Multiple Exposure Photo by Christoffer Relander




Today's Lecture

Gradient-domain image processing

Basics on images and gradients

Integrable vector fields

Poisson blending

Flash/no-flash photography

Gradient-domain rendering and cameras

Disclaimer: The material and slides for this lecture were borrowed from
—loannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class

—Amit Agrawal’s slides on “Gradient-Domain Based Flash/No-flash Photography”
—Adrien Gruson'’s slides on “Gradient-Domain Rendering”

—Davide Scaramuzza's tutorial on “Event-based Cameras”



Gradient-domain image processing
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Poisson blending

copy-paste

originals



More applications

Seamless Image Stitching
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Entire suite of image editing tools

GradientShop: A Gradient-Domain Optimization Framework
for Image and Video Filtering

Pravin Bhat!  C. Lawrence Zitnick? Michael Cohen!:? Brian Curless?!
1 University of Washington 2Microsoft Research

(e) Compressed input-image (f) De-blocking filter (g) User input for colorization (h) Colorization filter




Main pipeline

Estimation of
Gradients

Edited Integration of -

Original Images Gradient Fields Gradient Fields

Edited Images

Manipulation of
Gradients



Basics of gradients and fields



Some vector calculus definitions in 2D

Scalar field: a function assigning a scalar to every point in space.

I(x,y):R? > R

Vector field: a function assigning a vector to every point in space.

[ulx,y) v(x,y)]:R* - R?

Can you think of examples of scalar fields and vector fields?
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Some vector calculus definitions in 2D

Scalar field: a function assigning a scalar to every point in space.

I(x,y):R? > R

Vector field: a function assigning a vector to every point in space.

[ulx,y) v(x,y)]:R* - R?

Can you think of examples of scalar fields and vector fields?

« A grayscale image is a scalar field.

« A two-channel image is a vector field.

* A three-channel (e.g., RGB) image is also a vector field, but of higher-dimensional range
than what we will consider here.
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Some vector calculus definitions in 2D

Nabla (or del): vector differential operator

Think of this as
V= ax ay a 2D vector.
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Some vector calculus definitions in 2D

Nabla (or del): vector differential operator.

[ %)

Gradient (grad): product of nabla with a scalar field.

Vi(x,y) =7

Divergence: inner product of nabla with a vector field.

V. [ulx,y) v(x,y)]=7?

Curl: cross product of nabla with a vector field.

X[ubx,y) v(x,y)] =7

Think of this as
a 2D vector.
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Some vector calculus definitions in 2D

Nabla (or del): vector differential operator

Think of this as
V= ax ay a 2D vector.

Gradient (grad): product of nabla with a scalar field.

0l What is the
VI(x,y) = [a (x,y) E (x, 3’)] dimension of this?
Divergence: inner product of nabla with a vector field.
ou ov What is the
V-lulx,y) v(x,y)] = Ix (x,y) + @ (x,y) dimension of this?

Curl: cross product of nabla with a vector field.

ov ou What is th
vx[u(x,y) v(x,y)] = (— (x,y) — —(x y)) TSV
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Some vector calculus definitions in 2D

Nabla (or del): vector differential operator

Think of this as
V= ax ay a 2D vector.

Gradient (grad): product of nabla with a scalar field.

dl dl This is a
ViGy) = [5:e0) 3Gy)) sector el
Divergence: inner product of nabla with a vector field.
ou ov This is a
V-lulx,y) v(x,y)] = Ix (x,y) + @ (x,y) scalar field.

Curl: cross product of nabla with a vector field.

0 0 IS 1S a vector field.
Vx[u(x,y) v(x,y)] = (_v (x,y) — _u(x }/)) Th tor field




Some vector calculus definitions in 2D

Nabla (or del): vector differential operator

Think of this as
V= ax ay a 2D vector.

Gradient (grad): product of nabla with a scalar field.

dl dl This is a
ViGy) = [5:e0) 3Gy)) sector el
Divergence: inner product of nabla with a vector field.
ou ov This is a
V-lulx,y) v(x,y)] = Ix (x,y) + @ (x,y) scalar field.

Curl: cross product of nabla with a vector field.

ov ou
Vx[u(x,y) v(x,y)] = (a (x,¥) — ay (x, 3’)) This is a scalar field.
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Combinations

Curl of the gradient:

VXVI(x,y) =?

Divergence of the gradient:

V-Vi(x,y) =?
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Combinations

Curl of the gradient:

2 2
VXVI(x,y) = 6y6x1<x' y) — 6x6y1 (x,y)
Divergence of the gradient:
2 2
V-V y) = 5100 y) + a—yzl(x,y) = Al (x,y)

Laplacian: scalar differential operator.

0?2 0?2 Inner product of

A=V:-V=—+— del with itself!
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Simplified notation

Nabla (or del): vector differential operator.

Gradient (grad): product of nabla with a scalar field.

VI = [l Iy]

Divergence: inner product of nabla with a vector field.

V-lu vl=u, +v,

Curl: cross product of nabla with a vector field.

(”x — uy)

Think of this as
a 2D vector.

Thisis a
vector field.

Thisis a
scalar field.

This is a scalar field.
19



Simplified notation

Curl of the gradient:

VXVI = I,

— 1

Xy
Divergence of the gradient:
VeVI=1Iy+1,=Al
Laplacian: scalar differential operator.
0% 0%
A=V:-V=—s+—

Inner product of
del with itself!
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Image representation

We can treat grayscale images as scalar fields (i.e., two dimensional functions)
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Image gradients

Convert the scalar field into a vector field through differentiation.

ol
scalar field 1(x,y):R? > R = vectorfield VI(x,y) = [5‘_

! v I . N /
N i wA = RN

" (x,y)

ol
dy

(x,y)
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Image gradients

Convert the scalar field into a vector field through differentiation.

' ! ! Wl /4 . g
I | :.,,.»" : » -

ol
scalar field 1(x,y):R? > R = vectorfield VI(x,y) = [a

 How do we do this differentiation in real discrete images?

(x,y)

dl

dy

(x,y)
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Finite differences

High-school reminder: definition of a derivative using forward difference.

0l I(x+hy)—I1(x,y)

ox ) = Jim h

For discrete scalar fields: remove limit and set h = 1.

ol VWhat convolution kernel
ﬂ (x' Y) - I(x +1, Y) o I(x, y) does this correspond to?
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Finite differences

High-school reminder: definition of a derivative using forward difference.

0l I(x+hy)—1(xy)

ox ) = Jim h

For discrete scalar fields: remove limit and set h = 1.

dl
a(x,y) =I(x+1y)—I(xy)
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Finite differences

High-school reminder: definition of a derivative using forward difference.

dl

I(x+h,y)—1(x,y)

ox B Y) = |im h

0

For discrete scalar fields: remove limit and set h = 1.

dl

a(x,y) =I(x+1y)—I(xy)

partial-x derivative filter

1

-1

Note: common to use central difference, but we will not use it in this lecture.

01( =
dx V)=

Ix+1,y)—I(x—1,y)

2
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Finite differences

High-school reminder: definition of a derivative using forward difference.

0l I(x+hy)—1(xy)

ox ) = Jim h

For discrete scalar fields: remove limit and set h = 1.

dl
a(x,y) =I(x+1y)—I(xy)

Similarly for partial-y derivative.

dl
@(ny) — I(X,y+ h) —I(X,y)

partial-x derivative filter

1

-1

partial-y derivative filter

1

-1
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Discrete Laplacian

How do we compute the image Laplacian?

Al(x,y) = (x y) + =

82

3y = (x,y)
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Discrete Laplacian

How do we compute the image Laplacian?

02 0°1
Al(x,y) = 5= (0 y) + 5= (%, ¥)
Use multiple applications of the discrete derivative filters:
1 1
- ¥ - k —
1 1 1 1 + B E)

What is this? \What is this?
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Discrete Laplacian

How do we compute the image Laplacian?

921 021
Al(x,y)— (x y)+ 3y = (x,y)

Use multiple applications of the discrete derivative filters:
Laplacian filter

0ol11|0

1-1*1-1+1*1—1-41
-1 1

0ol11|0




DISCI‘ete La pIaC|an Very important to:

e Use consistent

How do we compute the image Laplacian? derivative and Laplacian
filters.
27 2] « account for boundary
Al(x,y) = (x y) -|- (x y) shifting and padding
y from convolution.

Use multiple applications of the discrete derivative filters:
Laplacian filter

ol11(0

1-1*1-1+1*1—1-41
-1 1

ol11(0

31



Warning!

Very important for the techniques discussed in this lecture to:
» use consistent derivative and Laplacian filters.

* account for boundary shifting and padding from convolution.
A correct implementation of differential operators should pass the following test:

Equality holds at all pixels except boundary
(first and last row, first and last column).

gradient operator

~

_ ETypicaIIy requires implementing derivatives‘:
divergence operator

In various differential operators dn‘ferently



Image gradients

Convert the scalar field into a vector field through differentiation.

ol
scalar field 1(x,y):R? > R = vectorfield VI(x,y) = [5‘_

! v I . N /
N i wA = RN

" (x,y)

ol
dy

(x,y)
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Image gradients

Convert the scalar field into a vector field through differentiation.

 / ! ‘\' s W/ . 8
I WL~ \ » o

scalar field 1(x,y): R > R mmm)

* |mage gradients are very informative!

0l
vector field VI(x,y) = [5‘_

" (x,y)

dl

dy

(x,y)
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Slide credit: K. Grauman

Application - Seam Carving

[Shai & Avidan, SIGGRAPH 2007]

35



Slide credit: K. Grauman

Application - Seam Carving

Traditional resizing

[Shai & Avidan, SIGGRAPH 2007]
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Application - Seam Carving

Il Retarget col ; I:lgl

‘Image Resizing

el
(S -aW

Shai Avidan
Mitsubishi Electric Research Lab

Ariel Shamir
The interdisciplinary Center & MERL




Slide credit: K. Grauman

Seam Carving: Main idea

Content-aware resizing

Intuition:

* | Preserve the most “interesting/important” content
- Prefer to remove pixels with low gradient energy

e Toreduce or increase size In one dimension, remove
Irregularly shaped “seams”

- Optimal solution via dynamic programming.

38



Slide credit: K. Grauman

Seam Carving: Main idea

PR g =
- ool

: R TR ;
5 2{% Ldan”

Energy(f)=\/(95)° + (3

* \Want to remove seams where they won't be very noticeable:

 Measure “energy” as gradient magnitude

« Choose seam based on minimum total energy path across image, subject to
8-connectedness.
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Slide credit: K. Grauman

Seam Carving: Algorithm

2

Energy(/)=\/ (31" + (31

 Leta vertical seam s consist of h positic]gns that form an 8-connected path.

* Letthe costof a seam be: Cost(s) = ZEnergy(f(Sl.))

« Optimal seam minimizes this cost.

« Compute it efficiently with dynamic programming:  §*=min Cost(S)

40



Image gradients

Convert the scalar field into a vector field through differentiation.

ol
scalar field 1(x,y):R? > R = vectorfield VI(x,y) = [5‘_

! v I . N /
N i wA = RN

" (x,y)

ol
dy

(x,y)
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Image gradients

Convert the scalar field into a vector field through differentiation.

11 ‘\ \ i :'v i f o~ SR \\‘\ S

ol
scalar field 1(x,y):R? > R = vectorfield VI(x,y) = [a

 How do we do this differentiation in real discrete images?

« (Can we go in the opposite direction, from gradients to images?

(x,y)

ol
dy

(x,y)
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Vector field integration

Two fundamental questions:

 When is integration of a vector field possible?

 How can integration of a vector field be performed?

43



Integrable vector fields



Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

P

I(x,y): R > R

I
@(x!y) — U(X,y)

45



Property of twice-differentiable functions

Curl of the gradient field should be zero:
VXVI =1, — I, =0

What does that mean intuitively?

46



Property of twice-differentiable functions

Curl of the gradient field should be zero:
VXVI =1, — I, =0

What does that mean intuitively?
« Same result independent of order of differentiation.

I

yx =1

Xy

47



Demonstration

I

image




Property of twice-differentiable functions
Curl of the gradient field should be zero:
VXVI =L, — Ly, = 0

What does that mean intuitively?
« Same result independent of order of differentiation.

I

yx =1

Xy

Can you use this property to derive an integrability condition?
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Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

P

®
I(x,y): RE>R (mm u(x,y):R*>R v(xy):R->R
0l
o2 (0 y) =ulx,y) Only i
| Vx[ ’ =0=>—(x,v) = —(x,
@(x, y) =v(x,y) v(x,y) ay( V) =5x B

50



Vector field integration

Two fundamental questions:

 When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

 How can integration of a vector field be performed?
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Different types of integration problems

« Reconstructing height fields from gradients
Applications: shape from shading, photometric stereo

« Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

« Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
* |ntegration must be done approximately.
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A prototypical integration problem:
Poisson blending



ing

: Poisson blendi

Application

Poisson blending

copy-paste

originals
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Key idea

When blending, retain the gradient information as best as possible

source destination copy-paste

Poisson blending

55



Definitions and notation

Notation
g source function
S: destination
(): destination domain
f: interpolant function

f*: destination function

Which one is the unknown?

dQ

f*

56



Definitions and notation

Notation

g source function

S: destination

(): destination domain

f: interpolant function

f*: destination function

- How should we determine f?
« Should it be similar to g?
~ + Should it be similar to f*?

dQ

f*
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Definitions and notation

WE S
A A
=7 I\~

s -

Notation
g: source function
S: destination

(): destination domain

f:interpolant function

f*: destination function

Find f such that:
« Vf =Vginside Q.
 f = f" at the boundary 01).

dQ

f*

Poisson blending: Integrate
vector field Vg with Dirichlet
boundary conditions f .

58



Least-squares integration
and the Poisson problem

59



Least-squares integration

“Variational” means

optimization where

the unknown iIs an
entire function

Recall ...

Vf=

Variational problem
m}n//|vf—"|2 with  flao = f"|ag
Q

what does this what does this
term do? term do?

IS this known?

OF of v = (u,0)
Oz’ Oy

60



Least-squares integration

“Variational” means Variational problem Why do we need

optimization where

boundary conditions

the unknown Is an for least-squares
. 2 . _ b 3
entire function m}n// IVf—v|® with  flaa = f7|aa integration?
Q . .
. f Is equivalent to
gradient of f looks (j
. . f* at the
like vector field v :
boundaries

Recall ...

o0f Of
Oz Oy _

Vf=

Yes, this Is the vector
field we are integrating

v = (u,v)
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Equivalently

The stationary point of the variational loss is the solution to the:

This can be
Poisson equation (with Dirichlet boundary conditions) d_e“Vfﬁ
using the
Af=divv over Q, with flan= f"sn Euler-
Lagrange
what does this term do? equation.

Recall ...
32f a2f In . _
_ put vector field:
Af Ox? + Oy?
v = (u,v)
: ou Ov
div v =

8x+8y
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Equivalently

The stationary point of the variational loss is the solution to the:

This can be
Poisson equation (with Dirichlet boundary conditions) d_e“Vfﬁ
using the
Af=divv over Q, with flan= f"sn Euler-
Lagrange
Laplacian of f same as equation.

divergence of vector field v

Recall ...
a2f a2f In . _
_ put vector field:
Af Ox? + Oy?
v = (u,v)
: ou Ov
div v =

8x+8y
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In the Poisson blending example...

The stationary point of the variational loss is the solution to the:

Poisson equation (with Dirichlet boundary conditions)
Af=divv over Q, with flgo= f"sa

Find f such that: What does the input vector field equal
« Vf =Vginside Q. in Poisson blending?
 f = f" at the boundary 0Q).

IQ
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In the Poisson blending example...

The stationary point of the variational loss is the solution to the:

Poisson equation (with Dirichlet boundary conditions)

Af=divv over Q, with flgo= f"sa

Find f such that:
* Vf =Vginside Q.
 f = f* atthe boundary 90{.

What does the input vector field equal
in Poisson blending?

S v = (u,v) = Vg
What does the divergence of the input
vector field equal in Poisson blending?
ou Ov
¢ e div v = | —

or Oy
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In the Poisson blending example...

The stationary point of the variational loss is the solution to the:

Poisson equation (with Dirichlet boundary conditions)

Af=divv over Q, with flgo= f"sa

Find f such that:
* Vf =Vginside Q.
 f = f* atthe boundary 90{.

What does the input vector field equal
in Poisson blending?

S V=1UuUu.vlH =
so make these ... ( ’ ) Vg
LZ AV What does the divergence of the input
vector field equal in Poisson blending?
Ag Af
. pTe) . o ou ov o
¢ pY equal v div v = | = Ag

or = Oy
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Equivalently

The stationary point of the variational loss is the solution to the:

Poisson equation (with Dirichlet boundary conditions)
Af=divv over €, with flgn= f"|s0

How do we solve the Poisson equation?

Recall ...
Af = o°f + 0*f Input vector field:
0xr?  Oy?
v = (u,v)
: ou Ov
div v =

8$+8y
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Discretization of the Poisson equation

Recall ...

Poisson equation (with Dirichlet boundary conditions)
Af=divv over Q, with flgo= f"sa

So for each pixel, do:

O|l1]|0O0
1 [-a]1 (Af)(x,y) = (V-v)(x,y)
0110 Or for discrete images:
1 1 -1
1
-1
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Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)
Af=divv over Q, with flgo= f"sa

So for each pixel, do:

O] 110
Recall ... 11411 Af)(x,y) = (V-v)(x,y)
01170 Or for discrete images:
1| -1 —4f,y) +f(x+Ly)+ f(x—1y)
+Hly+D+fxy—1)
1 =ulx+1y)—ulx,y) +vix,y+1)
-1 T U(x, Y)
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Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)
Af=divv over Q, with flgo= f"sa

So for each pixel, do (more compact notation):

O]1]1(0
Recall ... 11411 (Af)p = (V- V)p

01170 Or for discrete images (more compact notation):

1 | -1
—4fp + fo = Wy + (vy)
qENy b

1
-1
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We can rewrite this as

.................................................................................................................................................................................................

linear equation one for each

of P variables _4fp T zqu fCI = (ux)P T (Uy)p pixelp=1, ..., P
p '

In vector form: i1 [V '.V)l ]

(each pixel adds another ‘sparse’ row here)

<h
[
N\
< [}
<
\—r’
=

[0 e 1 e 1 =4 1 - 1

fCI3 (V ) V)q3
fCI4 (V ) .V)q4
fr L (V '.V)P |
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We can rewrite this as

.................................................................................................................................................................................................

linear equation one for each

of P variables _4fp T quN fCI = (ux)P T (Uy)p pixelp=1, ..., P
p H

In vector form: i1 [V '.V)l ]

(each pixel adds another ‘sparse’ row here)

h : 5 o] Ve
msa?t's — [0 1 1 4 1 - 1 - 0-|h|=|E v,

what are the sizes of these? A f b



We can rewrite this as

.................................................................................................................................................................................................

linear equation one for each

of P variables _4fp T quN fCI = (ux)P T (Uy)p pixelp=1, ..., P
p '

In vector form: i1 [V '.V)1 1
f (V-v)

(each pixel adds another ‘sparse’ row here) ?1 : 1

: fo, | [|(V-v)g,

0 1 1 —4 1 1 o]' fol=|(V-v),

We call this the . f‘:IS (V- :V)CI3
Laplacian matrix fc.14 (V-.v)q4
- _|Je e




Laplacian matrix

For a mXn image, we can re-organize this matrix into block tridiagonal form as:

D I 0 O

I D I O

0 I D 1

Apnxmn =|[F ™~ ™
0 -« - 0

Ly, «m is the mXm
identity matrix

0 - 0
0 - 0
0 - 0
D I O
I D I
0 I f

p—

OO e

This requires ordering pixels in
column-major order.

.[L."‘
— O
o o
o o

-
SN
| .
o~
—_

o O




Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)
Af=divv over Q, with flgo= f"sa

After discretization, equivalent to:

_f:l_ _(V'.V)l_

0 0 0 ol v Linear system of equations:

I D I 0 0 - 0 f? W v)

o r b I 0 - 0 d2 "V,

o o o e )= (V'V)p A f — b

0 = 0 I D I 0f|fu] |-,

0 - e o0 I D I : :

oo MR 2 (V':’)q4 How would you solve this?
Lfpdl L(V-v)pl

WARNING: requires special treatment at the borders

(target boundary values are same as source ) ”



Solving the linear system

Convert the system to a linear least-squares problem: In Matlab:

Es = [|Af - b|” f=a\b
Expand the error:

Eus=f"(ATA)f —2f"(A"b) + |b|?

Minimize the error:

Set derivative to 0 (ATA)f —A'p

. T —1 AT Note: You almost never want to
Solve for x f — (A A) A'b compute the inverse of a matrix.
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Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)
Af=divv over Q, with flgo= f"sa

After discretization, equivalent to:

_f:l_ _(V'.V)l_

0 0 0 ol v Linear system of equations:

I D I 0 0 - 0 f? W v)

o r b I 0 - O qz " Vg,

o o o e )= (V'V)p A f — b

0 - 0 I D I 0| |fe| (Vv

0 - e 0O I D I : :

oo CLP f‘§‘* (V':’)q4 What is the size of this matrix?
Lfpdl L(V-v)pl

WARNING: requires special treatment at the borders

(target boundary values are same as source ) .



Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)
Af=divv over Q, with flgo= f"sa

After discretization, equivalent to:

_f:l_ _(V'.V)l_

0 0 0 ol v Linear system of equations:

I D I 0 0 « 0 ff W v)

o I D I 0 -0 q2 " Vg,

o o o e )= (V'V)p A f — b

0 « 0 I D I 0of|f] [@ v,

0 - .- o0 I D I : :

0 e 0 I D . o . .
fcs“ v ;V)‘“ Matrix is PXP — billions of entries
Lfpl L(V-v)pl

WARNING: requires special treatment at the borders

(target boundary values are same as source ) s



Integration procedures

« Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

« Acceleration techniques:
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.

« Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.
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A more efficient Poisson solver
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Let's look again at our optimization problem

Variational problem

Input vector field:
m}n// IVf—v]? with floa = f*|eq

s v = (u,v)
gradient of f looks  fis equivalent to f*

like vector field v at the boundaries
Recall ...
Of Of]
Vf= :
Oz Oy |




Let's look again at our optimization problem

Variational problem

Input vector field:

m}n//|vf—"|2 with  flao = f"|ag
Q2

v = (u,v)
gradient of f looks  fis equivalent to f*
like vector field v at the boundaries
Recall ... And for discrete images:
1 | -1

_|of oF
Vi= Oz’ Oy 11




Let's look again at our optimization problem

Discrete problem
We can use the

gradient e We will ignore the
approximation to : 2 boundary conditions
discretize the mfln” Gf o U” for now.

variational problem

Recall ... And for discrete images:

11 -1

_|of of
V= Oz’ Oy 11
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Let's look again at our optimization problem

Discrete problem

We can _use the matrix G formed by stacking L
gradient together discrete gradientsy We will ignore the

approximation to boundary conditions

: . 2
discretize the mfln” Gf U” for now.
variational problem \
vectorized version of vectorized version of the
the unknown image target gradient field
Recall ... And for discrete images:
1 -1

_|of oF
Vi= Oz’ Oy 11
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Let's look again at our optimization problem

Discrete problem

We can _use the matrix G formed by stacking
gradient together discrete gradientsy How do we solve

approximation to this optimization

: _ 2
discretize the mfln” Gf U” problem?
variational problem \
vectorized version of vectorized version of the
the unknown image target gradient field
Recall ... And for discrete images:
11| -1

_|of oF
Vi= Oz’ Oy 11
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Approach 1: Compute stationary points

Given the loss function:
E(f) = lIGf —v]|?
... We compute Its derivative:

OE
=7

of
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Approach 1: Compute stationary points

Given the loss function:

E(f) =lIGf —vl|?
... We compute Its derivative:
oF
—=G'Gf - G’
of f-Gw

... and we do what with it?
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Approach 1: Compute stationary points

Given the loss function:
E(f) = IGf —v|

... We compute Its derivative:

)
— =GTGf —GTv
af
... and we set that to zero: > What is this vector?
aE PR T

ﬁ=0=>GTGf=GTU
| > \What is this matrix?
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Approach 1: Compute stationary points

Given the loss function:
E(f) = IGf —v|

... We compute Its derivative:

)
A — GTGf _ GTU
af
... and we set that to zero: Itis equal to the vector
OF > b we derived
el — .
previously!
af TORE Y=Y ion
s equal to the
|

> Laplacian matrix A we

derived previously! N



Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)
Af=divv over Q, with flgo= f"sa

After discretization, equivalent to:

_f:1_ _(V'.V)l_
0 0 0 ol v Linear system of equations:
I D I 0 0 - 0 ff W v)
o I b I 0 - 0 qz "V,
o o o e )= (V'V)p Af — b
0 « 0 I D I 0of|f] [@ v,
0 o0 e o | D | : : ]
o o o 1 ol || |, Same system as:
Lfpl L(V-v)pl

We arrive at the same system, no matter whether we discretize the

continuous Poisson equation or the variational optimization problem.:



Approach 1: Compute stationary points

Given the loss function:
E(f) = lIGf —v]|?
... We compute Its derivative:

OF
—_— = T T
57 GTGf — GTv

... and we set that to zero:

o0F Solving this is exactly as
— =0 GTGf = GTv expensive as what we
af had before.
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Approach 2: Use gradient descent

Given the loss function:
E(f) = lIGf —v]|?
... We compute Its derivative:

aE—GTG GTv=A b =
Gf_ f v =Af = —r

We call this term
the residual
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Approach 2: Use gradient descent

Given the loss function:
E(f) = lIGf —v]|?
... We compute Its derivative:

aE—GTG GTv=A b =
Gf_ f v =Af = —r

... and then we Iiteratively compute a solution:

fi+1 — fi + ni«ri fori=20,1, ..., N, where

‘r]l are positive step sizes

We call this term
the residual
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Selecting optimal step sizes

Make derivative of loss function with respect to T]l equal to zero:

E(f) = lIGf - vll?
E(F1) = [6(F +ni'rt) v

9



Selecting optimal step sizes

Make derivative of loss function with respect to T]i equal to zero:
E(f) =Gf —v||?
: . .. 2
E(f*1) =[6(f* +n'r') —v|

aE(fi+1) (ri)Tri

=[b—A(fi+nir)] ri=0=7i =

ont (r))T Art



Gradient descent

Given the loss function:

E(f) =Gf —vll?

Minimize by iteratively computing:
T .
: . : AR . : ..
rt = p _Afl’ .ql — (E,i))TAri’ fl+1 — fl _|_T.Il,rl’

ls this cheaper than the pseudo-inverse approach?

1 =0, ...

, N

96



Gradient descent

Given the loss function:

E(f) =Gf —vll?

Minimize by iteratively computing:

Ti — b —Afi, T]i — (1‘ ?1"1: fi+1 — fi +T]i7"i,

ls this cheaper than the pseudo-inverse approach?
* \We never need to compute A, only its products with vectors f, r.

1 =0, ...

, N
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Gradient descent

Given the loss function:

E(f) =Gf —vll?

Minimize by iteratively computing:

Ti — b —Afi, T]i — (1‘ ?1"1: fi+1 — fi +T]i7"i,

ls this cheaper than the pseudo-inverse approach?

* \We never need to compute A, only its products with vectors f, r.
« Vectorsf, rare images.

1 =0, ...

, N
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Gradient descent

Given the loss function:

E(f) =Gf —vll?

Minimize by iteratively computing:

rt=b—Af"Y, n'= (r)TT_, ffl=fl+qnirt, i=0,..,N
A

ls this cheaper than the pseudo-inverse approach?

* \We never need to compute A, only its products with vectors f, r.

« Vectors f, r are images.

« Because A is the Laplacian matrix, these matrix-vector products can be efficiently
computed using convolutions with the Laplacian kernel.
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In practice: conjugate gradient descent

Given the loss function:

E(f) =Gf —vll?

Minimize by iteratively computing:

A , . .
di :T'i-l-ﬁidi, T]i — (T) r fl+1 :fl+T]ldl, i:O,...,N

(ai) aal
it1T i+1 « Smarter way for selecting
pitl — ol T]iAdi, ,Bi — (r )TT update directions
(ri)" rt « Everything can still be done

using convolutions
* Only one convolution needed

per iteration
100



Note: initialization

Does the initialization f matter?
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Note: initialization

Does the initialization f matter?

« [t doesn’'t matter in terms of what final f we converge to, because the loss function is
convex.

E(f) = IGf —vll?
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Note: initialization

Does the initialization f matter?

« [t doesn’'t matter in terms of what final f we converge to, because the loss function is
convex.

E(f) = IGf —vll?

* |t does matter in terms of convergence speed.

* \We can use a multi-resolution approach:
- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

- Use the solution to initialize gradient descent for an f with the original resolution PxP.
« Multi-grid algorithms alternative between higher and lower resolutions during the

(conjugate) gradient descent iterative procedure.
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Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)
Af=divv over Q, with flgo= f"sa

After discretization, equivalent to:

_f:l_ _(V'.V)l_

0 0 0 ol v Linear system of equations:

I D I 0 0 -~ 0 f? W v)

o r b I 0 - O qz " Vg,

o o o e )= (V'V)p A f — b

0 - 0 I D I 0f|ful |-V,

0 - .- o I D I : E

oo MR K I 2 Remember that what we are
el L(V-v), doing Is equivalent to solving

this linear system.
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Note: preconditioning

We are solving this linear system:

Af = b
For any invertible matrix P, this is equivalent to solving:
P~1Af = P~1p

When is it preferable to solve this alternative linear system?
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Note: preconditioning

We are solving this linear system:

Af = b
For any invertible matrix P, this is equivalent to solving:
P~1Af = P~1p

When is it preferable to solve this alternative linear system?

« l|deally: If Ais invertible, and P is the same as A, the linear system becomes triviall But
computing the inverse of A is even more expensive than solving the original linear system.

 In practice: If the matrix P'A has a better condition number, or its singular values are more
uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
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Note: preconditioning

We are solving this linear system:

Af = b
For any invertible matrix P, this is equivalent to solving:
P~1Af = P~1p

When is it preferable to solve this alternative linear system?

« l|deally: If Ais invertible, and P is the same as A, the linear system becomes triviall But
computing the inverse of A is even more expensive than solving the original linear system.

 In practice: If the matrix P'A has a better condition number, or its singular values are more
uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?

« Standard preconditioners like Jacobi. P] bi = diag(A)
acobi

* More effective preconditioners. Active area of research. o



Note: preconditioning

We are solving this linear system:

Af = b Preconditioning can be
| | | o | | Incorporated In the conjugate
For any invertible matrix P, this is equivalent to solving: gradient descent algorithm.
P~1Af = P~1p

When is it preferable to solve this alternative linear system?

« l|deally: If Ais invertible, and P is the same as A, the linear system becomes triviall But
computing the inverse of A is even more expensive than solving the original linear system.

 In practice: If the matrix P'A has a better condition number, or its singular values are more
uniformly distributed, the linear system becomes more numerically stable.

\What preconditioner P should we use? |s this effective for Poisson solvers?
« Standard preconditioners like Jacobi. p . = diac(A
* More effective preconditioners. Active area of research. Jacobi g( )
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Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)
Af=divv over Q, with flgo= f"sa

After discretization, equivalent to:

_f:l_ _(V'.V)l_

0 0 0 ol v Linear system of equations:

I D I 0 0 « 0 ff W v)

o I D I 0 -0 q2 " Vg,

o o o e )= (V'V)p A f — b

0 « 0 I D I 0of|f] [@ v,

0 - .- o0 I D I : :

0 e 0 I D . o . .
fcs“ v ;V)‘“ Matrix is PXP — billions of entries
Lfpl L(V-v)pl

WARNING: requires special treatment at the borders

(target boundary values are same as source ) 09



Note: handling (Dirichlet) boundary conditions

Form a mask B that is O for pixels that should not
be updated (pixels on S-Q) and d()) and 1 otherwise.

Use convolution to perform Laplacian filtering over
the entire image.

Use (conjugate) gradient descent rules to only

update pixels for which the mask is 1. Equivalently,
change the update rules to:

fi+1 — fi L Briri

fi+1 — fi + Bridi (conjugate gradient descent)

(gradient descent)

dQ

f*
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Note: handling (Dirichlet) boundary conditions

In practice, masking is also required
at other steps of (conjugate)
gradient descent, to deal with
invalid boundaries (e.g., from
convolutions).

Form a mask B that is O for pixels that should not
be updated (pixels on S-Q and d()) and 1 otherwise.

Use convolution to perform Laplacian filtering over S
the entire image.

Use (conjugate) gradient descent rules to only
update pixels for which the mask is 1. Equivalently,
change the update rules to:

dQ
fl+1 — fl 4+ Bnirt (gradient descent)

. ] - ’ *
fl+1 — fl + Bntd! (conjugate gradient descent) f f
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Poisson image editing examples

112



Photoshop's “healing brush”

Slightly more advanced version
of what we covered here:
« Uses higher-order derivatives
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Contrast problem

Loss of contrast when pasting from dark to bright:
« (Contrast is a multiplicative property.
* With Poisson blending we are matching linear differences.
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Contrast problem

Loss of contrast when pasting from dark to bright:

« (Contrast is a multiplicative property.
« With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.




originals

copy-paste

Poisson blending
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Blending transparent objects

source destination
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Blending objects with holes

- A -

seamless cloning and destination mixed seamless cloning

averaged
118



Editing




Concealment

How would you do this
with Poisson blending?




C

How would you do this
with Poisson blending?

* |Insert a copy of the
background.




O)
=
Q.
Q.
(O
=
(Vg
)
-
D)
)
X
)
T




10N

membrane interpolati

Special case

How would you do this?
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Special case: membrane interpolation

How would you do this?

Poisson problem
mfin//Wf—Vl2 with  flao = f*|aq
Q
Laplacian problem

m}n//Wfl2 with  flao = f*|aq
Q
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Entire suite of image editing tools

GradientShop: A Gradient-Domain Optimization Framework
for Image and Video Filtering

Pravin Bhat!  C. Lawrence Zitnick? Michael Cohen!:? Brian Curless?!
1 University of Washington 2Microsoft Research

(e) Compressed input-image (f) De-blocking filter (g) User input for colorization (h) Colorization filter 125



Flash/no-flash photography



- High Noise
- Lacks Detall
+ Ambient Lignht
+ Natural Look

J




Denoising Result




y :~ 12
= st (PR 3 ".
’ 83 ;‘;1:1‘ "gﬂ% MR
% .‘ .‘-\“‘,.A .
) e

No-Flash



Denoising Result




Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image.

Can we do similar flash/no-flash fusion tasks with gradient-domain processing?
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Photography Artifacts: Flash Hotspot

Ambient Flash

Flash Hotspot



Reflections due to Flash

Underexposed Reflections

Ambient

133



Distance Dependance

Flash

Distant people
underexposed

134



Removing self-reflections and hot-spots

Ambient Flash
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Removing self-reflections and hot-spots

Ambient Flash
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Removing self-reflections and hot-spots

Ambient .
[F— ~ Result Reflection Layer

Flash
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ldea: look at how gradients are affected

Same gradient vector Flash Gradient Vector

direction
Ambient Gradient Vector

| Ambient | Flash

No reflections
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ldea: look at how gradients are affected

Different gradient
vector direction

Reflection Ambient Gradient Vector

Flash Gradient Vector

With reflections
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Gradient projections

A

: : Flash Gradient Vector
Image gradients in flash and

ambient images should be
aligned.

Result Gradient Vector

| Ambient I Flash Result

>

Ambient gradient direction is
refined by projecting onto the
flash gradient.

Residual

-

"Result’ image is formed by
2D integration of the refined
gradient.

Residual gradients after
projection create the "reflection
layer".

Gradient projection splits an
image into reflection-free and
reflection layers.
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Why projections?

* Projection ensures the Reconsiructidn
gradient direction is K :
preserved, even with a
new magnitude.

* QOrthogonal gradients holds
minimal visual information.

« Rotating gradients by 90°
yields zero divergence.

* 90° rotation results In no
Image detall.

e 180° rotation creates a
negative image.
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Flash/no-flash with gradient-domain processing

Ambient

Checkerboard
outside glass
window

Reflections on

glass window
142



2D Integration

Result

Ambient

143



Invariance of Gradient Vectors Orientation
(Gradient Orientation Coherency)

« Tl Geometric Edge

X lllumination Edge

144



Removing Reflections due to Flash

Ambient Flash Ambient + Flash

Reflections
removed
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Removing Flash Hotspot

Ambient

bl{ Vg 7 ‘
Resultﬁ

and ambient image
I Gradient Coherency

_J

02 04 06
Normalized Intensities




Depth Compensation

Ambient Flash Result

1
Distant

Persons

Scale flash gradients using the ratio of flash and ambient images
Flash pcosé 1

= oC
Ambient (Ambient®)x distance’  distance’
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Limitations

 Difficult Scenarios
 Dynamic scenes
» Co-located artifacts
« Strong ambient illumination edges

e [ssues

» Lack of reliable gradients
 Homogeneous or dark regions

» Color coherency
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Gradient-domain rendering



Rendering Equation

N

Ligint




[Veach 98]

Rendering Equation

Light

= | @@



[Veach 98]

Rendering Equation

Light

)= | @@



[Veach 98]

Rendering Equation

Light

b= £ du®
J0



[Veach 98]

f — xOxleX3X4

J\;4

Rendering Equation

\ f X2
i ql ol I = fﬂ f(®)du (%)

fi(x) = (Materials) x (Geometries)
X Emitted Lum. x Pixel filtering
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Rendering Equation

Monte Carlo estimator
N _

l f](xk)

N £ p(Xk)

j= | f@w@®  —

p(X;) Is the probability density to sample x;
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Path Tracing

A




Motivation

15min 30min 45min 1h 157



Motivation

Observation
* Noise mostly proportional to signal magnitude

ldea

* Noise reduction by sampling sparse signal representation
« Sparse: signal magnitude low, except in small regions
* \Wavelets, edge filters, gradients, etc.
* Theoretical justification: Kettunen et al. SIGGRAPH 2015
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The Basic Algorithm

1. Perform standard Monte Carlo rendering to obtain primal image
2. Sample gradients: horizontal and vertical
3. Reconstruct image from primal and gradients

159



lmage Reconstruction

Reconstructed image

Primal

Fusing gradients and primal
information inside
one Image

Gradients

160
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62

1




-6_
X
-
SRS

Gradient domain. ol



V. N gradients of
S W natural images

J are sparse
| (close to zero
in most places)

Gradient domain.
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Can | go from one image to the other?

165



Can | go from one image to the other?

differentiation (e.g., convolution with forward-difference kernel)

Integration (e.g., Poisson solver)

166



Rendering

Primal-domain rendering: simulate Gradient-domain rendering: simulate
Intensities directly gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?
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Rendering

Primal-domain rendering: simulate Gradient-domain rendering: simulate
Intensities directly gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?
« Since gradients are sparse, | can focus most (but not all of) my resources (i.e., ray samples)

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
» Poisson reconstruction performs a form of “filtering” to further reduce variance.
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Rendering

Primal-domain rendering: simulate Gradient-domain rendering: simulate
Intensities directly gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?  VWhy not all?
« Since gradients are sparse, | can focus most (but not all of) my resources (i.e., ray samples)

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
» Poisson reconstruction performs a form of “filtering” to further reduce variance.
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Rendering

Primal-domain rendering: simulate Gradient-domain rendering: simulate
Intensities directly gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image)
In primal domain, to use as boundary conditions in the Poisson solver.
* |n practice, do image-space stratified sampling to select these pixels.
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Gradient-Domain Rendering

Gradient-Domain Metropolis Light Transport

Jaakko Lehtinen:2 Tero Karras! Samuli Laine! Miika Aittala®:! Frédo Durand? Timo Ailal

INVIDIA Research 2 Aalto University SMIT CSAIL

o

Coarse image 17 Sample density Result

Figure 1: We compute image gradients I°, IV and a coarse image I° using a novel Metropolis algorithm that distributes samples according
to path space gradients, resulting in a distribution that mostly follows image edges. The final image is reconstructed using a Poisson solver.

Gradient-Domain Path Tracing

Markus Kettunen! ~ Marco Manzi? ~ Miika Aittalal Jaakko Lehtinen!+3 Frédo Durand? Matthias Zwicker?
! Aalto University 2University of Bern SNVIDIA 4 MIT CSAIL

Figure 1: Comparing gradient-domain path tracing (G-PT, L1 reconstruction) to path tracing at equal rendering time (2 hours). In this
time, G-PT draws about 2,000 samples per pixel and the path tracer about 5,000. G-PT consistently outperforms path tracing, with the rare
exception of some highly specular objects. Our frequency analysis explains why G-PT outperforms conventional path tracing.

A lot of papers since SIGGRAPH 2013
(first introduction of gradient-domain
rendering) that are looking to extend
basically all primal-domain rendering

algorithms to the gradient domain.
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Does it help?









V2. N gradients of
natural images

are sparse
(close to zero
in most places)

Gradient domain ol



Modern Gradient-Domain Rendering

Deep Convolutional Reconstruction For Gradient-Domain Rendering

MARKUS KETTUNEN, Aalto University
ERIK HARKONEN, Aalto University
JAAKKO LEHTINEN, Aalto University and Nvidia

Input (Ours) NFOR [Bitterli et al. 2016] KPCN [Bako et al. 2017] NGPT (Ours) Ground Truth

https://github.com/mkettune/ngpt
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Modern Gradient-Domain Rendering

GradNet: Unsupervised Deep Screened Poisson Reconstruction for
Gradient-Domain Rendering

JIE GUQO?, State Key Lab for Novel Software Technology, Nanjing University
MENGTIAN LI", State Key Lab for Novel Software Technology, Nanjing University
QUEWELI LI, State Key Lab for Novel Software Technology, Nanjing University
YUTING QIANG, State Key Lab for Novel Software Technology, Nanjing University
BINGYANG HU, State Key Lab for Novel Software Technology, Nanjing University

YANWEN GUOT, state Key Lab for Novel Software Technology, Nanjing University
LING-QI YANT, University of California, Santa Barbara

Base Image (256 spp) | Our Reconstruction Reference

Reference

https://github.com/iRedBean/Deep-Poisson-Reconstruction
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Gradient cameras

178



Gradient camera

Why I want a Gradient Camera

Jack Tumblin Amit Agrawal
Northwestern University University of Maryland
jet@cs.northwestern.edu aagrawal@umd.edu

Ramesh Raskar
MERL
raskar@merl.com

Why would you want a gradient camera?

Can you directly display the measurements of such a camera?

How would you build a gradient camera?
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V2. N gradients of
natural images

are sparse
(close to zero
in most places)

Gradient domain ol



Gradient camera

Why I want a Gradient Camera

Jack Tumblin Amit Agrawal Ramesh Raskar
Northwestern University University of Maryland MERL
jet@cs.northwestern.edu aagrawal@umd.edu raskar@merl.com

Why would you want a gradient camera?
 Much faster frame rate, as you only read out very few pixels (where gradient is significant).

« Much higher dynamic range, if also combined with logarithmic gradients.
Can you directly display the measurements of such a camera?

How would you build a gradient camera?
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Gradient camera

Why I want a Gradient Camera

Jack Tumblin Amit Agrawal Ramesh Raskar
Northwestern University University of Maryland MERL
jet@cs.northwestern.edu aagrawal@umd.edu raskar@merl.com

Why would you want a gradient camera?

 Much faster frame rate, as you only read out very few pixels (where gradient is significant).
« Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
* You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?
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Change the sensor

Can you think how?
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Change the sensor

photodiode photodiode

analog analog discrete discrete
+ voltage voltage signal signal
_ | / !

operational amplifier Firin
(amplify difference fing

har - typical analog front-end
of inputs) MechanisSm | « what is this for?
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Change the sensor

photodiode

photodiode

Any disadvantages of this sensor?

Why Is this better than computing
gradients in post-processing?

\What about Poisson noise?

analog discrete discrete
voltage signal signal

>

analog
+ voltage

>
e

operational amplifier
(amplify difference
of inputs)

firing
mechanism

typical analog front-end
185



Change the sensor

Any disadvantages of this sensor?

« Spatial resolution is reduced by 2x.

* Photosensitive area Is reduced.

Why is this better than computing

aradients in post-processing?

« Additive noise Is reduced.

« Acquisition is faster thanks to the firing
mechanism and sparsity of edges.

What about Poisson noise?

* Poisson noise Is the same In both
cases.

analog analog discrete discrete
+ voltage voltage signal signal
/ >

operational amplifier
(amplify difference
of inputs)

photodiode photodiode

firing

mechanism typical analog front-end
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Change the optics

Can you think how?
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Change the optics

Optical filtering Angle-sensitive pixels

lenslet
\ refractive
Y =—— e

template

edge fite) _ o>

photodetectors

%w“s%m
= g —
s |

resulting iImage ////ﬂ""“w%




Change the optics

Optical filtering

lenslet
\ refractive
Y —— e

template
(edge filter)

Angle-sensitive pixels

Grating pitch, d

------------

Grating
separation, z

____________

Any disadvantages?

resulting iImage

Z//

////Aumuu%

------------

lil __\\ AN

a-%///




Change the optics

Optical filtering

lenslet
\ refractive
Y = A

template
(edge filter)

Angle-sensitive pixels

Grating pitch, d

------------

Grating
separation, z

____________

Any disadvantages?’
* Reduced light efficiency (we block light).
 \We can't do subtraction very easily in optics.

resulting iImage

7l §;§ 2\

=/ llg =

=NE

------------

T =0




Gradient camera

Jack Tumblin

Why I want a Gradient Camera

Amit Agrawal

Northwestern University University of Maryland
jet@cs.northwestern.edu

aagrawal@umd.edu

Ramesh Raskar
MERL
raskar@merl.com

Why would you want a gradient camera?

Much faster frame rate, as you only read out very few pixels (where gradient is

significant).

Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?
Change the sensor.

Change the optics.
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We can also compute temporal gradients

A\ P\ . /\ B\
’ Standard Camera {\ G\
' ' ) ' ' 0

event-based cameras (a.k.a. Event Camera
dynamic vision sensors, or DVS) -
Concept figure for event-based camera: o LA y "N Wi W W iy
https://www.youtube.com/watch ?v=kPCZESV{fHoQ v. \/. : \/. \,. v‘
High-speed output on a quadcopter: i
https://www.youtube.com/watch?v=LauQ6LWTkxIV 1

no events

Simulator:

Event Camera

http://rpa.ifi.uzh.ch/esim

time” 192


https://www.youtube.com/watch?v=kPCZESVfHoQ
https://www.youtube.com/watch?v=LauQ6LWTkxM
http://rpg.ifi.uzh.ch/esim

Open Challenges in Computer Vision

* The past 60 years of research have been devoted to frame-based
cameras.

...but they are not good enough!

Latency & Motion blur Dynamic Range

—

* Event cameras do not suffer from these problems!
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What is an event camera®?

* Novel sensor that measures only motion in the scene

* First commercialized in 2008 by T. Delbruck (UZH&ETH)
under the name of Dynamic Vision Sensor (DVS)

« Low-latency (~ 1 ps)
 No motion blur

* High dynamic range (140 dB instead of 60 dB)

« Ultra-low power (mean: TmW vs 1W)

Traditional vision algorithms cannot be used

because:

* Asynchronous pixels

* No intensity information (only binary
Intensity changes)

standard |

camera
output:

event
camera
output:

Image of the solar eclipse

captured by a DVS

time

Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15us Latency Asynchronous Temporal Contrast Vision Sensor, 2008
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Camera vs Event Camera

» A traditional camera outputs frames at fixed time intervals:

frame next frame

- > time
0 A

* By contrast, a DVS outputs asynchronous events at microsecond resolution. An event
IS generated each time a single pixel detects an intensity changes value

events stream

» time
0 A
dl(x,
event: <t, (x,y), sign (%»
Timestampl(ys) l j
Pixel coordinates

Event polarity (or sign) (-1 or 1): increase or decrease of brightness

Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15us Latency Asynchronous Temporal Contrast Vision Sensor, 2008 195



Generative Event Model| o I
2@);; _{ (reset l: _OIFF
Consider the intensity at a single pixel... _l

+C =logl(x,t) —logl(x,t — At)

logl(x,t)
A

0 NN b

OFF OFF OFF OFF OFF OFF

Events are triggered asynchronously

Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15us Latency Asynchronous Temporal Contrast Vision Sensor, 2008
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Event cameras are inspired by the Human Eye

Human retina:
* 130 million photoreceptors
* But only 2 million axons!
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Event Camera Output with No Motion

Standard Camera Event Camera (ON, OFF events)

| AT =40 ms

Without motion, only background noise Is output
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Event Camera Output with Relative Motion

Standard Camera Event Camera (ON, OFF events)

| AT =10 ms
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Event Camera Output with Relative Motion

Standard Camera Event Camera (ON, OFF events)

AT = 40 ms
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//wWww.prophesee.ai

Prophesee - https

Video cred

Low-light Sensitivity (night drive)

GoPro Hero 6 Event Camera by Prophesee
White = Positive events
Black = Negative events
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Image Reconstruction from Events

* Probabilistic simultaneous, gradient & rotation estimation from C=—VL -u

« Obtain intensity from gradients via Poisson reconstruction

* The reconstructed image has super-resolution and high dynamic range (HDR)
* |n real time on a GPU

Event Camera & Scene Visualisation of Events

Kim et al., Simultaneous Mosaicing and Tracking with an Event Camera, BMVC'14 202



Image Reconstruction from Events — E2VID

A fully convolutional, UNet-like

architecture composed of e oo o o o o L !
— ~—

recurrent encoder layers, T_l T

followed by residual blocks and r i S 7,

decoder layers, with skip 19 R v
connections between A . A .
symmetric layers. S g B >

Conv + ReLU + BN Decodert | Upsampling + Conv + ReLU + BN Res Block | Residual Block Strided Conv (s=2) + ReLU + BN ConvLSTM + RelLU + BN

h 1 2 1 1 2
X hk hk r, 1 dk dk R . .
Ei—>» H » g > & ——> R! D D’ P o I, hi, — > Conv, > » hit!
¢! Q o Q ConvLSTM
oy > i
Si

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”, CVPR19.
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019. 203



Image Reconstruction from Events — E2VID

Reconstructed image from events
Events (Samsung DVS)

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”, CVPR19.
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019. 204



HDR Video: Driving out of a tunnel

Events Our reconstruction Phone camera

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”, CVPR19.
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019. 205



HDR Video: Night Drive

Our reconstruction from events GoPro Hero 6

Rebecq et al., “Events-to-Video: Bringing Modern Computer Vision to Event Cameras”, CVPR19.
Rebecq et al., “High Speed and High Dynamic Range Video with an Event Camera”, PAMI, 2019. 206



Image Reconstruction from Events - HyperE2VID

« A dynamic network architecture for the task of video reconstruction from events,
where existing static architectures are extended with hypernetworks, dynamic
convolutional layers, and a context fusion block.

Intensity Frame Reconstructed at Previous Time Step

Context-Guided

Dynamic Decoder Context Fusion Dynamic Filter Generation

~ Reconstructed — r—
k —  Intensity Image AT SR N —————— - Cy ‘ _ + H -'é'- .:II'-. 3x3
N — = > > . B AFEs L 55
g g g Compositional - = o
2 > > 2 Ef, Coefficients Fourier-Bessel Bases
Channel-wise X X X
Concatenate «® Context ® b
Tensor Hypernetworks
— | P R L R
Shal ) .
»| Hypernetworks (—I Nk Sy Per-Pixel Main Network (F)
— 1 (v ez Dynamic Ox —
| (£k Parameters
< “—
i 9 9
- < - < - s — - Bilinear g g } o
: 5 & & TIIREEINEE Upsample y : 5 :
©n n > N » A A 2 2 lwa 2 2 |la@Dn
SIS SIS R IS 2 2 S S P 2 S P> R—1@» 5 S p@> 5 O p@>
2 e & 2 & g VAR X X 5x5 8 X 3 X X
Lo w O n O é O ® o™ ” e 3 g o g o -
P Vi Dynamic Conv. | |
r . Residual Blocks - o) 5
. Input Event Encoder — Context-Guided
HyperE2VID . Voxel Grid L E— H7XW7Tx256 Dynamic Decoder e Output
Head | Encoder H"xW"x128 Decoder | Standard Pred. Intensity
— Decoder | Layer Frame
_ H'xW'x64
HxWx32

Ercan et al., “HyperE2VID: Improving Event-Based Video Reconstruction via Hypernetworks”, IEEE TIP, 2024. 207



Image Reconstruction from Events - HyperE2VID

boxes_6dof sequence from ECD dataset

SSL_E2VID

; ‘ ! & - .
) PN 3 iy -
i'i.‘r,rft;ju'.@i * / AR

FireNet+ SPADE_E2VID

-Net | | HyperE2VID Ground Truth
Ercan et al., “HyperE2VID: Improving Event-Based Video Reconstruction via Hypernetworks”, IEEE TIP, 2024.
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What if we combined the complementary
advantages of event and standard cameras?
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Why combining them?

< 10 years research > 60 years of research!

Event Camera Standard Camera

Update rate High (asynchronous): 1 MHz

Dynamic Range High (140 dB) ’

Motion Blur No
Yes

Static motion No (event camera is a high pass filter)
Absolute intensity No (reconstructable up to a constant)
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DAVIS sensor: Events + Images + IMU

« Combines an event and a standard camera in the same pixel array
(— the same pixel can both trigger events and integrate light intensity).

e |t also has an IMU

12.03
12.04

Time [s] 12.06

12.07 0

Spatio-temporal visualization Temporal aggregation of events
of the output of a DAVIS sensor overlaid on a DAVIS frame
o’
Standard images
>
time
Events >

Brandli et al. A 240x180 130dB 3us latency global shutter spatiotemporal vision sensor. IEEE JSSC, 2014 211



Deblurring a blurry video

« A blurry image can be regarded as the integral of a sequence of latent images during
the exposure time, while the events indicate the changes between the latent images.

* Finding: sharp image obtained by subtracting the double integral of event from input
Image

Input blur image Input events Output sharp image

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR 2019 212



Deblurring a blurry video

« A blurry image can be regarded as the integral of a sequence of latent images during
the exposure time, while the events indicate the changes between the latent images.

* Finding: sharp image obtained by subtracting the double integral of event from input
Image

Input blur image Output sharp video

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR 2019 213



Deblurring a blurry video

« A blurry image can be regarded as the integral of a sequence of latent images during
the exposure time, while the events indicate the changes between the latent images.

* Finding: sharp image obtained by subtracting the double integral of event from input
Image

Input blur image Output sharp video

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR 2019 214



Video Frame Interpolation

* Video frame interpolation methods aims at generating intermediate frames by inferring
object motions in the image from consecutive keyframes.

« Motion is generally modelled with first-order approximations like optical flow.
» This choice restricts the types of motions, leading to errors in highly dynamic scenarios.

« Event cameras provides auxiliary visual information in the blind-time between frames.

Input Time Microscope (ours)

L el N
p S

Tulyakov et al., Time Lens++: Event-based Frame Interpolation with Parametric Non-linear Flow and Multi-scale Fusion, CVPR 2022 215



Next Lecture:
Focal Stacks and Lightfields



