into a vector field through differentiation.

scalar field vector field! ", $: ℝ! → ℝ ∇! ", $ = ,!
," ", $,!

,$ ", $
• Image gradients are very informative!

34

Image gradients

35

Application - Seam Carving
S

lid
e

cr
ed

it:
 K

. G
ra

um
an

[Shai & Avidan, SIGGRAPH 2007]

36

Application - Seam Carving

[Shai & Avidan, SIGGRAPH 2007]

S
lid

e
cr

ed
it:

 K
. G

ra
um

an

Content-aware resizing

Traditional resizing

37

Application - Seam Carving

38

Seam Carving: Main idea
S

lid
e

cr
ed

it:
 K

. G
ra

um
an

Content-aware resizing
Intuition:
• Preserve the most “interesting/important” content

à Prefer to remove pixels with low gradient energy

• To reduce or increase size in one dimension, remove
irregularly shaped “seams”
à Optimal solution via dynamic programming.

39

Seam Carving: Main idea
S

lid
e

cr
ed

it:
 K

. G
ra

um
an

=!" !"#$%&'

• Want to remove seams where they won’t be very noticeable:
• Measure “energy” as gradient magnitude
• Choose seam based on minimum total energy path across image, subject to

8-connectedness.

40

Seam Carving: Algorithm
S

lid
e

cr
ed

it:
 K

. G
ra

um
an

• Let a vertical seam s consist of h positions that form an 8-connected path.

• Let the cost of a seam be:

• Optimal seam minimizes this cost.

• Compute it efficiently with dynamic programming:

!
=

=
!

"
"#$%C'E)*+,#-

!
""##"#!

!"#$%& !!
!
!"#$=

s1

s2

s3

s4

s5

=!" !"#$%&'

Convert the scalar field into a vector field through differentiation.

scalar field vector field! ", $: ℝ! → ℝ ∇! ", $ = ,!
," ", $,!

,$ ", $

41

Image gradients

Convert the scalar field into a vector field through differentiation.

scalar field vector field! ", $: ℝ! → ℝ ∇! ", $ = ,!
," ", $,!

,$ ", $
• How do we do this differentiation in real discrete images?

• Can we go in the opposite direction, from gradients to images?
42

Image gradients

Two fundamental questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed?

43

Vector field integration

Integrable vector fields

44

Given an arbitrary vector field (u,	v), can we always integrate it into a scalar field I?

such that

,!
," ", $ = ((", $)

! ", $: ℝ! → ℝ) ", $: ℝ! → ℝ(", $: ℝ! → ℝ

,!
,$ ", $ =)(", $)

?

45

Integrable fields

Curl of the gradient field should be zero:

What does that mean intuitively?

∇×∇! = !#" − !"# = 0

46

Property of twice-differentiable functions

Curl of the gradient field should be zero:

What does that mean intuitively?
• Same result independent of order of differentiation.

∇×∇! = !#" − !"# = 0

!#" = !"#

47

Property of twice-differentiable functions

=

∇×∇!∆!

!" !#

!"# !#"

image !

48

Demonstration

Curl of the gradient field should be zero:

What does that mean intuitively?
• Same result independent of order of differentiation.

∇×∇! = !#" − !"# = 0

!#" = !"#

Can you use this property to derive an integrability condition?
49

Property of twice-differentiable functions

Given an arbitrary vector field (u,	v), can we always integrate it into a scalar field I?

such that

,!
," ", $ = ((", $)

! ", $: ℝ! → ℝ) ", $: ℝ! → ℝ(", $: ℝ! → ℝ

,!
,$ ", $ =)(", $)

?

∇× (", $
) ", $ = 0 ⇒ ,(

,$ ", $ = ,)
," ", $

Only if:

50

Integrable fields

Two fundamental questions:

• When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed?

51

Vector field integration

• Reconstructing height fields from gradients
Applications: shape from shading, photometric stereo

• Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

• Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
• Integration must be done approximately.

52

Different types of integration problems

A prototypical integration problem:
Poisson blending

53

originals copy-paste Poisson blending
54

Application: Poisson blending

When blending, retain the gradient information as best as possible

5
5

source destination copy-paste Poisson blending
55

Key idea

sources destinations cloning seamless cloning

sources/destinations
cloning seamless cloning

Figure 3: Insertion. The power of the method is fully expressed
when inserting objects with complex outlines into a new back-
ground. Because of the drastic differences between the source and
the destination, standard image cloning cannot be used in this case.

source/destination cloning seamless cloning

swapped textures

Figure 4: Feature exchange. Seamless cloning allows the user to
replace easily certain features of one object by alternative features.
In the second example of texture swapping multiple broad strokes
(not shown) were used.

The discrete counterpart of this guidance field is:

vpq =
{

f ∗p − f ∗q if | f ∗p − f ∗q | > |gp −gq|,
gp −gq otherwise, (13)

for all 〈p,q〉. The effect of this guidance field is demonstrated in

source/destination

color transfer monochrome transfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Figs. 6 and 7.

(a) color-based cutout and paste (b) seamless cloning

(c) seamless cloning and destination av-
eraged (d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.

source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure is the more salient
at each location.

This mixed seamless cloning is also useful when adding one ob-
ject from a source image very close to another object in the desti-
nation image, see Fig. 8.

316

add image
here

Which one is the unknown?

!: source function

Ω: destination domain

#: interpolant function

#∗: destination function

Notation

$: destination

56

Definitions and notation

add image
here

!: source function

Ω: destination domain

#: interpolant function

#∗: destination function

Notation

$: destination

How should we determine #?
• Should it be similar to !?
• Should it be similar to #∗?

57

Definitions and notation

add image
here

Find # such that:
• ∇# = ∇! inside Ω.
• # = #∗ at the boundary 'Ω.

$: destination

!: source function

Ω: destination domain

#: interpolant function

#∗: destination function

Notation

Poisson blending: integrate
vector field ∇! with Dirichlet

boundary conditions #∗.
58

Definitions and notation

Least-squares integration
and the Poisson problem

59

Variational problem

what does this
term do?

what does this
term do?

Nabla operator definition

Recall ...

is this known?

“Variational” means
optimization where
the unknown is an

entire function

60

Least-squares integration

Variational problem

gradient of f looks
like vector field v

f is equivalent to
f* at the

boundaries

Yes, this is the vector
field we are integrating

“Variational” means
optimization where
the unknown is an

entire function

61

Nabla operator definition

Recall ...

Why do we need
boundary conditions

for least-squares
integration?

Least-squares integration

Laplacian

Divergence

what does this term do?

62

Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:
This can be

derived
using the

Euler-
Lagrange
equation.

Equivalently

Poisson equation (with Dirichlet boundary conditions)

Laplacian

Divergence

Laplacian of f same as
divergence of vector field v

63

Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:
This can be

derived
using the

Euler-
Lagrange
equation.

Equivalently

Poisson equation (with Dirichlet boundary conditions)

64

What does the input vector field equal
in Poisson blending?

The stationary point of the variational loss is the solution to the:

Find # such that:
• ∇# = ∇! inside Ω.
• # = #∗ at the boundary 'Ω.

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)

65

What does the input vector field equal
in Poisson blending?

The stationary point of the variational loss is the solution to the:

What does the divergence of the input
vector field equal in Poisson blending?

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)

Find # such that:
• ∇# = ∇! inside Ω.
• # = #∗ at the boundary 'Ω.

66

What does the input vector field equal
in Poisson blending?

The stationary point of the variational loss is the solution to the:

What does the divergence of the input
vector field equal in Poisson blending?

so make these ...

equal

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)

Find # such that:
• ∇# = ∇! inside Ω.
• # = #∗ at the boundary 'Ω.

Laplacian

Divergence

67

Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:

How do we solve the Poisson equation?

Equivalently

Poisson equation (with Dirichlet boundary conditions)

∆@ ", $ = ∇ . A ", $
So for each pixel, do:

Or for discrete images:

68

1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x
derivative filter

Recall ...

partial-y
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)

∆@ ", $ = ∇ . A ", $
So for each pixel, do:

Or for discrete images:

69

−4@ ", $ + @ " + 1, $ + @ " − 1, $
+@ ", $ + 1 + @ ", $ − 1

= (" + 1, $ − (", $ +) ", $ + 1
−) ", $

1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x
derivative filter

Recall ...

partial-y
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)

∆@ ' = ∇ . A '

So for each pixel, do (more compact notation):

Or for discrete images (more compact notation):

70

−4@' +C
(∈*!

@(= (" ' +)# '
1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x
derivative filter

Recall ...

partial-y
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)

In vector form:

linear equation
of P variables

one for each
pixel p = 1, …, P

71

−4@' +C
(∈*!

@(= (" ' +)# '

⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

1!
⋮
1"!
⋮
1""
1#
1"#
⋮
1"$
⋮
1$

=

∇ " 3 !
⋮

∇ " 3 "!
⋮

∇ " 3 ""
∇ " 3 #
∇ " 3 "#
⋮

∇ " 3 "$
⋮

∇ " 3 $

D @ E

(each pixel adds another ‘sparse’ row here)

We can rewrite this as

⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

1!
⋮
1"!
⋮
1""
1#
1"#
⋮
1"$
⋮
1$

=

∇ " 3 !
⋮

∇ " 3 "!
⋮

∇ " 3 ""
∇ " 3 #
∇ " 3 "#
⋮

∇ " 3 "$
⋮

∇ " 3 $

D @ E

In vector form:

linear equation
of P variables

one for each
pixel p = 1, …, P

what is
this?

72

−4@' +C
(∈*!

@(= (" ' +)# '

what are the sizes of these?

(each pixel adds another ‘sparse’ row here)

We can rewrite this as

⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

1!
⋮
1"!
⋮
1""
1#
1"#
⋮
1"$
⋮
1$

=

∇ " 3 !
⋮

∇ " 3 "!
⋮

∇ " 3 ""
∇ " 3 #
∇ " 3 "#
⋮

∇ " 3 "$
⋮

∇ " 3 $

D @ E

In vector form:

linear equation
of P variables

one for each
pixel p = 1, …, P

73

−4@' +C
(∈*!

@(= (" ' +)# '

We call this the
Laplacian matrix

(each pixel adds another ‘sparse’ row here)

We can rewrite this as

F+×+ =

−4 1 0 0 0 ⋯ 0
1 −4 1 0 0 ⋯ 0
0 1 −4 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 1 −4 1 0
0 ⋯ ⋯ 0 1 −4 1
0 ⋯ ⋯ ⋯ 0 1 −474

For a(×* image, we can re-organize this matrix into block tridiagonal form as:

D+-×+- =

F ! 0 0 0 ⋯ 0
! F ! 0 0 ⋯ 0
0 ! F ! 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 ! F ! 0
0 ⋯ ⋯ 0 ! F !
0 ⋯ ⋯ ⋯ 0 ! F

This requires ordering pixels in
column-major order.

!+×+ is the J×J
identity matrix

Laplacian matrix

75

!" = $

WARNING: requires special treatment at the borders
(target boundary values are same as source)

After discretization, equivalent to:

! " 0 0 0 ⋯ 0
" ! " 0 0 ⋯ 0
0 " ! " 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 " ! " 0
0 ⋯ ⋯ 0 " ! "
0 ⋯ ⋯ ⋯ 0 " !

'

(!
⋮
("!
⋮
(""
(#
("#
⋮
("$
⋮
($

=

∇ ' + !
⋮

∇ ' + "!
⋮

∇ ' + ""
∇ ' + #
∇ ' + "#
⋮

∇ ' + "$
⋮

∇ ' + $

Linear system of equations:

How would you solve this?

Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

In Matlab:

f = A \ b

Note: You almost never want to
compute the inverse of a matrix.

76

Solving the linear system

77

!" = $

After discretization, equivalent to:

Linear system of equations:

What is the size of this matrix?

! " 0 0 0 ⋯ 0
" ! " 0 0 ⋯ 0
0 " ! " 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 " ! " 0
0 ⋯ ⋯ 0 " ! "
0 ⋯ ⋯ ⋯ 0 " !

'

(!
⋮
("!
⋮
(""
(#
("#
⋮
("$
⋮
($

=

∇ ' + !
⋮

∇ ' + "!
⋮

∇ ' + ""
∇ ' + #
∇ ' + "#
⋮

∇ ' + "$
⋮

∇ ' + $

Discrete Poisson equation

WARNING: requires special treatment at the borders
(target boundary values are same as source)

Poisson equation (with Dirichlet boundary conditions)

78

!" = $

After discretization, equivalent to:

Linear system of equations:! " 0 0 0 ⋯ 0
" ! " 0 0 ⋯ 0
0 " ! " 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 " ! " 0
0 ⋯ ⋯ 0 " ! "
0 ⋯ ⋯ ⋯ 0 " !

'

(!
⋮
("!
⋮
(""
(#
("#
⋮
("$
⋮
($

=

∇ ' + !
⋮

∇ ' + "!
⋮

∇ ' + ""
∇ ' + #
∇ ' + "#
⋮

∇ ' + "$
⋮

∇ ' + $

Matrix is +×+ → billions of entries

Discrete Poisson equation

WARNING: requires special treatment at the borders
(target boundary values are same as source)

Poisson equation (with Dirichlet boundary conditions)

• Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

• Acceleration techniques:
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.
…

• Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.

79

Integration procedures

A more efficient Poisson solver

80

Variational problem

gradient of f looks
like vector field v

f is equivalent to f*
at the boundaries

Nabla operator definition

Recall ...

Input vector field:

81

Let’s look again at our optimization problem

Variational problem

gradient of f looks
like vector field v

Nabla operator definition

Recall ...

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

Input vector field:

82

Let’s look again at our optimization problem

f is equivalent to f*
at the boundaries

Discrete problem
What are G, f, and v?

We can use the
gradient

approximation to
discretize the

variational problem

We will ignore the
boundary conditions

for now.min
!

(" − * "

83

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

Nabla operator definition

Recall ...

Let’s look again at our optimization problem

Discrete problem
matrix G formed by stacking
together discrete gradients

We can use the
gradient

approximation to
discretize the

variational problem

We will ignore the
boundary conditions

for now.min
!

(" − * "

vectorized version of
the unknown image

vectorized version of the
target gradient field

Image gradient

Recall ...

84

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

Let’s look again at our optimization problem

Discrete problem
matrix G formed by stacking
together discrete gradients

We can use the
gradient

approximation to
discretize the

variational problem

min
!

(" − * "

vectorized version of
the unknown image

vectorized version of the
target gradient field

Image gradient

Recall ...

85

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

How do we solve
this optimization

problem?

Let’s look again at our optimization problem

Given the loss function:

+ " = (" − * "

… we compute its derivative:

,+
," =?

86

Approach 1: Compute stationary points

Given the loss function:

+ " = (" − * "

… we compute its derivative:

,+
," = (#(" − (#*

… and we do what with it?

87

Approach 1: Compute stationary points

Given the loss function:

+ " = (" − * "

… we compute its derivative:

,+
," = (#(" − (#*

… and we set that to zero:

,+
," = 0 ⇒ (#(" = (#*

What is this matrix?

What is this vector?

88

Approach 1: Compute stationary points

Given the loss function:

+ " = (" − * "

… we compute its derivative:

,+
," = (#(" − (#*

… and we set that to zero:

,+
," = 0 ⇒ (#(" = (#*

It is equal to the
Laplacian matrix A we

derived previously!

It is equal to the vector
b we derived
previously!

89

Approach 1: Compute stationary points

90

!" = $

After discretization, equivalent to:

Linear system of equations:

We arrive at the same system, no matter whether we discretize the
continuous Poisson equation or the variational optimization problem.

Same system as:

(#(" = (#*

! " 0 0 0 ⋯ 0
" ! " 0 0 ⋯ 0
0 " ! " 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 " ! " 0
0 ⋯ ⋯ 0 " ! "
0 ⋯ ⋯ ⋯ 0 " !

'

(!
⋮
("!
⋮
(""
(#
("#
⋮
("$
⋮
($

=

∇ ' + !
⋮

∇ ' + "!
⋮

∇ ' + ""
∇ ' + #
∇ ' + "#
⋮

∇ ' + "$
⋮

∇ ' + $

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)

Given the loss function:

+ " = (" − * "

… we compute its derivative:

,+
," = (#(" − (#*

… and we set that to zero:

,+
," = 0 ⇒ (#(" = (#*

Solving this is exactly as
expensive as what we

had before.

91

Approach 1: Compute stationary points

Given the loss function:

+ " = (" − * "

… we compute its derivative:

,+
," = (#(" − (#* = !" − $ ≡ −1 We call this term

the residual

92

Approach 2: Use gradient descent

Given the loss function:

+ " = (" − * "

… we compute its derivative:

,+
," = (#(" − (#* = !" − $ ≡ −1

… and then we iteratively compute a solution:

"$%& = "$ + η1
are positive step sizesη$

for i =	0,	1,	…,	N, where

93

We call this term
the residual

Approach 2: Use gradient descent

Make derivative of loss function with respect to equal to zero:η$

+ "$%& = ("$ + η1 − * "

+ " = (" − * "

94

Selecting optimal step sizes

+ "$%& = ("$ + η1 − * "

,+ "$%&
,η$ = $ − ! "$ + η1 #1$ = 0 ⇒ η$ = 1$ #1$

1$ #!1$

+ " = (" − * "

95

Selecting optimal step sizes
Make derivative of loss function with respect to equal to zero:η$

Minimize by iteratively computing:

1$ = $ − !"$, η$ = '! "'!

'! "('!
, "$%& = "$ + η1, 4 = 0,… , 7

Given the loss function:

+ " = (" − * "

Is this cheaper than the pseudo-inverse approach?

96

Gradient descent

1$ = $ − !"$, η$ = '! "'!

'! "('!
, "$%& = "$ + η1, 4 = 0,… , 7

Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.

Given the loss function:

+ " = (" − * "

97

Gradient descent

Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.

Given the loss function:

+ " = (" − * "

98

1$ = $ − !"$, η$ = '! "'!

'! "('!
, "$%& = "$ + η1, 4 = 0,… , 7

Gradient descent

Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.
• Because A is the Laplacian matrix, these matrix-vector products can be efficiently

computed using convolutions with the Laplacian kernel.

Given the loss function:

+ " = (" − * "

99

1$ = $ − !"$, η$ = '! "'!

'! "('!
, "$%& = "$ + η1, 4 = 0,… , 7

Gradient descent

Minimize by iteratively computing:

Given the loss function:

+ " = (" − * "

100

8$ = 1$ + 9$8$, η$ = '! "'!

)! "()!
, "$%& = "$ + η8, 4 = 0,… , 7

1$%& = 1$ − η$!8$, 9$ = '!#$ "'!#$

'! "'!

• Smarter way for selecting
update directions

• Everything can still be done
using convolutions

• Only one convolution needed
per iteration

In practice: conjugate gradient descent

Does the initialization f0 matter?

101

Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final fwe converge to, because the loss function is
convex.

+ " = (" − * "

102

Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final fwe converge to, because the loss function is
convex.

+ " = (" − * "

• It does matter in terms of convergence speed.
• We can use a multi-resolution approach:

- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

…
- Use the solution to initialize gradient descent for an f with the original resolution PxP.

• Multi-grid algorithms alternative between higher and lower resolutions during the
(conjugate) gradient descent iterative procedure.

103

Note: initialization

104

!" = $

After discretization, equivalent to:

Linear system of equations:

Remember that what we are
doing is equivalent to solving

this linear system.

! " 0 0 0 ⋯ 0
" ! " 0 0 ⋯ 0
0 " ! " 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 " ! " 0
0 ⋯ ⋯ 0 " ! "
0 ⋯ ⋯ ⋯ 0 " !

'

(!
⋮
("!
⋮
(""
(#
("#
⋮
("$
⋮
($

=

∇ ' + !
⋮

∇ ' + "!
⋮

∇ ' + ""
∇ ' + #
∇ ' + "#
⋮

∇ ' + "$
⋮

∇ ' + $

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)

We are solving this linear system:

!" = $
For any invertible matrix P, this is equivalent to solving:

:*&!" = :*&$
When is it preferable to solve this alternative linear system?

105

Note: preconditioning

We are solving this linear system:

!" = $
For any invertible matrix P, this is equivalent to solving:

:*&!" = :*&$
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?

106

Note: preconditioning

We are solving this linear system:

!" = $
For any invertible matrix P, this is equivalent to solving:

:*&!" = :*&$
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
• Standard preconditioners like Jacobi.
• More effective preconditioners. Active area of research.

107

:+,-./0 = diag !

Note: preconditioning

We are solving this linear system:

!" = $
For any invertible matrix P, this is equivalent to solving:

:*&!" = :*&$
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
• Standard preconditioners like Jacobi.
• More effective preconditioners. Active area of research.

108

:+,-./0 = diag !

Preconditioning can be
incorporated in the conjugate
gradient descent algorithm.

Is this effective for Poisson solvers?

Note: preconditioning

109

!" = $

WARNING: requires special treatment at the borders
(target boundary values are same as source)

After discretization, equivalent to:

Linear system of equations:! " 0 0 0 ⋯ 0
" ! " 0 0 ⋯ 0
0 " ! " 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 " ! " 0
0 ⋯ ⋯ 0 " ! "
0 ⋯ ⋯ ⋯ 0 " !

'

(!
⋮
("!
⋮
(""
(#
("#
⋮
("$
⋮
($

=

∇ ' + !
⋮

∇ ' + "!
⋮

∇ ' + ""
∇ ' + #
∇ ' + "#
⋮

∇ ' + "$
⋮

∇ ' + $

Matrix is +×+ → billions of entries

x

Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)

• Form a mask B that is 0 for pixels that should not
be updated (pixels on S-Ω and 'Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over
the entire image.

• Use (conjugate) gradient descent rules to only
update pixels for which the mask is 1. Equivalently,
change the update rules to:

"$%& = "$ + >η1
"$%& = "$ + >η8

(gradient descent)

(conjugate gradient descent)
110

Note: handling (Dirichlet) boundary conditions

"$%& = "$ + >η1
"$%& = "$ + >η8

In practice, masking is also required
at other steps of (conjugate)

gradient descent, to deal with
invalid boundaries (e.g., from

convolutions).

111

Note: handling (Dirichlet) boundary conditions

• Form a mask B that is 0 for pixels that should not
be updated (pixels on S-Ω and 'Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over
the entire image.

• Use (conjugate) gradient descent rules to only
update pixels for which the mask is 1. Equivalently,
change the update rules to:

(gradient descent)

(conjugate gradient descent)

Poisson image editing examples

112

Slightly more advanced version
of what we covered here:
• Uses higher-order derivatives

113

Photoshop’s “healing brush”

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

114

Contrast problem

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.

115

Contrast problem

copy-paste Poisson blendingoriginals
116

More blending

sources destinations cloning seamless cloning

sources/destinations
cloning seamless cloning

Figure 3: Insertion. The power of the method is fully expressed
when inserting objects with complex outlines into a new back-
ground. Because of the drastic differences between the source and
the destination, standard image cloning cannot be used in this case.

source/destination cloning seamless cloning

swapped textures

Figure 4: Feature exchange. Seamless cloning allows the user to
replace easily certain features of one object by alternative features.
In the second example of texture swapping multiple broad strokes
(not shown) were used.

The discrete counterpart of this guidance field is:

vpq =
{

f ∗p − f ∗q if | f ∗p − f ∗q | > |gp −gq|,
gp −gq otherwise, (13)

for all 〈p,q〉. The effect of this guidance field is demonstrated in

source/destination

color transfer monochrome transfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Figs. 6 and 7.

(a) color-based cutout and paste (b) seamless cloning

(c) seamless cloning and destination av-
eraged (d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.

source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure is the more salient
at each location.

This mixed seamless cloning is also useful when adding one ob-
ject from a source image very close to another object in the desti-
nation image, see Fig. 8.

316

117

Blending transparent objects

sources destinations cloning seamless cloning

sources/destinations
cloning seamless cloning

Figure 3: Insertion. The power of the method is fully expressed
when inserting objects with complex outlines into a new back-
ground. Because of the drastic differences between the source and
the destination, standard image cloning cannot be used in this case.

source/destination cloning seamless cloning

swapped textures

Figure 4: Feature exchange. Seamless cloning allows the user to
replace easily certain features of one object by alternative features.
In the second example of texture swapping multiple broad strokes
(not shown) were used.

The discrete counterpart of this guidance field is:

vpq =
{

f ∗p − f ∗q if | f ∗p − f ∗q | > |gp −gq|,
gp −gq otherwise, (13)

for all 〈p,q〉. The effect of this guidance field is demonstrated in

source/destination

color transfer monochrome transfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Figs. 6 and 7.

(a) color-based cutout and paste (b) seamless cloning

(c) seamless cloning and destination av-
eraged (d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.

source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure is the more salient
at each location.

This mixed seamless cloning is also useful when adding one ob-
ject from a source image very close to another object in the desti-
nation image, see Fig. 8.

316

source destination

118

Blending objects with holes

sources destinations cloning seamless cloning

sources/destinations
cloning seamless cloning

Figure 3: Insertion. The power of the method is fully expressed
when inserting objects with complex outlines into a new back-
ground. Because of the drastic differences between the source and
the destination, standard image cloning cannot be used in this case.

source/destination cloning seamless cloning

swapped textures

Figure 4: Feature exchange. Seamless cloning allows the user to
replace easily certain features of one object by alternative features.
In the second example of texture swapping multiple broad strokes
(not shown) were used.

The discrete counterpart of this guidance field is:

vpq =
{

f ∗p − f ∗q if | f ∗p − f ∗q | > |gp −gq|,
gp −gq otherwise, (13)

for all 〈p,q〉. The effect of this guidance field is demonstrated in

source/destination

color transfer monochrome transfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Figs. 6 and 7.

(a) color-based cutout and paste (b) seamless cloning

(c) seamless cloning and destination av-
eraged (d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.

source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure is the more salient
at each location.

This mixed seamless cloning is also useful when adding one ob-
ject from a source image very close to another object in the desti-
nation image, see Fig. 8.

316

color-based cutout and paste seamless cloning

seamless cloning and destination mixed seamless cloning
averaged

119

Editing

Figure 11: Local color changes. Left: original image showing
selection Ω surrounding loosely an object of interest; center: back-
ground decolorization done by setting g to the original color image
and f ∗ to the luminance of g; right: recoloring the object of interest
by multiplying the RGB channels of the original image by 1.5, 0.5,
and 0.5 respectively to form the source image.

Figure 12: Seamless tiling. Setting periodic boundary values on the
border of a rectangular region before integrating with the Poisson
solver yields a tileable image.

performed by precisely selecting an object and then setting its com-
plement to monochrome. In contrast, Poisson editing frees the user
from the tedium of precise selection: given a source color image g,
(a) the destination image f ∗ is set to be the luminance channel from
g, (b) the user selects a region Ω containing the object, and this
may be somewhat bigger than the actual object, and (c) the Pois-
son equation (10) is solved in each color channel. An example is
presented in Fig. 11. Note that, although the result seems to offer
also a precise segmentation of the object for free, this is not actually
the case as there is some residual contamination of the destination
image outside the object.

Conversely Poisson image editing can be used to modify the
color of a loosely selected object. Before solving the Poisson equa-
tion (10), the original image is copied to the destination f ∗ and a
version with modified colors is copied to the source g, see Fig. 11.

Seamless tiling When the domain Ω is rectangular, its content
can be made tileable by enforcing periodic boundary conditions
with the Poisson solver. The source image g is the original im-
age, and the boundary conditions are derived from the boundary
values of g, such that opposite sides of the rectangular domain cor-
respond to identical Dirichlet conditions. In Fig. 12, we have cho-
sen f ∗north = f ∗south = 0.5(gnorth + gsouth), and similarly for the east
and west borders.

5 Conclusion

Using the generic framework of guided interpolation, we have in-
troduced a variety of tools to edit in a seamless and effortless
manner the contents of an image selection. The extent of possi-
ble changes ranges from replacement by, or mixing with, another
source image region, to alterations of some aspects of the original

image inside the selection, such as texture, illumination, or color.
An important common characteristic of all these tools is that there
is no need for precise object delineation, in contrast with the classic
tools that address similar tasks. This is a valuable feature, whether
one is interested in small touch-up operations or in complex photo-
montages.

Although not illustrated in this paper, it is clear that the cloning
facilities described in Section 3 can be combined with the editing
ones introduced in Section 4. It is for instance possible to insert
an object while flattening its texture to make it match the style of a
texture-free destination.

Finally, it is worth noting that the range of editing facilities de-
rived in this paper from the same generic framework could prob-
ably be extended further. Appearance changes could for instance
also deal with the sharpness of objects of interest, thus allowing the
user to make apparent changes of focus.

Image credits Two landscapes and swimming bear in Fig. 3,
flower in Fig.11: from Corel Professional Photos, copyright c©2003
Microsoft Research and its licensors, all rights reserved; rainbow in
Fig. 7 courtesy Professor James B. Kaler, University of Illinois.

References

ADOBE c©. 2002. Photoshop c© 7.0 User Guide. Adobe Systems Incorpo-
rated.

BALLESTER, C., BERTALMIO, M., CASELLES, V., SAPIRO, G., AND
VERDERA, J. 2001. Filling-in by Joint Interpolation of Vector Fields
and Gray Levels. IEEE Trans. Image Processing 10, 8, 1200–1211.

BARRET, A., AND CHENEY, A. 2002. Object-Based Image Editing. ACM
Transactions on Graphics 21, 3, 777–784.

BERTALMIO, M., SAPIRO, G., CASELLES, V., AND BALLESTER, C.
2000. Image Inpainting. In Proceedings of ACM SIGGRAPH 2000,
ACM Press / ACM SIGGRAPH, New-York, E. Fiume, Ed., Computer
Graphics Proceedings, Annual Conference Series, ACM, 417–424.

BOLZ, J., FARMER, I., GRINPSUN, E., AND SCHRÖDER, P. 2003. Sparse
Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. ACM
Transactions on Graphics. to appear.

BORNARD, R., LECAN, E., LABORELLI, L., AND CHENOT, J.-H. 2002.
Missing Data Correction in Still Images and Image Sequences. In Proc.
ACM International Conference on Multimedia.

BURT, P., AND ADELSON, E. 1983. A Multiresolution Spline with Appli-
cation to Image Mosaics. ACM Transactions on Graphics 2, 4, 217–236.

EFROS, A., AND FREEMAN, W. 2001. Image Quilting for Texture Synthe-
sis and Transfer. In Proceedings of ACM SIGGRAPH 2001, ACM Press
/ ACM SIGGRAPH, New-York, E. Fiume, Ed., Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, 341–346.

EFROS, A., AND LEUNG, T. 1999. Texture Synthesis by Non-Parametric
Sampling. In Proc. Int. Conf. Computer Vision, 1033–1038.

ELDER, J., AND GOLDBERG, R. 2001. Image Editing in the Contour
Domain. IEEE Trans. Pattern Anal. Machine Intell. 23, 3, 291–296.

FATTAL, R., LISCHINSKI, D., AND WERMAN, M. 2002. Gradient Domain
High Dynamic Range Compression. ACM Transactions on Graphics 21,
3, 249–256.

HERTZMANN, A., JACOBS, C., OLIVER, N., CURLESS, B., AND
SALESIN, D. 2001. Image Analogies. In Proceedings of SIGGRAPH
2001, ACM Press / ACM SIGGRAPH, New-York, E. Fiume, Ed., Com-
puter Graphics Proceedings, Annual Conference Series, ACM, 327–340.

LAND, E., AND MCCANN, J. 1971. Ligthness and Retinex Theory. J. Opt.
Soc. Amer. 61, 1–11.

LEWIS, J., 2001. Lifting Detail from Darkness. SIGGRAPH 2001 Tech
Sketch.

MALLAT, S., AND ZHONG, S. 1992. Characterization of Signals from
Multi-Scale Edges. IEEE Trans. Pattern Anal. Machine Intell. 14, 710–
732.

318

How would you do this
with Poisson blending?

120

Concealment
Therefore, inside Ω, the additive correction f̃ is a membrane inter-
polant of the mismatch (f ∗− g) between the source and the desti-
nation along the boundary ∂Ω. This particular instance of guided
interpolation is used for seamless cloning in Section 3.

Discrete Poisson solver The variational problem (3), and the
associated Poisson equation with Dirichlet boundary conditions (4),
can be discretized and solved in a number of ways.

For discrete images the problem can be discretized naturally us-
ing the underlying discrete pixel grid. Without loss of generality,
we will keep the same notations for the continuous objects and their
discrete counterparts: S, Ω now become finite point sets defined on
an infinite discrete grid. Note that S can include all the pixels of an
image or only a subset of them. For each pixel p in S, let Np be
the set of its 4-connected neighbors which are in S, and let 〈p,q〉
denote a pixel pair such that q ∈ Np. The boundary of Ω is now
∂Ω = {p ∈ S\Ω : Np ∩Ω &= /0}. Let fp be the value of f at p. The
task is to compute the set of intensities f |Ω =

{
fp, p ∈ Ω

}
.

For Dirichlet boundary conditions defined on a boundary of ar-
bitrary shape, it is best to discretize the variational problem (3) di-
rectly, rather than the Poisson equation (4). The finite difference
discretization of (3) yields the following discrete, quadratic opti-
mization problem:

min
f |Ω

∑
〈p,q〉∩Ω%= /0

(fp − fq − vpq)2, with fp = f ∗p , for all p ∈ ∂Ω, (6)

where vpq is the projection of v(p+q
2) on the oriented edge [p,q],

i.e., vpq = v(p+q
2) · !pq. Its solution satisfies the following simulta-

neous linear equations:

for all p ∈ Ω, |Np| fp − ∑
q∈Np∩Ω

fq = ∑
q∈Np∩∂Ω

f ∗q + ∑
q∈Np

vpq. (7)

When Ω contains pixels on the border of S, which happens for in-
stance when Ω extends to the edge of the pixel grid, these pixels
have a truncated neighborhood such that |Np| < 4. Note that for
pixels p interior to Ω, that is, Np ⊂ Ω, there are no boundary terms
in the right hand side of (7), which reads:

|Np| fp − ∑
q∈Np

fq = ∑
q∈Np

vpq. (8)

Equations (7) form a classical, sparse (banded), symmetric,
positive-definite system. Because of the arbitrary shape of bound-
ary ∂Ω, we must use well-known iterative solvers. Results shown in
this paper have been computed using either Gauss-Seidel iteration
with successive overrelaxation or V-cycle multigrid. Both methods
are fast enough for interactive editing of medium size color image
regions, e.g., 0.4 s. per system on a Pentium 4 for a disk-shaped re-
gion of 60,000 pixels. As demonstrated in [Bolz et al. 2003], multi-
grid implementation on a GPU will provide a solution for much
larger regions.

3 Seamless cloning

Importing gradients The basic choice for the guidance field v
is a gradient field taken directly from a source image. Denoting
by g this source image, the interpolation is performed under the
guidance of

v = ∇g, (9)

and (4) now reads

∆ f = ∆g over Ω, with f |∂Ω = f ∗|∂Ω. (10)

Figure 2: Concealment. By importing seamlessly a piece of the
background, complete objects, parts of objects, and undesirable ar-
tifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.

As for the numerical implementation, the continuous specifica-
tion (9) translates into

for all 〈p,q〉, vpq = gp −gq, (11)

which is to be plugged into (7).
The seamless cloning tool thus obtained ensures the compliance

of source and destination boundaries. It can be used to conceal un-
desirable image features or to insert new elements in an image, but
with much more flexibility and ease than with conventional cloning,
as illustrated in Figs. 2-4. From the perspective of user input, most
tasks will simply require very loose lasso selections, as shown for
instance in Fig. 3. However, when features of the source have to
be aligned with corresponding features in the destination, as in the
fence example in Fig. 2 (bottom row) or the face example in Fig.
4 (top row), the positioning of the source and destination regions
must be more precise. Finally, in situations where seamless cloning
involves mostly pieces of texture, as in the face touch-up example
in Fig. 2 (top row) the texture swap example in Fig. 4 (bottom row)
applying repeatedly broad brush strokes is the more effective way.

Up to global changes induced by the interpolation process, the
full content of the source image is retained . In some circumstances,
it is desirable to transfer only part of the source content. The most
common instance of this problem is the transfer of the intensity
pattern from the source, not the color. A simple solution is to turn
the source image monochrome beforehand, see Fig. 5.

Mixing gradients With the tool described in the previous sec-
tion, no trace of the destination image f ∗ is kept inside Ω. However,
there are situations where it is desirable to combine properties of f ∗
with those of g, for example to add objects with holes, or partially
transparent ones, on top of a textured or cluttered background.

An example is shown in Fig.6, in which a text layer is to be
peeled off the source image and applied to the destination image,
without the need for complex selection operations. One possible
approach is to define the guidance field v as a linear combination
of source and destination gradient fields but this has the effect of
washing out the textures, see Fig. 6.

However, the Poisson methodology allows non-conservative
guidance fields to be used, which gives scope to more compelling
effect. At each point of Ω, we retain the stronger of the variations
in f ∗ or in g, using the following guidance field:

for all x ∈ Ω, v(x) =
{

∇ f ∗(x) if |∇ f ∗(x)| > |∇g(x)|,
∇g(x) otherwise. (12)

315

How would you do this
with Poisson blending?

• Insert a copy of the
background.

121

Concealment
Therefore, inside Ω, the additive correction f̃ is a membrane inter-
polant of the mismatch (f ∗− g) between the source and the desti-
nation along the boundary ∂Ω. This particular instance of guided
interpolation is used for seamless cloning in Section 3.

Discrete Poisson solver The variational problem (3), and the
associated Poisson equation with Dirichlet boundary conditions (4),
can be discretized and solved in a number of ways.

For discrete images the problem can be discretized naturally us-
ing the underlying discrete pixel grid. Without loss of generality,
we will keep the same notations for the continuous objects and their
discrete counterparts: S, Ω now become finite point sets defined on
an infinite discrete grid. Note that S can include all the pixels of an
image or only a subset of them. For each pixel p in S, let Np be
the set of its 4-connected neighbors which are in S, and let 〈p,q〉
denote a pixel pair such that q ∈ Np. The boundary of Ω is now
∂Ω = {p ∈ S\Ω : Np ∩Ω &= /0}. Let fp be the value of f at p. The
task is to compute the set of intensities f |Ω =

{
fp, p ∈ Ω

}
.

For Dirichlet boundary conditions defined on a boundary of ar-
bitrary shape, it is best to discretize the variational problem (3) di-
rectly, rather than the Poisson equation (4). The finite difference
discretization of (3) yields the following discrete, quadratic opti-
mization problem:

min
f |Ω

∑
〈p,q〉∩Ω%= /0

(fp − fq − vpq)2, with fp = f ∗p , for all p ∈ ∂Ω, (6)

where vpq is the projection of v(p+q
2) on the oriented edge [p,q],

i.e., vpq = v(p+q
2) · !pq. Its solution satisfies the following simulta-

neous linear equations:

for all p ∈ Ω, |Np| fp − ∑
q∈Np∩Ω

fq = ∑
q∈Np∩∂Ω

f ∗q + ∑
q∈Np

vpq. (7)

When Ω contains pixels on the border of S, which happens for in-
stance when Ω extends to the edge of the pixel grid, these pixels
have a truncated neighborhood such that |Np| < 4. Note that for
pixels p interior to Ω, that is, Np ⊂ Ω, there are no boundary terms
in the right hand side of (7), which reads:

|Np| fp − ∑
q∈Np

fq = ∑
q∈Np

vpq. (8)

Equations (7) form a classical, sparse (banded), symmetric,
positive-definite system. Because of the arbitrary shape of bound-
ary ∂Ω, we must use well-known iterative solvers. Results shown in
this paper have been computed using either Gauss-Seidel iteration
with successive overrelaxation or V-cycle multigrid. Both methods
are fast enough for interactive editing of medium size color image
regions, e.g., 0.4 s. per system on a Pentium 4 for a disk-shaped re-
gion of 60,000 pixels. As demonstrated in [Bolz et al. 2003], multi-
grid implementation on a GPU will provide a solution for much
larger regions.

3 Seamless cloning

Importing gradients The basic choice for the guidance field v
is a gradient field taken directly from a source image. Denoting
by g this source image, the interpolation is performed under the
guidance of

v = ∇g, (9)

and (4) now reads

∆ f = ∆g over Ω, with f |∂Ω = f ∗|∂Ω. (10)

Figure 2: Concealment. By importing seamlessly a piece of the
background, complete objects, parts of objects, and undesirable ar-
tifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.

As for the numerical implementation, the continuous specifica-
tion (9) translates into

for all 〈p,q〉, vpq = gp −gq, (11)

which is to be plugged into (7).
The seamless cloning tool thus obtained ensures the compliance

of source and destination boundaries. It can be used to conceal un-
desirable image features or to insert new elements in an image, but
with much more flexibility and ease than with conventional cloning,
as illustrated in Figs. 2-4. From the perspective of user input, most
tasks will simply require very loose lasso selections, as shown for
instance in Fig. 3. However, when features of the source have to
be aligned with corresponding features in the destination, as in the
fence example in Fig. 2 (bottom row) or the face example in Fig.
4 (top row), the positioning of the source and destination regions
must be more precise. Finally, in situations where seamless cloning
involves mostly pieces of texture, as in the face touch-up example
in Fig. 2 (top row) the texture swap example in Fig. 4 (bottom row)
applying repeatedly broad brush strokes is the more effective way.

Up to global changes induced by the interpolation process, the
full content of the source image is retained . In some circumstances,
it is desirable to transfer only part of the source content. The most
common instance of this problem is the transfer of the intensity
pattern from the source, not the color. A simple solution is to turn
the source image monochrome beforehand, see Fig. 5.

Mixing gradients With the tool described in the previous sec-
tion, no trace of the destination image f ∗ is kept inside Ω. However,
there are situations where it is desirable to combine properties of f ∗
with those of g, for example to add objects with holes, or partially
transparent ones, on top of a textured or cluttered background.

An example is shown in Fig.6, in which a text layer is to be
peeled off the source image and applied to the destination image,
without the need for complex selection operations. One possible
approach is to define the guidance field v as a linear combination
of source and destination gradient fields but this has the effect of
washing out the textures, see Fig. 6.

However, the Poisson methodology allows non-conservative
guidance fields to be used, which gives scope to more compelling
effect. At each point of Ω, we retain the stronger of the variations
in f ∗ or in g, using the following guidance field:

for all x ∈ Ω, v(x) =
{

∇ f ∗(x) if |∇ f ∗(x)| > |∇g(x)|,
∇g(x) otherwise. (12)

315

122

Texture swapping

sources destinations cloning seamless cloning

sources/destinations
cloning seamless cloning

Figure 3: Insertion. The power of the method is fully expressed
when inserting objects with complex outlines into a new back-
ground. Because of the drastic differences between the source and
the destination, standard image cloning cannot be used in this case.

source/destination cloning seamless cloning

swapped textures

Figure 4: Feature exchange. Seamless cloning allows the user to
replace easily certain features of one object by alternative features.
In the second example of texture swapping multiple broad strokes
(not shown) were used.

The discrete counterpart of this guidance field is:

vpq =
{

f ∗p − f ∗q if | f ∗p − f ∗q | > |gp −gq|,
gp −gq otherwise, (13)

for all 〈p,q〉. The effect of this guidance field is demonstrated in

source/destination

color transfer monochrome transfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Figs. 6 and 7.

(a) color-based cutout and paste (b) seamless cloning

(c) seamless cloning and destination av-
eraged (d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.

source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure is the more salient
at each location.

This mixed seamless cloning is also useful when adding one ob-
ject from a source image very close to another object in the desti-
nation image, see Fig. 8.

316

How would you do this?

123

Special case: membrane interpolation

How would you do this?

Poisson problem

Laplacian problem

124

Special case: membrane interpolation

125

Entire suite of image editing tools

Flash/no-flash photography

126

No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look

127

Denoising Result

128

No-Flash

129

Denoising Result

130

Denoise the no-flash image while maintaining the edge structure of the flash image.

131

Key idea

Can we do similar flash/no-flash fusion tasks with gradient-domain processing?

132

Photography Artifacts: Flash Hotspot
Ambient Flash

Flash Hotspot

133

Reflections due to Flash
Underexposed Reflections

Ambient Flash

134

Distance Dependance
Flash

Distant people
underexposed

Ambient Flash

135

Removing self-reflections and hot-spots

Ambient Flash

Hands

Face

Tripod

136

Removing self-reflections and hot-spots

Result
Ambient

Flash

Reflection Layer

137

Removing self-reflections and hot-spots

Same gradient vector
direction

Flash Gradient Vector

Ambient Gradient Vector

Ambient Flash

No reflections
138

Idea: look at how gradients are affected

Reflection Ambient Gradient Vector
Different gradient
vector direction

With reflections

Ambient Flash

Flash Gradient Vector

139

Idea: look at how gradients are affected

Residual
Gradient
Vector

Result Gradient Vector

Result Residual

Flash Gradient Vector

140

Gradient projections

Ambient Flash

• Image gradients in flash and
ambient images should be
aligned.

• Ambient gradient direction is
refined by projecting onto the
flash gradient.

• "Result" image is formed by
2D integration of the refined
gradient.

• Residual gradients after
projection create the "reflection
layer".

• Gradient projection splits an
image into reflection-free and
reflection layers.

141

• Projection ensures the
gradient direction is
preserved, even with a
new magnitude.

• Orthogonal gradients holds
minimal visual information.

• Rotating gradients by 90°
yields zero divergence.

• 90° rotation results in no
image detail.

• 180° rotation creates a
negative image.

Why projections?

Gx

Gy

Reconstruction

0 p/6 p/3 p/2 p

142

Flash/no-flash with gradient-domain processing

Flash Ambient

Checkerboard
outside glass
window

Reflections on
glass window

2D

Integration

Flash

Ambient

X

Y

X

Y

Intensity Gradient

Vector Projection

Result X

Result Y

Result

2D Integration

143

Flash/no-flash with gradient-domain processing

144

Invariance of Gradient Vectors Orientation
(Gradient Orientation Coherency)

ü Reflectance Edge

• ­¯ Geometric Edge

× Illumination Edge

Ambient Flash

?

145

Removing Reflections due to Flash
Ambient Flash Ambient + Flash

Result

Intensity Gradient

Vector Projection

Reflections
removed

146

Removing Flash Hotspot

Linearly combine flash and ambient image
gradients using Ws and Gradient Coherency

Saturation Weights Ws

Ambient Flash

Result

147

Depth Compensation
FlashAmbient

Scale flash gradients using the ratio of flash and ambient images

!!

"
#$%
&'(

!"#A%&'(!"#A%&'(F*+"(&AF*+"(&A
,-%#.

!
"

=
#$

Result

Distant
Persons

148

Limitations
• Difficult Scenarios
• Dynamic scenes
• Co-located artifacts
• Strong ambient illumination edges

• Issues
• Lack of reliable gradients

• Homogeneous or dark regions

• Color coherency

Gradient-domain rendering

149

150

Rendering Equation

Mirror Light

151

Rendering Equation

!! = #
"
$! &̅ d(&̅

Mirror Light

[V
ea

ch
98

]

152

Rendering Equation

!! = #
"
$! &̅ d(&̅

Mirror Light

[V
ea

ch
98

]

153

Rendering Equation
[V

ea
ch

98
]

!! = #
"
$! &̅ d(&̅

Mirror Light

154

Rendering Equation
[V

ea
ch

98
]

!! = #
"
$! &̅ d(&̅

Mirror Light

"1 @̅ = (Materials) x (Geometries)
x Emitted Lum. x Pixel filtering

"&

".

"!

"/

"0
&̅ = &#&$&%&&&'

155

Rendering Equation

!! = #
"
$! &̅ d(&̅ !! ≈

1
+,#$%

& $! &̅#
-(&#)

Monte Carlo estimator

:(<") is the probability density to sample <"

156

Path Tracing

&#

&$

&%
&&!1

157

Motivation

45min30min15min 1h

error / 2 = samples * 4

158

Motivation
Observation

• Noise mostly proportional to signal magnitude

Idea

• Noise reduction by sampling sparse signal representation
• Sparse: signal magnitude low, except in small regions
• Wavelets, edge filters, gradients, etc.
• Theoretical justification: Kettunen et al. SIGGRAPH 2015

159

The Basic Algorithm
1. Perform standard Monte Carlo rendering to obtain primal image
2. Sample gradients: horizontal and vertical
3. Reconstruct image from primal and gradients

160

Image Reconstruction

Reconstructed image

Primal

Gradients

Fusing gradients and primal
information inside

one image

161

162

Primal domain Gradient domain 163

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

164

165

Can I go from one image to the other?

differentiation (e.g., convolution with forward-difference kernel)

integration (e.g., Poisson solver)

166

Can I go from one image to the other?

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?

167

Rendering

Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples)

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

168

Rendering

Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples)

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

Why not all?

169

Rendering

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image)
in primal domain, to use as boundary conditions in the Poisson solver.
• In practice, do image-space stratified sampling to select these pixels.

170

Rendering

A lot of papers since SIGGRAPH 2013
(first introduction of gradient-domain
rendering) that are looking to extend
basically all primal-domain rendering
algorithms to the gradient domain.

171

Gradient-Domain Rendering

172

Does it help?

Gradient-domain path tracing (2 minutes) 173

Primal-domain path tracing (2 minutes) 174

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

175

Remember this idea (we’ll come back to it)

176

Modern Gradient-Domain Rendering

https://github.com/mkettune/ngpt

Deep Convolutional Reconstruction For Gradient-Domain Rendering

MARKUS KETTUNEN, Aalto University
ERIK HÄRKÖNEN, Aalto University
JAAKKO LEHTINEN, Aalto University and Nvidia

Input (Ours) NFOR [Bitterli et al. 2016] KPCN [Bako et al. 2017] NGPT (Ours) Ground Truth

Fig. 1. Comparison of the primal-domain denoisers NFOR [Bi�erli et al. 2016] and KPCN [Bako et al. 2017] to our gradient-domain reconstruction NGPT from
very noisy equal-time inputs (8 samples for ours and 20 for others). Generally outperforming the comparison methods, our results show that gradient sampling
is useful also in the context of non-linear neural image reconstruction, o�en resolving e.g. shadows be�er than techniques that do not make use of gradients.

It has been shown that rendering in the gradient domain, i.e., estimating �nite
di�erence gradients of image intensity using correlated samples, and com-
bining them with direct estimates of pixel intensities by solving a screened
Poisson problem, often o�ers fundamental bene�ts over merely sampling
pixel intensities. The reasons can be traced to the frequency content of the
light transport integrand and its interplay with the gradient operator. How-
ever, while they often yield state of the art performance among algorithms
that are based on Monte Carlo sampling alone, gradient-domain rendering
algorithms have, until now, not generally been competitive with techniques
that combine Monte Carlo sampling with post-hoc noise removal using
sophisticated non-linear �ltering.

Drawing on the power of modern convolutional neural networks, we
propose a novel reconstruction method for gradient-domain rendering. Our
technique replaces the screened Poisson solver of previous gradient-domain
techniques with a novel dense variant of the U-Net autoencoder, addition-
ally taking auxiliary feature bu�ers as inputs. We optimize our network to
minimize a perceptual image distance metric calibrated to the human visual
system. Our results signi�cantly improve the quality obtained from gradient-
domain path tracing, allowing it to overtake state-of-the-art comparison
techniques that denoise traditional Monte Carlo samplings. In particular,
we observe that the correlated gradient samples — that o�er information
about the smoothness of the integrand unavailable in standard Monte Carlo
sampling — notably improve image quality compared to an equally powerful
neural model that does not make use of gradient samples.

Authors’ addresses: Markus Kettunen, Aalto University, markus.kettunen@aalto.�; Erik
Härkönen, Aalto University, erik.harkonen@aalto.�; Jaakko Lehtinen, Aalto University
and Nvidia, jaakko.lehtinen@aalto.�.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/7-ART126 $15.00
https://doi.org/10.1145/3306346.3323038

CCS Concepts: • Computing methodologies → Neural networks; Ray
tracing.

Additional Key Words and Phrases: gradient-domain rendering, gradient-
domain reconstruction, screened poisson, ray tracing

ACM Reference Format:
Markus Kettunen, Erik Härkönen, and Jaakko Lehtinen. 2019. Deep Con-
volutional Reconstruction For Gradient-Domain Rendering. ACM Trans.
Graph. 38, 4, Article 126 (July 2019), 12 pages. https://doi.org/10.1145/3306346.
3323038

1 INTRODUCTION
Realistic image synthesis seeks to produce realistic virtual pho-
tographs by computationally solving the Rendering Equation [Ka-
jiya 1986], often by randomly sampling paths that carry light from
the light sources to the sensor. Rendering with too few samples
leaves the image with visually distracting noise. Unsurprisingly,
practical applications constantly struggle with striking a balance be-
tween the complexity of content (slower, more noise) and available
computational resources.

Since many Monte Carlo samples are required for a high qual-
ity image, this leaves four main approaches for making rendering
faster: (1) making samples faster to evaluate (e.g. GPU rendering,
ray tracing hardware, optimized low-level algorithms), (2) sharing
contributions between nearby paths (e.g. photon mapping), (3) being
clever in choosing the light paths to sample (e.g. Bidirectional Path
Tracing, adaptive importance samplers), and, �nally, (4) denoising
or reconstruction, attempting to produce a better picture out of the
samples by relying on various smoothness assumptions or analytic
models of the transport phenomena being modeled.

Despite a long history, and continuous research progress in all of
these areas, signi�cant problems remain. Only naturally, the quality
obtained by “more pure” techniques that rely on few assumptions or
heuristics tends to lag behind those that assume more. For instance,

ACM Trans. Graph., Vol. 38, No. 4, Article 126. Publication date: July 2019.

https://github.com/mkettune/ngpt

177

Modern Gradient-Domain Rendering

https://github.com/iRedBean/Deep-Poisson-Reconstruction

GradNet: Unsupervised Deep Screened Poisson Reconstruction for
Gradient-Domain Rendering

JIE GUO∗, State Key Lab for Novel So"ware Technology, Nanjing University
MENGTIAN LI∗, State Key Lab for Novel So"ware Technology, Nanjing University
QUEWEI LI, State Key Lab for Novel So"ware Technology, Nanjing University
YUTING QIANG, State Key Lab for Novel So"ware Technology, Nanjing University
BINGYANG HU, State Key Lab for Novel So"ware Technology, Nanjing University
YANWEN GUO†, State Key Lab for Novel So"ware Technology, Nanjing University
LING-QI YAN†, University of California, Santa Barbara

%DVH�,PDJH������VSS� 2XU�5HFRQVWUXFWLRQ 5HIHUHQFH %%DDVVHH��,,PPDDJJHH������������VVSSSS�� 22XXUU��55HHFFRRQQVVWWUUXXFFWWLLRRQQ 55HHIIHHUUHHQQFFHH

Fig. 1. We propose an unsupervised deep neural network (GradNet) for reconstructing high-quality images from noisy base images and the corresponding
image gradients generated by gradient-domain renderers. Even with unlabeled training data, our network can still reproduce noise-free images closely
matching the references.

Monte Carlo (MC)methods for light transport simulation are !exible and gen-
eral but typically su"er from high variance and slow convergence. Gradient-
domain rendering alleviates this problem by additionally generating image
gradients and reformulating rendering as a screened Poisson image recon-
struction problem. To improve the quality and performance of the recon-
struction, we propose a novel and practical deep learning based approach in
this paper. The core of our approach is a multi-branch auto-encoder, termed
∗Both authors contributed equally to the paper
†Corresponding authors

Authors’ addresses: Jie Guo, State Key Lab for Novel Software Technology, Nanjing Uni-
versity, guojie@nju.edu.cn; Mengtian Li, State Key Lab for Novel Software Technology,
Nanjing University, lemonsky@smail.nju.edu.cn; Quewei Li, State Key Lab for Novel
Software Technology, Nanjing University, liquewei@163.com; Yuting Qiang, State Key
Lab for Novel Software Technology, Nanjing University, qiangyuting.new@gmail.com;
Bingyang Hu, State Key Lab for Novel Software Technology, Nanjing University,
fhymyang@gmail.com; Yanwen Guo, State Key Lab for Novel Software Technology,
Nanjing University, ywguo@nju.edu.cn; Ling-Qi Yan, University of California, Santa
Barbara, lingqi@cs.ucsb.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro$t or commercial advantage and that copies bear this notice and the full citation
on the $rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci$c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART223 $15.00
https://doi.org/10.1145/3355089.3356538

GradNet, which end-to-end learns a mapping from a noisy input image and
its corresponding image gradients to a high-quality image with low variance.
Once trained, our network is fast to evaluate and does not require manual
parameter tweaking. Due to the di%culty in preparing ground-truth images
for training, we design and train our network in a completely unsupervised
manner by learning directly from the input data. This is the $rst solution in-
corporating unsupervised deep learning into the gradient-domain rendering
framework. The loss function is de$ned as an energy function including a
data $delity term and a gradient $delity term. To further reduce the noise of
the reconstructed image, the loss function is reinforced by adding a regular-
izer constructed from selected rendering-speci$c features. We demonstrate
that our method improves the reconstruction quality for a diverse set of
scenes, and reconstructing a high-resolution image takes far less than one
second on a recent GPU.

CCS Concepts: • Computing methodologies→ Ray tracing; Neural net-
works.

Additional Key Words and Phrases: Gradient-domain rendering, Deep learn-
ing, Unsupervised learning, Image reconstruction

ACM Reference Format:
Jie Guo, Mengtian Li, Quewei Li, Yuting Qiang, Bingyang Hu, Yanwen Guo,
and Ling-Qi Yan. 2019. GradNet: Unsupervised Deep Screened Poisson Re-
construction for Gradient-Domain Rendering. ACM Trans. Graph. 38, 6, Arti-
cle 223 (November 2019), 13 pages. https://doi.org/10.1145/3355089.3356538

ACM Trans. Graph., Vol. 38, No. 6, Article 223. Publication date: November 2019.

https://github.com/iRedBean/Deep-Poisson-Reconstruction

Gradient cameras

178

Why would you want a gradient camera?

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

179

Gradient camera

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

180

What implication would this have on a camera?

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

181

Gradient camera

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?

182

Gradient camera

Can you think how?

183

Change the sensor

photodiodephotodiode

microlensmicrolens

potential
well

potential
well

analog
voltage

analog
voltage

discrete
signal

discrete
signal

typical analog front-end

+

-

operational amplifier
(amplify difference

of inputs)

firing
mechanism ← what is this for? 184

Change the sensor

photodiodephotodiode

microlensmicrolens

potential
well

potential
well

analog
voltage

analog
voltage

discrete
signal

discrete
signal

typical analog front-end

+

-

operational amplifier
(amplify difference

of inputs)

firing
mechanism

Any disadvantages of this sensor?

Why is this better than computing
gradients in post-processing?

What about Poisson noise?

185

Change the sensor

photodiodephotodiode

microlensmicrolens

potential
well

potential
well

analog
voltage

analog
voltage

discrete
signal

discrete
signal

typical analog front-end

+

-

operational amplifier
(amplify difference

of inputs)

firing
mechanism

Any disadvantages of this sensor?
• Spatial resolution is reduced by 2x.
• Photosensitive area is reduced.
Why is this better than computing
gradients in post-processing?
• Additive noise is reduced.
• Acquisition is faster thanks to the firing

mechanism and sparsity of edges.
What about Poisson noise?
• Poisson noise is the same in both

cases.

186

Change the sensor

Can you think how?

187

Change the optics

photodetectors

lenslet

refractive
slab

template
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels

188

Change the optics

photodetectors

lenslet

refractive
slab

template
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels

189

Change the optics

Any disadvantages?

photodetectors

lenslet

refractive
slab

template
(edge filter)

resulting image

Physical Layout Impulse Response
(2D)

Optical filtering Angle-sensitive pixels

190

Change the optics

Any disadvantages?
• Reduced light efficiency (we block light).
• We can’t do subtraction very easily in optics.

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is

significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?
• Change the sensor.
• Change the optics.

191

Gradient camera

event-based cameras (a.k.a.
dynamic vision sensors, or DVS)

Concept figure for event-based camera:

https://www.youtube.com/watch?v=kPCZESVfHoQ

High-speed output on a quadcopter:

https://www.youtube.com/watch?v=LauQ6LWTkxM

Simulator:

http://rpg.ifi.uzh.ch/esim 192

We can also compute temporal gradients

https://www.youtube.com/watch?v=kPCZESVfHoQ
https://www.youtube.com/watch?v=LauQ6LWTkxM
http://rpg.ifi.uzh.ch/esim

193

Open Challenges in Computer Vision
• The past 60 years of research have been devoted to frame-based

cameras.

…but they are not good enough!

• Event cameras do not suffer from these problems!

Dynamic RangeLatency & Motion blur

194

What is an event camera?

Mini DVS sensor from
IniVation.com

Traditional vision algorithms cannot be used
because:
• Asynchronous pixels
• No intensity information (only binary

intensity changes)

• Novel sensor that measures only motion in the scene

• First commercialized in 2008 by T. Delbruck (UZHÐ)
under the name of Dynamic Vision Sensor (DVS)

• Low-latency (~ 1 μs)
• No motion blur

• High dynamic range (140 dB instead of 60 dB)
• Ultra-low power (mean: 1mW vs 1W)

Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, 2008

Image of the solar eclipse
captured by a DVS

195

Camera vs Event Camera
• A traditional camera outputs frames at fixed time intervals:

• By contrast, a DVS outputs asynchronous events at microsecond resolution. An event
is generated each time a single pixel detects an intensity changes value

Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, 2008

time
events stream

event:

time
frame next frame

2, 4, 5 , 6789 :;(4, 5)
:2

Event polarity (or sign) (-1 or 1): increase or decrease of brightness

Timestamp (µs)
Pixel coordinates

196

Generative Event Model

Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, 2008

log '(), +)

!"

!## !## !##

!" !"

!##!## !##

Consider the intensity at a single pixel…

Events are triggered asynchronously

±? = log C D, E − log C D, E − ΔE

!" !"

? = Contrast sensitivity

197

Event cameras are inspired by the Human Eye
Human retina:
• 130 million photoreceptors
• But only 2 million axons!

Brain

198

Event Camera Output with No Motion

Standard Camera Event Camera (ON, OFF events)

ΔT = 40 ms

Without motion, only background noise is output

199

Event Camera Output with Relative Motion

Standard Camera Event Camera (ON, OFF events)

ΔT = 10 ms

200

Event Camera Output with Relative Motion

ΔT = 40 ms

Standard Camera Event Camera (ON, OFF events)

201

Low-light Sensitivity (night drive)
V

id
eo

 c
re

di
t:

 P
ro

ph
es

ee
-h

tt
ps

://
w

w
w

.p
ro

ph
es

ee
.a

i

GoPro Hero 6 Event Camera by Prophesee
White = Positive events
Black = Negative events

https://www.prophesee.ai/

202

Image Reconstruction from Events
• Probabilistic simultaneous, gradient & rotation estimation from ?=−HI ·J
• Obtain intensity from gradients via Poisson reconstruction
• The reconstructed image has super-resolution and high dynamic range (HDR)
• In real time on a GPU

Kim et al., Simultaneous Mosaicing and Tracking with an Event Camera, BMVC’14

203

Image Reconstruction from Events – E2VID

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”, CVPR19.
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019.

3

standard
camera
output:

event
camera
output:

Fig. 2. Comparison of the output of a conventional camera and an event
camera looking at a black disk on a rotating circle. While a conventional
camera captures frames at a fixed rate, an event camera transmits the
brightness changes continuously in the form of a spiral of events in
space-time (red: positive events, blue: negative events). Figure inspired
by [10].

to recover the intensity image. In contrast, we do not reconstruct
individual intensity images from small windows of events, but
synthesize a temporally consistent video from a long stream of
events (several seconds) using a recurrent network. Instead of
mapping event patches to a dictionary of image gradients, we learn
pixel-wise intensity estimation directly.

Despite the body of work on events-to-video reconstruction,
downstream vision applications based on the reconstructions have,
to the best of our knowledge, never been demonstrated prior to our
work.

3 VIDEO RECONSTRUCTION
An event camera consists of independent pixels that respond to
changes in the spatio-temporal brightness signal L(x, t)1 and
transmit the changes in the form of a stream of asynchronous
events (Fig. 2). For an ideal sensor, an event ei = (ui, ti, pi) is
triggered at pixel ui = (xi, yi)T and time ti when the brightness
change since the last event at the pixel reaches a threshold ±C .
However, C is in reality neither constant nor uniform across the
image plane. Rather, it strongly varies depending on factors such
as the sign of the brightness change [12], the event rate (because
of limited pixel bandwidth) [20], and the temperature [21]. Con-
sequently, events cannot by directly integrated to recover accurate
intensity images in practice.

3.1 Overview
Our goal is to translate a continuous stream of events into a
sequence of images {Îk}, where Îk 2 [0, 1]W⇥H . To achieve
this, we partition the incoming stream of events into sequen-
tial (non-overlapping) spatio-temporal windows "k = {ei}, for
i 2 [0, N � 1], each containing a fixed number N of events. The
reconstruction function is implemented by a recurrent convolu-
tional neural network, which maintains and updates an internal
state sk through time. For each new event sequence "k, we
generate a new image Îk using the network state sk�1 (see Fig. 3)
and update the state sk. We train the network in supervised
fashion, using a large amount of simulated event sequences with
corresponding ground-truth images.

3.2 Event Representation
In order to be able to process the event stream using the convo-
lutional recurrent network, we need to convert "k into a fixed-
size tensor representation Ek. A natural choice is to encode

1. Event cameras respond in fact to logarithmic brightness changes, i.e.
L = logE where E is the irradiance.

EkEk�1

A A

"k�1 "k

tek�1
0 ek�1

N�1 ekN�1ekN�1ekN�1ek0e
k
0e
k
0e
k
0ek�1

i

"k�1 "k

tek�1
0 ek�1

N�1 ekN�1ekN�1ekN�1ek0e
k
0e
k
0e
k
0ek�1

i

sk�2 sk�1 sk

Îk�1 Îk

Fig. 3. Overview of our approach. The event stream (depicted as
red/blue dots on the time axis) is split into windows "k containing
multiple events. Each window is converted into a 3D event tensor Ek
and passed through the network, together with the previous state sk�1

to generate a new image reconstruction Îk and updated state sk. In this
example, each window "k contains a fixed number of events N = 7.

the events in a spatio-temporal voxel grid [22]. The duration
�T = tk

N�1 � tk0 spanned by the events in "k is discretized into
B temporal bins. Every event distributes its polarity pi to the two
closest spatio-temporal voxels as follows:

E(xl, ym, tn) =
X

xi=xl
yi=ym

pi max(0, 1� |tn � t⇤
i
|), (1)

where t⇤
i
, B�1

�T
(ti � t0) is the normalized event timestamp. We

use B = 5 temporal bins.

3.3 Training Data
Our network requires training data in the form of event sequences
with corresponding ground-truth image sequences. However, there
exists no large-scale dataset with event data and corresponding
ground-truth images. Furthermore, images acquired by a conven-
tional camera would provide poor ground truth in scenarios where
event cameras excel, namely high dynamic range and high-speed
scenes. For these reasons, we propose to train the network on
synthetic event data, and show subsequently (in Section 4) that
our network generalizes to real event data.

We use the event simulator ESIM [23], which allows simulat-
ing a large amount of event data reliably. ESIM renders images
along the camera trajectory at high framerate, and interpolates
the brightness signal at each pixel to approximate the continuous
intensity signal needed to simulate an event camera. Consequently,
ground-truth images I are readily available. We map MS-COCO
images [24] to a 3D plane and simulate the events triggered
by random camera motion within this simple 3D scene. Using
MS-COCO images allows capturing a much larger variety of
scenes than is available in any existing event camera dataset. We
set the camera sensor size to 240 ⇥ 180 pixels (to match the
resolution of the DAVIS240C sensor used in our evaluation [25]).
Note that inference can be performed at arbitrary resolutions since
we will use a fully-convolutional network. Examples of generated
synthetic event sequences are presented in the supplement.

We further enrich the training data by simulating a different
set of positive and negative contrast thresholds for each simulated
scene (sampled according to a normal distribution with mean
0.18 and standard deviation 0.03, values based on [17]). This
data augmentation prevents the network from learning to naively
integrate events, which would work well on noise-free, simulated
data, but would generalize poorly to real event data (for which the
assumption of a fixed contrast threshold does not hold).

We generate 1,000 sequences of 2 seconds each, which results
in approximately 35 minutes of simulated event data. Note that the

5

Conv Conv + ReLU + BN Decoder↑ Upsampling + Conv + ReLU + BN Conv↓ Strided Conv (s=2) + ReLU + BN ConvLSTM ConvLSTM + ReLU + BN

ConvLSTM
Conv↓

Res Block Residual Block

(a) (b)

Fig. 4. We use a fully convolutional, UNet-like [26] architecture (a), composed of NE recurrent encoder layers (b), followed by NR residual blocks
and NE decoder layers, with skip connections between symmetric layers. Encoders are composed of a strided convolution (stride 2) followed by
a ConvLSTM [27]. Decoder blocks perform bilinear upsampling followed by a convolution. ReLU activations and batch normalization [28] are used
after each layer (except the last prediction layer, for which a sigmoid activation is used). In this diagram, NE = 2 and NR = 1.

(a) Scene overview (b) Events (c) HF (d) MR (e) Ours (f) Ground truth

Fig. 5. Comparison of our method with MR and HF on sequences from [38]. Our network is able to reconstruct fine details well (textures in the first
row), while avoiding common artifacts (e.g. the “bleeding edges” in the third row).

4 EVALUATION

In this section, we present both quantitative and qualitative results
on the fidelity of our reconstructions, and compare to recent
methods [2], [4], [5]. We focus our evaluation on real event data.
An evaluation on synthetic data can be found in supplementary
material.

We use event sequences from the Event Camera Dataset [38].
These sequences were recorded using a DAVIS240C sensor [25]
moving in various environments. It contains events as well as
ground-truth grayscale frames at a rate of 20Hz. We remove
redundant sequences (e.g. ones captured in the same scene)
and those for which the frame quality is poor, leaving seven
sequences in total that amount to 1,670 ground-truth frames. For
each sequence, we reconstruct a video from the events with our
method and each baseline. For each ground-truth frame, we query
the reconstructed image with the closest timestamp (tolerance of
±1ms).

Each reconstruction is then compared to the corresponding
ground-truth frame according to several quality metrics. We apply
local histogram equalization to every ground-truth frame and
reconstructed frame prior to computing the error metrics (this way
the intensity values lie in the same intensity range and are thus
comparable). Note that the camera speed gradually increases in
each sequence, leading to significant motion blur on the ground-
truth frames towards the end of the sequences; we therefore
exclude these fast sections in our quantitative evaluation. We also
omit the first few seconds from each sequence, which leaves

enough time for the baseline methods that are based on event
integration to converge. Note that this works in favor of the
baselines, as our method converges almost immediately (more
details in Section 6).

We compare our approach against several state-of-the-art
methods: [2] (which we denote as SOFIE for “Simultaneous Optic
Flow and Intensity Estimation”), [5] (HF for “High-pass Filter”),
and [4] (MR for “Manifold Regularization”), both in terms of
image reconstruction quality and temporal consistency. For HF
and MR, we used the code that was provided by the authors and
manually tuned the parameters on the evaluated sequences to get
the best results possible. For HF, we also applied a bilateral filter
to the reconstructed images (with filter size d = 5 and � = 25)
in order to remove high-frequency noise, which improves the
results of HF in all metrics. For SOFIE, we report qualitative
results instead of quantitative results since we were not able to
obtain satisfying reconstructions on our datasets using the code
provided by the authors. We report three image quality metrics:
mean squared error (MSE; lower is better), structural similarity
(SSIM; higher is better) [39], and the calibrated perceptual loss
(LPIPS; lower is better) [32]. In addition, we measure the temporal
consistency of the reconstructed videos using the temporal loss
introduced in Eq. (2). Note that computing the temporal loss
requires optical flow maps between successive DAVIS frames,
which we obtain with FlowNet2 [40].

Results and Discussion. The main quantitative results are pre-
sented in Table 1, and are supported by qualitative results in

• A fully convolutional, UNet-like
architecture composed of
recurrent encoder layers,
followed by residual blocks and
decoder layers, with skip
connections between
symmetric layers.

204

Image Reconstruction from Events – E2VID
Events

Reconstructed image from events
(Samsung DVS)

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”, CVPR19.
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019.

205

HDR Video: Driving out of a tunnel

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”, CVPR19.
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019.

206

HDR Video: Night Drive

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”, CVPR19.
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019.

GoPro Hero 6Our reconstruction from events

207

Image Reconstruction from Events - HyperE2VID

Ercan et al., “HyperE2VID: Improving Event-Based Video Reconstruction via Hypernetworks”, IEEE TIP, 2024.

Fig. 3. Overview of our proposed HyperE2VID architecture. The main network uses a U-Net like architecture to process an event voxel grid V and

• A dynamic network architecture for the task of video reconstruction from events,
where existing static architectures are extended with hypernetworks, dynamic
convolutional layers, and a context fusion block.

208

Image Reconstruction from Events - HyperE2VID

Ercan et al., “HyperE2VID: Improving Event-Based Video Reconstruction via Hypernetworks”, IEEE TIP, 2024.

What if we combined the complementary
advantages of event and standard cameras?

209

210

Why combining them?

Event Camera Standard Camera

> 60 years of research!< 10 years research

Update rate High (asynchronous): 1 MHz Low (synchronous)

Dynamic Range High (140 dB) Low (60 dB)

Motion Blur No Yes

Static motion No (event camera is a high pass filter) Yes

Absolute intensity No (reconstructable up to a constant) Yes

< 10 years of research

211

DAVIS sensor: Events + Images + IMU
• Combines an event and a standard camera in the same pixel array

(→ the same pixel can both trigger events and integrate light intensity).

• It also has an IMU

Brandli et al. A 240x180 130dB 3us latency global shutter spatiotemporal vision sensor. IEEE JSSC, 2014

Events time

Standard images

Spatio-temporal visualization
of the output of a DAVIS sensor

Temporal aggregation of events
overlaid on a DAVIS frame

212

Deblurring a blurry video

!!- =!"# !"#

Input blur image Input events Output sharp image

• A blurry image can be regarded as the integral of a sequence of latent images during
the exposure time, while the events indicate the changes between the latent images.

• Finding: sharp image obtained by subtracting the double integral of event from input
image

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR 2019

213

Deblurring a blurry video
• A blurry image can be regarded as the integral of a sequence of latent images during

the exposure time, while the events indicate the changes between the latent images.

• Finding: sharp image obtained by subtracting the double integral of event from input
image

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR 2019

Output sharp videoInput blur image

214

Deblurring a blurry video
• A blurry image can be regarded as the integral of a sequence of latent images during

the exposure time, while the events indicate the changes between the latent images.

• Finding: sharp image obtained by subtracting the double integral of event from input
image

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR 2019

Input blur image Output sharp video

Video Frame Interpolation
• Video frame interpolation methods aims at generating intermediate frames by inferring

object motions in the image from consecutive keyframes.

• Motion is generally modelled with first-order approximations like optical flow.
• This choice restricts the types of motions, leading to errors in highly dynamic scenarios.

• Event cameras provides auxiliary visual information in the blind-time between frames.

215Tulyakov et al., Time Lens++: Event-based Frame Interpolation with Parametric Non-linear Flow and Multi-scale Fusion, CVPR 2022

Next Lecture:
Focal Stacks and Lightfields

217

