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Today's Lecture

 Deconvolution
* Sources of blur
* Blind deconvolution

 Non-blind deconvolution

» Coded photography
* The coded photography paradigm
» Dealing with depth blur

» Dealing with motion blur

Disclaimer: The material and slides for this lecture were borrowed from
—loannis Gkioulekas' 15-463/15-663/15-862 “Computational Photography” class
—Seungyong Lee and Sunghyun Cho's “Recent Advances in Image Deblurring” course at SIGGRAPH Asia 2013



Today's Lecture

 Deconvolution
* Sources of blur
* Blind deconvolution

 Non-blind deconvolution

» Coded photography
* The coded photography paradigm
» Dealing with depth blur

» Dealing with motion blur



Sources of blur



blur wpis:m

 Long exposure
 Moving objects
« Camera motion

— panning shot
* Lens imperfections
 Depth defocus




blur wpis:m

Often degrades image/video
quality severely

Unavoidable under dim light
circumstances




Various Kinds of Blurs

Auto Focus : Manual Focus

Out of focus (Defocus blur) Combinations (vibration & motion, ...)



Object Motion Blur

» Caused by object motions during exposure time
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Optical Lens Blur

» Caused by lens aberration

10



Camera Motion Blur

« Caused by camera shakes during
exposure time

* Motion can be represented as a
camera trajectory
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Defocus Blur

» Caused by the Iimited depth of field of a camera

More on coded photography part "



Deblurring?

 Remove blur and restore a latent sharp image

from a given blurred image find its latent sharp image



Why is it important?

* [mage/video In our dally lives
« Sometimes a retake is difficult!




Why is it important?

CCTV, car black box Medical imaging

Aerial/satellite
photography

Robot vision
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Deblurring

from a given blurred image

find its latent sharp image
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Commonly Used Blur Model

Blurred image

Blur kernel or Convolution
Point Spread operator
Function (PSF)

Latent sharp image
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Blind Deconvolution

Blurred image

Blur kernel or
Point Spread
Function (PSF)

Convolution
operator

Latent sharp im

age
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Non-blind Deconvolution

Blurred image

Blur kernel or Convolution
Point Spread operator
Function (PSF)

Latent sharp image
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Uniform vs. Non-uniform Blur

‘Uniform blur

« Every pixel is blurred in the
same way

 (Convolution based blur model
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Uniform vs. Non-uniform Blur

Non-uniform blur

Spatially-varying blur

Pixels are blurred differently
More faithful to real camera
shakes
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Most Blurs Are Non-Uniform

Auto Focus : Manual Focus

Out of focus (Defocus blur) Combinations (vibration & motion, ...)
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Blind deconvolution
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Blind Deconvolution (Uniform Blur)

Blurred image Latent sharp image

Blur kernel or Convolution
Point Spread operator
Function (PSF)
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Key challenge: lll-posedness!

Blurred image

Possible solutions

A e Infinite number of solutions

 Analogous

100 =«

satisfy the blur model

1o

( 2%X50
425

(3%33.333...
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Early approaches

» Parametric blur kernels
* [Yitzhakey et al. 1998], [Rav-Acha and Peleg 2005], ...
* Directional blur kernels defined by (length, angle)
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Early approaches

* But real camera shakes are much more complex
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Early approaches

» Parametric blur kernels
* Very restrictive assumption
« Often failed, poor quality

At

- R

Blurred image

Latent sharp image

Yitzhaky et al. 1998]
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More recent work

» Some successful approaches have been introduced...

 [Fergus et al. SIGGRAPH 2006], [Shan et al. SIGGRAPH 2008],
[Cho and Lee, SIGGRAPH Asia 2009], ...

 More realistic blur kernels
« Better quality
 More robust

eeeee

eeeeee

« Commercial software
* Photoshop CC Shake reduction

Auto ~
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Popular Approaches

* Maximum Posterior (MAP) based
* VVariational Bayesian based

* Edge Prediction based
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Popular Approaches

* Maximum Posterior (MAP) based
* VVariational Bayesian based
* Edge Prediction based

« Deep-Learning based (not now, later on)
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Popular Approaches

* Maximum Posterior (MAP) based
* VVariational Bayesian based

* Edge Prediction based

[Shan et al. SIGGRAPH 2008],
[Krishnan et al. CVPR 2011],
[Xu et al. CVPR 2013], ...

Seek the most probable solution,
which maximizes a posterior
distribution

Easy to understand
Convergence problem
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MAP based Approaches

Maximize a joint posterior probability with respect to k and [

Posterior distribution

!
=3
-

Blur kernel k

Latent image 1 Blurred image b
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MAP based Approaches

Bayes rule:

or distributio Likelihood ~ Frioron I Prioron

(k ‘ \b) « p(BIlK) pll) plk

o
y igl F 3 ) |
. V ’VA
k &7 o3

Blur kernel k

Latent image 1 Blurred image b



MAP based Approaches

Negative log-posterior:

p(k,l|b) = —logp(blk,1) —logp(l) —logp(k)
= ||k * L= b||* + p; (D) + px (k)

Regularization on Regularization on

Data fitting term latent image 1 blur kernel k



MAP based Approaches

Negative log-posterior:

p(k,l|b) = —logp(blk,1) —logp(l) —logp(k)
= ||k * L= b||* + p; (D) + px (k)

Regularization on Regularization on

Data fitting term latent image 1 blur kernel k

Alternatingly minimize the energy function w.r.t. k and 1
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MAP based Approaches

/ Input blurred \

Image b

7N

/ Latent image l\

estimation

- maximizes

/ Blur kernel k \

estimation

- maximizes

posterior w.r.t. |

\ /

posterior w.r.t. k

o /

/ Output ] \
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MAP based Approaches

* Chan and Wong, TIP 1998

 Total variation based priors for estimating a parametric blur kernel

 Shan et al. SIGGRAPH 2008

* First MAP based method to estimate a nonparametric blur kernel

e Krishnan et al. CVPR 2011

 Normalized sparsity measure, a novel prior on latent images

» Xu et al. CVPR 2013

* LO norm based prior on latent images
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Shan et al. SIGGRAPH 2008

 Carefully designed likelihood & priors

p(k,l1b) < p(b|l, k)p(Dp(k)
l |

Likelihood based on
Intensities & derivatives

f |
Natural image l

statistics based
prior on 1

Kernel statistics
based prior on k

g .
[

.




Shan et al. SIGGRAPH 2008

* A few minutes for a small image
* High-quality results




Shan et al. SIGGRAPH 2008

» Convergence problem

« Often converge to the no-blur solution [Levin et al. CVPR 2009]

* Natural image priors prefer blurry images

100

80

60

40

Success Rate

20

____ I

0

Fergus et al. SIGGRAPH 2006
(variational Bayesian based)

Shan et al. SIGGRAPH 2008

Error ratio = 2

2
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Popular Approaches

* Maximum Posterior (MAP) based
 Variational Bayesian based

* Edge Prediction based

[Fergus et al. SIGGRAPH 20061,
[Levin et al. CVPR 2009],
[Levin et al. CVPR 2011], ...

Not seek for one most probable
solution, but consider all possible

solutions
Theoretically more robust
Slow
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Variational Bayesian

MAP v.s. Variational Bayes

Maximum
a-Posteriori (MAP)

Variational
Bayes

O

O

O

0]

\ A‘ Pixel intensity

- A

 MAP

* Find the most probable
solution

* May converge to a
wrong solution

* Variational Bayesian

* Approximate the
underlying distribution
and find the mean

 More stable
* Slower

43



Variational Bayesian

* Fergus et al. SIGGRAPH 2006

» First approach to handle non-parametric blur kernels

* Levin et al. CVPR 2009

« Show that variational Bayesian approaches can perform more robustly than
MAP based approaches

* Levin et al. CVPR 2010

 EM based efficient approximation to variational Bayesian approach
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Fergus et al. SIGGRAPH 2006

e Posterior distribution

p(k,l|b) < p(blk, Dp(Dp(k)

== Sharp

= Blurry

Gradient
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Fergus et al. SIGGRAPH 2006

* Find an approximate distribution by minimizing Kullback-Leibler (KL)
divergence

arg min KL(q(k)q(Dq(a~?)|[p(k, [|b))

q(k),q(1),q(c72)

approximate distributions for blur kernel k,
latent image [, and noise variance o

» cf MAP based approach:
arg nll{iln p(k,l|b)
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Fergus et al. SIGGRAPH 2006

* First method to estimate a nonparametric blur kernel
« Complex optimization

» Slow: more than an hour for a small image
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Popular Approaches

* Maximum Posterior (MAP) based
* VVariational Bayesian based

* Edge Prediction based

[Cho & Lee. SIGGRAPH Asia 2009],
[Xu et al. ECCV 2010],
[Hirsch et al. ICCV 2011}, ...

Explicitly try to recover sharp edges
using heuristic image filters

Fast

Proven to be effective in practice,
but hard to analyze because of
heuristic steps
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Edge Prediction based Approaches

 Joshi et al. CVPR 2008

* Proposed sharp edge prediction to estimate blur kernels
* No iterative estimation, limited to small scale blur kernels

* Cho & Lee, SIGGRAPH Asia 2009

* Proposed sharp edge prediction to estimate large blur kernels
* |terative framework, very fast

e Choetal. CVPR 2010

» Applied Radon transform to estimate a blur kernel from blurry edge profiles
« Small scale blur kernels

« Xu etal. ECCV 2010

* Proposed a prediction scheme based on structure scales as well as gradient magnitudes

 Hirsch et al. ICCV 2011

* Applied a prediction scheme to estimate spatially-varying camera shakes
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Cho & Lee, SIGGRAPH Asia 2009

 Key idea: blur can be estimated from a few edges
=>» No need to restore every detail for kernel estimation

Blurred image Latent image with only a few
edges and no texture

50



Cho & Lee, SIGGRAPH Asia 2009

)

/ Simple \ / Prediction \ /

deconvolution

-

) :
v
]

Fast
Kernel
Estimation

~

Quickly restore important edges
using simple image filters

/ Output \
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Cho & Lee, SIGGRAPH Asia 2009

)

//> Simple <\\

deconvolution

=

//’ Prediction h

-

-

Fast
Kernel
Estimation

Do not need complex priors for the latent image and the blur kernel

~

//’ Output ‘\\

= Significantly reduce the computation time
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Cho & Lee, SIGGRAPH Asia 2009

‘_;f .

O

Fast but low quality deconvolution Prediction

L

Previous kernel Updated kernel



Cho & Lee, SIGGRAPH Asia 2009

B e e e e e e e e e e e e e e e e e e e e e e e e e

Prediction
Simple & fast image filtering operations

_________________________________________
. ~
g >

Fast but low-quality E/Bilateral filtering &\ / Thresholding \

deconvolution L Shock filtering gradients

Visualized by Poisson
Image reconstruction




Cho & Lee, SIGGRAPH Asia 2009

State of the art results
A few seconds

TMpix image

in C++

Blurry input | Deblurring result o Blur kernel
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Convolution based Blur Model

» Uniform and spatially invariant blur

56



Real Camera Shakes: Spatially Variant!




Uniform Blur Model Assumes

X &y translational

camera shakes

Planar scene
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Real Camera Shakes

6D real camera motion

\'ﬁ
Different depw

59



Real Blurred Image

Non-uniformly blurred image

Uniform deblurring result




Pixel-wise Blur Model

* Dai and Wu, CVPR 2008

» Estimate blur kernels for every pixel from a single image
« Severely ill-posed
e Parametric blur kernels
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Pixel-wise Blur Model

» Tal et al. CVPR 2008

» Hybrid camera to capture hi-res image & low-res video
« Estimate per-pixel blur kernels using low-res video

Hi-res.
Image

| ow-res.
video
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Patch-wise Blur Model

» Sorel and Sroubek, ICIP 2009
» Estimate per-patch blur kernels from a blurred image and an underexposed

-
A W)
’
{
-
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Patch-wise Blur Model

 Hirsch et al. CVPR 2010
e Efficient filter flow (EFF) framework

* More accurate approximation than the naive patch-wise blur model

« Harmeling et al. NIPS 2010
» Estimate per-patch blur kernels based on EFF from a single image
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Patch-wise Blur Model

* Approximation
* More patches - more accurate

« Computationally efficient
e Patch-wise uniform blur
e FFTs can be used
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Summary

o Different blur models

{
{
4
4
4

Patch based Projective Motion Path Hybrid
Efficient but no global constraint Globally consistent but inefficient Efficient & globally consistent

* More realistic than uniform blur model

 Still approximations
* Real camera motions: 6 DoF + more (zoom-in, depth, etc...)
* High dimensionality

» |ess stable & slower than uniform blur model
66



Remaining Challenges

» All methods still fail quite
often

* Noise

 Outliers

* Non-uniform blur

* Limited amount of edges
« Speed...

 EtC...
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Non-blind deconvolution



Non-blind Deconvolution (Uniform Blur)

Blurred image Latent sharp image

Blur kernel Convolution
operator
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Lens imperfections

» |deal lens: A point maps to a point at a certain plane.
 Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

1 1 1 .
S S f

— >l _ ,
object distance S sensor distance S
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Lens imperfections

ldeal lens: A point maps to a point at a certain plane.
Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

1 1 1 A

sSSTSF

—_— —_— —_— —_— —_— —_— %

— >l _ ,
object distance S sensor distance S

What is the effect of this on the images we capture?
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Lens imperfections

» |deal lens: A point maps to a point at a certain plane.
 Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

1 1 1
S S f

' blur
kernel

—_— —_— —_— —_— —_— —_— %

— >l _ ,
object distance S sensor distance S

Shift-invariant blur.
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Lens imperfections

What causes lens imperfections?
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Lens imperfections

What causes lens imperfections?

 Aberrations.

(Important note: Oblique
aberrations like coma and
distortion are not shift-
invariant blur and we do
not consider them herel)

* Diffraction.

ANRRAET G ¥ T T
\\"’ Il‘l‘l'iil' I‘I'.f 144

“f
.J-‘ |
A

ﬂ:|'
’.'

)
A A
5 L M ¥ ';
A 1R
\\\ ANYEEE 2

HUNYY R 0
JEEEEREELL

" Chromatic aberration

Spherical aberration
small large
aperture aperture
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Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.
“Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

1

S

_1
f

—— >l _ >
object distance S sensor distance S’

blur kernel

/

diffraction-limited
PSF of a circular
aperture
(Airy pattern)
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Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.
“Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

1

S

_1
f

—— >l _ >
object distance S sensor distance S’

blur kernel

/

diffraction-limited
PSF of a circular
aperture
(Airy pattern)
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Some basics of diffraction theory

We will assume that we can use:

* Fraunhofer diffraction (i.e., distance of sensor and aperture is large relative to
wavelength).

* Incoherent illumination (i.e., the light we are measuring Is not laser light).

We will also be ignoring various scale factors. Different functions are not drawn to
scale.
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Some basics of diffraction theory

\\ ?
o
N (
R
O
Q O
(

aperture:
rect(x)

S0
o
N
Z‘/b
. ?

The 1D case

78



Some basics of diffraction theory

VA JANEAN
>

coherent point spread
function: sinc(x)

aperture:
rect(x)

S
to)
C
Of/.@/e
Z‘/b
%

The 1D case
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Some basics of diffraction theory

N

)
65\0 S
Qo&f
/N N\ e
N (/g
coherent point spread
S function: sinc(x)
aperture: ?
rect(x)

optical transfer

The 1D case function: tent(x) 80




Some basics of diffraction theory

N

0
Qo S,

Qo@f

/\ /\ e
\/ / 7
coherent point spread

S function: sinc(x) AV N VAN
aperture: Incoherent point spread
rect(x) function: sinc?(x)

S
to)
C
Of/.@/e
%
H

why do we get the
S same result?

optical transfer

The 1D case function: tent(x) 81




Some basics of diffraction theory

©
S
9,
3
N N ‘6
\/ / 7
coherent point spread
S function: sinc(x) AV N VAN
aperture: Incoherent point spread
rect(x) function: sinc?(x)
o)

602(
oooff@/ |
%O/; what happens it we
Increase the aperture
size?

optical transfer

The 1D case function: tent(x) 82




Some basics of diffraction theory

o)
S
9,
<9/~@
coherent point spread
S function: sinc(2x) Al R
aperture: Incoherent point spread
rect(x/2) function: sinc?(2x)

S
to)
C
Of/.@/e
%
H

optical transfer

The 1D case function: tent(x/2)




Some basics of diffraction theory

N N

%’\O«O S
G &
(9
N

<
/ coherent point spread l

J function: sinc(10x)
aperture: \

rect(x/10)

~

Incoherent point spreéd
function: sinc?(10x)

... point spread function
becomes smaller

As the aperture size
INCreases...

The 1D case

optical transfer
function: tent(x/10) o




Some basics of diffraction theory

Incoherent point spread
function

aperture

... point spread function
becomes smaller

As the aperture size
INCreases...

The 2D case

optical transfer
function g5




Some basics of diffraction theory

aperture Incoherent point spread
function
o

... point spread function
becomes smaller

As the aperture size
INCreases...

The 2D case

optical transfer
function g6




Some basics of diffraction theory

Why do we prefer circular
apertures?

Incoherent point spread
function

aperture

... point spread function
becomes smaller

As the aperture size
INCreases...

The 2D case

optical transfer
function &7




Some basics of diffraction theory

Other shapes produce very
anisotropic blur.

Incoherent point spread
function

aperture

... point spread function
becomes smaller

As the aperture size
INCreases...

The 2D case

optical transfer
function g8




Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.
« “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

|

! |

|

: : blur

| I/ kernel
aperture :

: |

: |

: |

. ' diffraction-limited

I )'( 1 PSF of a circular

optical transfer object distance S sensor distance S’ aperture
function (OTF) (Airy pattern)
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Lens as an optical low-pass filter

.
image from a perfect lens imperfect lens PSF iImage from imperfect lens

| x K = D
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Lens as an optical low-pass filter

If we know b and k, can we recover i?

N
image from a perfect lens imperfect lens PSF iImage from imperfect lens

| x K = D
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Non-blind Deconvolution (Uniform Blur)

Blurred image Latent sharp image

Blur kernel Convolution
operator
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Non-blind Deconvolution

« Key component In many deblurring systems
« For example, iIn MAP based blind deconvolution:

7N\

Image b

/ Input blurred \ /Latent Image l\

estimation

/ Blur kernel k \

estimation

/

Non-blind deconvolution

/ Output ] \

There can be additional final non-blind
deconvolution for the final output
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Non-blind Deconvolution

,,,,,,,,

Wiener filter

Richardson-Lucy deconvolution
Rudin et al. Physica 1992

Bar et al. [JCV 2006

Levin et al. SIGGRAPH 2007
Shan et al. SIGGRAPH 2008
Yuan et al. SIGGRAPH 2008
Harmeling et al. ICIP 2010
etc...
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lll-Posed Problem

e Even if we know the true blur kernel, we cannot restore the latent
Image perfectly, because:

Blur destroys
High-freq info

Noise

* Loss of high-freg info & noise = denoising & super-resolution
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lll-Posed Problem

» Deconvolution amplifies noise as
well as sharpens edges

* Ringing artifacts

* |naccurate blur kernels, outliers
cause ringing artifacts
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Classical Methods

* Popular methods
* Wiener filtering
 Richardson-Lucy deconvolution
« Constrained least squares

* Matlab Image Processing Toolbox

« deconvwnr, deconvlucy, deconvreg

* Simple assumption on noise
and latent images
« Simple & fast

* Prone to noise & artifacts
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Natural Image Statistics

* Non-blind deconvolution: ill-posed problem

* \\We need to assume something on the latent image to constrain the
problem.
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Natural Image Statistics

« Natural iImages have a heavy-tailed distribution on gradient magnitudes

* Mostly zero & a few edges

e Levin et al. SIGGRAPH 2007, Shan et al. SIGGRAPH 2008,
Krishnan & Fergus, NIPS 2009

== Sharp

= Blurry

Gradient
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Natural Image Statistics

e Levin et al. SIGGRAPH 2007

* Propose a parametric model for natural image priors based on image
gradients

Proposed prior

logp(x) = = ) Vx|
i

Gaussian: -X?

o
9-0.5 h .
S | W ere.
§’_o_, * X:IMage
 a:model parameter, a < 1
U o 7 ' 1{, 250 T 20 an A0
X X
Derivative histogram from a Parametric models

natural image
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Natural Image Statistics

* Levin et al. SIGGRAPH 2007
[ = argmlin{‘llk « [ = b|I* + AX;IVE|*}  (a<1)
| |

Data term Prior

o
Equal convolution error
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Natural Image Statistics

e Levin et al. SIGGRAPH 2007

“spread” gradients “localizes” gradients

Input Richardson-Lucy Gaussian prior Sparse prior

D 17412 D 171,100

l l
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High-order Natural Image Priors

» Patches, large neighborhoods, ...

» Effective for various kinds of image restoration problems
* Denoising, inpainting, super-resolution, deblurring, ...

LI Lal LW i
Fa"lI"Y"lak
Tmllamli®
hlldkl ™iL
I Rl T
ENE"TE 1a
EhR]1IWMA™
(E I Ld La b
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High-order Natural Image Priors

« Schmidt et al. CVPR 2011
* Fields of Experts

e /Zoran & Weiss, ICCV 2011

* Trained Gaussian mixture model for natural image patches

e Schuler et al. CVPR 2013

* Trained Multi-layer perceptron to remove artifacts and to restore sharp
patches

e Schmidt et al. CVPR 2013

* Trained regression tree fields for bxb neighborhoods
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High-order Natural Image Priors

e /Zoran & Weiss, ICCV 2011

* Gaussian Mixture Model (GMM) learned from natural images

"ﬂ'.:lrﬂ C
B patches =:=Eh=== K-means _ﬁ
el ldiakl ' ™iL >
T ElIT &

mNETTE 1a ] : >
1R b
Ll Lal Lo |

Natural images Collected patches GMM
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High-order Natural Image Priors

e /Zoran & Weiss, ICCV 2011

* Given a patch, we can compute its likelihood based on the GMM.
* Deconvolution can be done by solving:

arg mlin{uk fl—b|? - AZ logp(li)}
L )

Log-likelihood of a patch I; at i-th pixel
based on GMM
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High-order Natural Image Priors

e /Zoran & Weiss, ICCV 2011

Denoising Deblurring

NG - A
S0 W,

(©) LLSC - PSNR: 29.30 (d) EPLL MM_ PSNR: 29.39 Blurred image Krishnan & Fergus Zoran & Weiss
PSNR: 26.38 PSNR: 27.70
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Ringing Artifacts

* \Wave-like artifacts around strong edges
» Caused by

* [naccurate blur kernels

* Nonlinear response
curve

e Etc...




Ringing Artifacts

* Noise * Ringing
* High-freq « Mid-freq
* Independent and identical « Spatial correlation
distribution » Priors on image gradients are not

* Priors on image gradients work well very effective
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Ringing Artifacts

* Yuan et al. SIGGRAPH 2007

* Residual deconvolution & de-ringing

* Yuan et al. SIGGRAPH 2008

 Multi-scale deconvolution framework based on residual deconvolution

.
Blurred image
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Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]

N

Blurred image Guide image Residual dec

'

with less ringing artifacts

Relatively accurate edges, but less details
Obtained from a deconvolution result from a smaller scale

RIOG i as ol 8 I B e B
D e AR TR R IR AR

onvolution result
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Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]

.
Blurred image Guide image Residual blur

Deconvolu’uon

Guide image Detail layer Result
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Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]

. Residual de'co‘n\'/olutionv

d AN Severe ringing
.\O L |
X
N
AO
Q®O RNV Less ringing
Blurred image " Deblurred image' X
| w-ﬂ—)
\ ; -
> & || |
NGRS { i
. X
O \S / WIM
SN | I
o || I
¥ I
‘Residual blur Guide image Detail layer = Guide image
deblurred residual + detall layer



Progressive Inter-scale & Intra-scale
Deconvolution [vuan et al. SIGGRAPH 2008]

* Progressive inter-scale & intra-scale deconvolution

Progressive inter-scale deconvolution

— e — w—
— — —
— —— —
— — — — —
— — — —
— — —
- ——

guide image detail layer (1) detail layer (2) detail layer (3) 1



Blurred image Vi s

AVl LN

Levin et al. SIGGRAPHZOO7l Wavelet regularization




Outliers

s e s

Blurre;j Image with outliers
[Levin et al. SIGGRAPH 2007]




Outliers

» Saturated pixels caused by limited dynamic range of sensors

Information
loss!

Dynamic range
~ of a camera

Camera response

Incoming light to sensors

Blurred image [Levin et al. 2007]
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Outliers

* Hot pixels, dead pixels, compression artifacts, etc...

Hot pixel

Blurred image with outliers [Levin et al. 2007]
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Outlier Handling

e Most common blur model:

b=kx*xl+n

/ Latent image \

Equivalent to

/ Motion blur \
k* ]

BN
»

/Gaussian noise\

n

N
1/

small amount of Gaussian noise

/ Blurred image\
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Outlier Handling

« An energy function derived from this model:

E(D) = |lk=l=Dbl?+pD)

L*-norm based data term:  Regularization term on
known to be vulnerable to a latent image |
outliers

« More robust norms to outliers
— L'-norm, other robust statistics...

E(l) = |k *1—bll; + p(l)
— Baretal. IJCV 2006, Xu et al. ECCV 2010, ...

120



Outlier Handling

+ Ll-norm based data term
« Simple & efficient
» Effective on salt & pepper noise
* Not effective on saturated pixels

L'-norm based data term
121



Modern Approaches

DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks
Orest Kupyn!*, Volodymyr Budzan'-*, Mykola Mykhailych!, Dmytro Mishkin?, Jifi Matas?

! Ukrainian Catholic University, Lviv, Ukraine
{kupyn, budzan, mykhailych}@ucu.edu.ua

2 Visual Recognition Group, Center for Machine Perception, FEE, CTU in Prague
{mishkdmy, matas}@cmp.felk.cvut.cz
3 ELEKS Ltd.
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Modern Approaches

Lens #1

Fast adaption: ~3mins@1024*768 pixels

Lens #2

Universal and Flexible Optical Aberration Correction Using
Deep-Prior Based Deconvolution

Xiu Li'* Jinli Suo!, Weihang Zhang!, Xin Yuan?, Qionghai Dai!

ITsinghua University, ?Westlake University

Lens #N
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Modern Approaches

,0« &

gl "/4 ﬁ

Blurry
input

stochastic

Jay Whang™  Mauricio Delbracio?
Alexandros G. Dimakis!

TUniversity of Texas at Austin

Hossein Talebi?

Deblurring via Stochastic Refinement

Chitwan Saharia?
Peyman Milanfar!

tGoogle Research

noise

 Denoiser
| network (fy)

Residual

deterministic

Sémple

Al Initial 3, ’
| predictor (96)

In|t|aI
Prediction
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Modern Technology




Modern Approaches

Key Laboratory of Machine Perception (MOE), School of
Intelligence Science and Technology, Peking University,
Beijing, China

National Engineering Research Center of Visual Technology,
School of Computer Science, Peking University, Beijing,

Deblurring Low-Light Images with Events China

Graduate School of Information Science and Technology, The

1 . . 2 3 w1 2 1 4 . 24 University of Tokyo, Tokyo, Japan
Chu Zhou'® - Minggui Teng“ - Jin Han" - Jinxiu Liang“ - Chao Xu' - Gang Cao” - Boxin Shi“ o ‘ _
Beijing Academy of Artificial Intelligence, Beijing, China

‘“Even ¢ Stage 1 (g1) ; Motion clues M — Data flow € Concatenate
. . | L ey B Flow loss
2 D D Feature extraction block @ Add
i § Lfiow
,,,,,,, Feature fusing block o Laplace edge detection
Bi-directional - Denoising backbone @ Gamma transformation
optical flows F
(visualized as kernels) — Deblurring backbone @ Inverse gamma transformation
Denoising loss D Feature decoding block Feature upsampling_
ﬂ (used when deblurring high-
i resolution RGB images
Ldeno I:l Loss function ges)

Reconstruction loss

‘ ; _ ’ \ o
y- 1 I e = bit L
-’m_’e o WD 1100 ! / oaigd et 1Y recon

BY Denoised blurry image B Sharp image S
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Modern Approaches

I Key Laboratory of Machine Perception (MOE), School of
Intelligence Science and Technology, Peking University,
Beijing, China

National Engineering Research Center of Visual Technology,
School of Computer Science, Peking University, Beijing,

Deblurring Low-Light Images with Events China

3 Graduate School of Information Science and Technology, The
University of Tokyo, Tokyo, Japan

Chu Zhou' ® - Minggui Teng? - Jin Han? - Jinxiu Liang? - Chao Xu' - Gang Cao? - Boxin Shi%* PR e ' _
Beijing Academy of Artificial Intelligence, Beijing, China

P:30.24 S:0.929
*M:0.986 L:0. @31

,’ = : Blurry image

-u, .LMMUH“' '

i o
."‘ : - ¢
s = i3 = i =
. 4 i I
a 1 ——eas | | - !
| | \
I

Ground truth sharp image Ours Zhang Cho




Today's Lecture

 Deconvolution
o Sources of blur
* Blind deconvolution

 Non-blind deconvolution

» Coded photography
* The coded photography paradigm
» Dealing with depth blur

» Dealing with motion blur
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The coded photography paradigm



Conventional photography

real world optics captured iImage  computation  enhanced image

« QOptics capture something that is (close to) the final image.

« Computation mostly “enhances” captured image (e.g., deblur).
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Coded photography

generalized coded representation generalized
optics of real world computation

real world final image(s)

» Generalized optics encode world into intermediate representation. Can you think of

» Generalized computation decodes representation into multiple images.  any examples?
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Early example: mosaicing

n
([@)]
-
O
'©
7p)]
O
&
)
©
<
L
O
i
generalized coded representation generalized .
real world . . final image(s)
optics of real world computation

» Color filter array encodes color into a mosaic.

« Demosaicing decodes color into RGB image.
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Recent example: plenoptic camera

[ . o S - h —_—
: . . . (-
' | -
- =
U ©
| -
0 2
i ©
0 D
4+ gy
— +
B £
: ko)
U —
generalized coded representation generalized L
real world . . final image(s)
optics of real world computation

« Plenoptic camera encodes world into lightfield.
« Lightfield rendering decodes lightfield into refocused or multi-viewpoint images.
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Why are our images blurry?

Lens imperfections. €—— non-blind deconvolution

Camera shake.
Scene motion.

Depth defocus.

conventional
<—— Dlind deconvolution photography

<— flutter shutter, motion-invariant photo coded

<«— coded aperture, focal sweep, lattice lens| Photography
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Why are our images blurry?

Lens imperfections. €—— non-blind deconvolution

Camera shake.
Scene motion.

Depth defocus.

conventional

<— Dblind deconvolution photography
<— flutter shutter, motion-invariant photo “ coded
photography

<—— coded aperture, focal sweep, lattice lens
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Dealing with depth blur: coded aperture



Defocus blur

Point spread function (PSF): The blur kernel of a (perfect) lens at some out-of-focus depth.

i ' «— Dblur kernel

<€ _ _ >I< _
object distance D focus distance D’

v

What does the blur kernel depend on?
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Defocus blur

Point spread function (PSF): The blur kernel of a (perfect) lens at some out-of-focus depth.

i ' «— Dblur kernel

D I— P _
object distance D focus distance D’

v

« Aperture determines shape of kernel.

* Depth determines scale of blur kernel.
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Depth determines scale of blur kernel

PSF

pommmmm e —————

>I<
object distance D focus distance D’

v
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Depth determines scale of blur kernel

PSF

Aomm e - ————

_ _ >I< : >
object distance D focus distance D’
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Depth determines scale of blur kernel

PSF

pmmmm e e ———

_ _ >I< : >
object distance D focus distance D’
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Depth determines scale of blur kernel

A

>

L — L — L — nw - L — L — L —

focus distance D’

object distance D
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Depth determines scale of blur kernel

PSF

A

>

focus distance D’

object distance D
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Aperture determines shape of blur kernel

A

>

focus distance D’

object distance D
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Aperture determines shape of blur kernel

\What causes these lines?

photo of aperture shape of aperture blur kernel
(optical transfer function, OTF)  (point spread function, PSF)

How do the OTF and PSF relate to each other?
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Removing depth defocus

Sleje]-] -

measured PSFs at different depths iInput defocused image

How would you create an all in-focus image given the above?
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Removing depth defocus

Defocus is local convolution with a depth-dependent kernel

depth 3

Input defocused image
o \‘ u
- - .

measured PSFs at

. - - ? .
How would you create an all in-focus image given the above: different depths
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Removing depth defocus

Deconvolve each image patch with all kernels

Select the right scale by evaluating the deconvolution results

AB(+' ]
VIE ¢
ABI-" 8

AB |
AB(

AB(

How do we
select the
correct
scale?
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Removing depth defocus

Problem: With standard aperture, results at different scales look very similar.

AB(+~' ]
VIE ¢
ABI-" 8

/‘IB" wrong scale 3
A ' ‘ correct scale ?
A . ‘ correct scale ?




Coded aperture

Solution: Change aperture so that it is easier to pick the correct scale

‘ . ‘ *_1 {!,:: A B/‘ wrong scale X
‘ ' ‘ *_1 ‘ ' ‘ correct scale
A . ‘ *_1 ‘ . ‘ wrong scale 3
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Build your own coded aperture
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Build your own coded aperture
Voila!

Ve Laede wwzsd

. bt . 152



Coded aperture changes shape of kernel

PSF

pomm e - ——

_ _ >I< : >
object distance D focus distance D’
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Coded aperture changes shape of kernel

_ _ >I< : >
object distance D focus distance D’

/1

PSF

pomm e - ——
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Coded aperture changes shape of PSF

| ‘Q Canon EF 100 mm 1:1.28 Lens,
Canon SLR Rebel XT camera

| " — |

Aperture

in-focus photo out-of-focus, circular aperture out-of-focus, coded aperture
165



Image of a point light source

Coded

Conventional

Aperture Aperture

]

Captured Image Captured Image
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Coded aperture changes shape of PSF

New PSF preserves high frequencies

 More content available to help us

determine correct depth

conventional

S—

——

VAV

coded

‘m
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Input

(o]
LO
—




All-focused
(deconvolved)
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Comparison between standard and coded aperture

Ringing due to wrong scale estimation

-

R
S ;\\

; \
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Comparison between standard and coded aperture
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Depth estimation







All-focused
(deconvolved)



Refocusing




Refocusing



Refocusing

-
-

v

ol
.~

y

b
-



Depth estimation




Any problems with using a coded aperture?



Any problems with using a coded aperture?

 We lose a lot of light due to blocking.

* The deconvolution becomes harder due to more diffraction/zeros in frequency domain.

« \We still need to select correct scale.
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Dealing with depth blur: focal sweep



The difficulty of dealing with depth defocus

varying in-focus distance

A

>

At every focus setting, objects at different
depths are blurred by different PSF
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The difficulty of dealing with depth defocus

varying in-focus distance
<€ >

At every focus setting, objects at different
depths are blurred by different PSF

|
|
|
|
|
|
|
I
I
I
I
1
I
1
. n PSFs for object at depth 1
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The difficulty of dealing with depth defocus

varying in-focus distance
<€ >

At every focus setting, objects at different
depths are blurred by different PSF

T T 1
D D u . n PSFs for object at depth 1
n.nnn PSFs for object at depth 2
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The difficulty of dealing with depth defocus

varying in-focus distance
<€ >

At every focus setting, objects at different
depths are blurred by different PSF

T 1
D n u . n PSFs for object at depth 1 As we sweep through focus
settings, each point every object

n.nnD PSFs for object at depth 2 IS blurred by all possible PSFs
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Focal sweep

varying in-focus distance
<€ >

T I 1
D D u . n PSFs for object at depth 1
n.nnD PSFs for object at depth 2

(— EXPOSUre ===
A i

linear motion:

distance
sensor-lens

time

Go through all focus
settings during a single
exposure

What is the effective
PSF in this case?
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Focal sweep

varying in-focus distance
<€ >

(— EXPOSUre ===
'Y s

linear motion:

distance
sensor-lens

time

Go through all focus
settings during a single
exposure

oo 1
J D D u . n dt = u effective PSF for object at depth 1 Anything special

about these effective

Jn.nnn dt = u effective PSF for object at depth 2 PSFs?
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Focal sweep

The effective PSF is:
1. Depth-invariant — all points are blurred the same way regardless of depth.
2. Never sharp — all points will be blurry regardless of depth.

What are the implications of this?
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Focal sweep

The effective PSF is:
1. Depth-invariant — all points are blurred the same way regardless of depth.
2. Never sharp — all points will be blurry regardless of depth.

What are the implications of this?
1. The image we capture will not be sharp anywhere; but
2. \We can use simple (global) deconvolution to sharpen parts we want

1. Can we estimate depth from this?
2. Can we do refocusing from this?
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Focal sweep

The effective PSF is:
1. Depth-invariant — all points are blurred the same way regardless of depth.
2. Never sharp — all points will be blurry regardless of depth.

What are the implications of this?
1. The image we capture will not be sharp anywhere; but
2. \We can use simple (global) deconvolution to sharpen parts we want

1. Can we estimate depth from this? Depth-invariance of the PSF means
2. Can we do refocusing from this? that we have lost all depth information
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How can you implement focal sweep?
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How can you implement focal sweep?

Translation
pr——l

Micro-actuator : |

Image Detector

Use translation stage to move sensor relative Rotate focusing ring to move lens relative
to fixed lens during exposure to fixed sensor during exposure




Comparison of different PSFs

Normal Camera PSF EDOF Camera IPSF
0.04 g 0.04 0.04 0.04
0.02 A2 0.02 0.02 0.02
q-
70 0 10 0% 0 1o O 0o LT
0.04 : g 0.04 0.04 0.04
ﬂ &
0.02 0 0.02 ﬁ 0.02 ﬁ 0.02 i
070 0 10 0 10 010 00 10 D 10 0 10
50x [0.04 = 0.04 0.04, 0.04
& &
50x(0.02 ‘ ?, § 0.02 | 0.02/ ﬁ 0.02 ﬁ
=] w
8 = _L
0 0 0
000 10 A 10 0 10 10 0 10 10 0 10
0.04 é 0.04 0.04 0.04
0.02 ‘h § 0.02 ﬂ 0.02 n 0.02 ﬁ
070 0 10 0T 0 10 00 10 0 10 0 10
0.04 2 0.04 0.04 0.04
0.02 Y § 0.02 0.02 0.02
(e}
0 = 0 0 0
210 0 10 10 010 10 010 10 0 10
(0,0) pix. (0,0) pix. (212,0) pix. (424.0) pix.

€ siitar Center < . >
Image Location (x,y)
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Depth of field comparisons

ebew! 4003
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Any problems with using focal sweep?



Any problems with using focal sweep?

* \We have moving parts (vibrations, motion blur).

Translation s

i

r—

Micro-actuator ; .
\ r - —

Image Detector

« Perfect depth invariance requires very constant speed.

»

linear motion:

distance
sensor-lens

 We lose depth information.
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Dealing with depth blur: generalized optics



PSF

>~ €

Change optics, not aperture

focus distance D’

object distance D
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Wavefront coding

pmmmm e e ———

. . >I< .
object distance D focus distance D’

v

Replace lens with a cubic phase plate
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Wavefront coding

RAYS FROM A TRADITIONAL IMAGING SYS N AYS FROM A WAVEFRONT CODING IMAGING SYSTEM

In focus Out of focus $
2
1
&
1
2
. »

standard lens O R R I N

EXFPANDED VIEW OF RAYS FROM A EXPANDED VIEW O

TRADITIONAL IMAGING SYSTEM WAVEFERONT
== e —— g
= = r__,——-'
=

wavefront coding

* Rays no longer converge. = o

* Approximately depth-invariant PSF for certain range of depths.
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Lattice lens

pmmmm e e ———

>I<
object distance D focus distance D’

v

Add lenslet array with varying focal length in front of lens
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Lattice lens




Lattice lens

« Effectively captures only the “useful” subset of the 4D lightfield.

Light field spectrum: 4D

Image spectrum: 2D
Depth: 1D 3D

- Dimensionality gap (Ng 05)

Only the 3D manifold corresponding to
physical focusing distance is useful

« PSF is not depth-invariant, so local deconvolution as in coded aperture.

PSFs at different depths
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Results

Standard lens
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Results

L attice lens

-nu:ncvll'& {

LY
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Results

Standard lens







Resqlts
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Results

L attice lens
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Refocusing example




Refocusing example
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Refocusing example

-
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Comparison of different techniques

D =4[ -

standard coded focal wavefront lattice
lens aperture sweep coding lens

Depth of field
comparison:

Object at in-focus depth
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Diffusion coded photography

e can also do EDOF with diffuser as coded aperture, has better inversion

characteristics than lattice focal lens

- a5 -
Conventional Camera Diffusion Coded Camera

Can you think of any issues?
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Dealing with motion blur



Why are our images blurry?

« Lens imperfections.
« Camera shake.
« Scene motion.

* Depth defocus.

non-blind deconvolution ]
conventional

blind deconvolution photography
flutter shutter, motion-invariant photo
coded
photography

coded aperture, focal sweep, lattice lens
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Motion blur

L

R

Most scene is static .
e .”

Can moving linearly from left to right
A
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Motion blur

= _1 L *

blurry image of motion blur kernel sharp image of
moving object static object

What does the motion blur kernel depend on?
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Motion blur

= _1 L *

blurry image of motion blur kernel sharp image of
moving object static object

What does the motion blur kernel depend on?
* Motion velocity determines direction of kernel.
« Shutter speed determines width of kernel.

Can we use deconvolution to remove motion blur?
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Challenges of motion deblurring

 Bilur kernel i1s not invertible.

 Blur kernel is unknown.

« Blur kernel is different for different objects.
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Challenges of motion deblurring

| | _ <€ How would you deal with this?
 Bilur kernel i1s not invertible.

 Blur kernel is unknown.

« Blur kernel is different for different objects.
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Dealing with motion blur: coded exposure



Coded exposure a.k.a. flutter shutter

Code exposure (i.e., shutter speed) to make motion blur kernel better conditioned.

traditional f f
camera = _| L ®

blurry image of motion blur kernel sharp image of
moving object static object

flutter-shutter
camera I | I " | X

blurry image of motion blur kernel sharp image of

moving object static object
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How would you implement coded exposure?

217



How would you implement coded exposure?

electronics for external
shutter control

very fast external
shutter
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Coded exposure a.k.a. flutter shutter

motion blur kernel
In time domain _> _%
motion blur kernel I\\/\/VJVW\/\N\’\/\[

in Fourier domain

Why is flutter
shutter
better?
. 219




Coded exposure a.k.a. flutter shutter
motion blur kernel
In time domain _> >
zeros make inverse \\/\/VJVW\/\A,VV\/\[
motion blur kernel filter unstable

in Fourier domain NNAAAAAAAAAAANA

I

inverse filter
IS stable

Why is flutter
shutter
better?
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Motion deblurring comparison

conventional photography flutter-shutter photography

deconvolved
output




License Plate Retrieval




License Plate Retrieval




Challenges of motion deblurring

 Bilur kernel i1s not invertible.

 Blur kernel is unknown.

\ How would you deal

with these two?

» Blur kernel is different for different objects.
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Dealing with motion blur: parabolic sweep



Motion-invariant photography

Introduce extra motion so that:
« FEverything is blurry; and
* The blur kernel is motion invariant (same for all objects).

How would you achieve this?
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Parabolic sweep

Time t

Sensor position x(t)=a t2

e start by moving very fast to the right
e continuously slow down until stop

e continuously accelerate to the left

 |ntuition:

« for any velocity, there is one
instant where we track perfectly

« all velocities captured same
amount of time

<

Sensor position x
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Hardware implementation

Approximate small translation by small rotation
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static camera input - parabolic input - blur is
unknown and variable blur Invariant to velocity
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static camera input - output after deconvolution
unknown and variable blur

Is this blind or non-blind deconvolution? -



Some results

static camera input parabolic camera input deconvolution output
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Next Lecture:
Convolutional Neural Networks



