Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A **spanning tree** of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

![Graph G](image)

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A **spanning tree** of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

![Not connected](image)
Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

Network design

MST of bicycle routes in North Seattle

![MST of bicycle routes in North Seattle](http://www.flickr.com/photos/owedistrict/21980840)

Models of nature

MST of random graph

![MST of random graph](http://algo.inria.fr/broutin/gallery.html)
Medical image processing

MST describes arrangement of nuclei in the epithelium for cancer research

Medical image processing

MST dithering

Applications

MST is fundamental problem with diverse applications.
- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, cable, computer, road).

Minimum Spanning Trees

- Greedy algorithm
- Edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
- Context
Cut property

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A *cut* in a graph is a partition of its vertices into two (nonempty) sets. A *crossing edge* connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

Cut property: correctness proof

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A *cut* in a graph is a partition of its vertices into two (nonempty) sets. A *crossing edge* connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Pf. Let e be the min-weight crossing edge in cut.
- Suppose e is not in the MST.
- Adding e to the MST creates a cycle.
- Some other edge f in cycle must be a crossing edge.
- Removing f and adding e is also a spanning tree.
- Since weight of e is less than the weight of f, that spanning tree is lower weight.
- Contradiction. □
Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

MST edges
0-2

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

MST edges
0-2

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

crossing edges
(sorted by weight)

in MST
5-7 0.28
1-5 0.32
4-5 0.35

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

crossing edges
(sorted by weight)

in MST
6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

crossing edges
(sorted by weight)

in MST
5-7 0.28
1-5 0.32
4-5 0.35

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7
Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

```
MST edges
0-2  5-7  6-2
```

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

```
MST edges
0-2  5-7  6-2
```

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

```
MST edges
0-2  5-7  6-2
```

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

```
MST edges
0-2  5-7  6-2  0-7
```

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

```
MST edges
0-2  5-7  6-2
```
Greedy MST algorithm

• Start with all edges colored gray.
• Find a cut with no black crossing edges, and color its min-weight edge black.
• Repeat until \(V - 1 \) edges are colored black.

![Diagram of Greedy MST algorithm](image1)

MST edges

- 0-2
- 5-7
- 6-2
- 0-7
- 2-3

Greedy MST algorithm

• Start with all edges colored gray.
• Find a cut with no black crossing edges, and color its min-weight edge black.
• Repeat until \(V - 1 \) edges are colored black.

![Diagram of Greedy MST algorithm](image2)

MST edges

- 0-2
- 5-7
- 6-2
- 0-7
- 2-3

Greedy MST algorithm

• Start with all edges colored gray.
• Find a cut with no black crossing edges, and color its min-weight edge black.
• Repeat until \(V - 1 \) edges are colored black.

![Diagram of Greedy MST algorithm](image3)

MST edges

- 0-2
- 5-7
- 6-2
- 0-7
- 2-3

Greedy MST algorithm

• Start with all edges colored gray.
• Find a cut with no black crossing edges, and color its min-weight edge black.
• Repeat until \(V - 1 \) edges are colored black.

![Diagram of Greedy MST algorithm](image4)

MST edges

- 0-2
- 5-7
- 6-2
- 0-7
- 2-3

Crossing edges (sorted by weight)

- 1-7: 0.19
- 1-3: 0.29
- 1-5: 0.32
- 4-5: 0.35
- 1-2: 0.36
- 4-7: 0.37
- 0-4: 0.38
- 6-4: 0.93

Min-weight crossing edge

- 1-7
- 0.19
- 1-3
- 0.29
- 1-5
- 0.32
- 4-5
- 0.35
- 1-2
- 0.36
- 4-7
- 0.37
- 0-4
- 0.38
- 6-4
- 0.93
Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until \(V - 1 \) edges are colored black.

![MST edges](image)

Greedy MST algorithm: correctness proof

Proposition. The greedy algorithm computes the MST.

Pf.
- Any edge colored black is in the MST (via cut property).
- If fewer than \(V - 1 \) black edges, there exists a cut with no black crossing edges.
 (consider cut whose vertices are one connected component)

Greedy MST algorithm: efficient implementations

Proposition. The greedy algorithm computes the MST:

Efficient implementations. Choose cut? Find min-weight edge?

Ex 1. Kruskal’s algorithm. [stay tuned]
Ex 2. Prim’s algorithm. [stay tuned]
Ex 3. Borůvka’s algorithm.

Removing two simplifying assumptions

Q. What if edge weights are not all distinct?

A. Greedy MST algorithm still correct if equal weights are present!
 (our correctness proof fails, but that can be fixed)

Q. What if graph is not connected?

A. Compute minimum spanning forest = MST of each component.
MINIMUM SPANNING TREES

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

Weighted edge API

Edge abstraction needed for weighted edges.

```java
public class Edge implements Comparable<Edge> {
    private final int v, w;
    private final double weight;
    
    public Edge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }
    
    public int either() { return v; }
    public int other(int vertex) {
        if (vertex == v) return w;
        else return v;
    }
    
    public int compareTo(Edge that) {
        if (this.weight < that.weight) return -1;
        else if (this.weight > that.weight) return +1;
        else return 0;
    }
    
    public int V() { return v; }
    public int E() { return w; }
    public String toString() { return String.valueOf(weight); }
}
```

Idiom for processing an edge `e`:

```java
int v = e.either(), w = e.other(v);
```

Weighted edge: Java implementation

```java
public class Edge implements Comparable<Edge> {
    private final int v, w;
    private final double weight;
    
    public Edge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }
    
    public int either() { return v; }
    public int other(int vertex) {
        if (vertex == v) return w;
        else return v;
    }
    
    public int compareTo(Edge that) {
        if (this.weight < that.weight) return -1;
        else if (this.weight > that.weight) return +1;
        else return 0;
    }
    
    public int V() { return v; }
    public int E() { return w; }
    public String toString() { return String.valueOf(weight); }
}
```

Edge-weighted graph API

```java
public class EdgeWeightedGraph {
    private final int V;
    private final int E;
    
    public EdgeWeightedGraph(int V) {
        this.V = V;
        this.E = 0;
    }
    
    public EdgeWeightedGraph(In in) {
        int V = in.readInt();
        int E = in.readInt();
        this.V = V;
        this.E = E;
        
        for (int i = 0; i < E; i++) {
            int u = in.readInt();
            int w = in.readInt();
            double weight = in.readDouble();
            addEdge(new Edge(u, w, weight));
        }
    }
    
    public void addEdge(Edge e) {
        int u = e.one();
        int v = e.other(u);
        
        if (adj.contains(u)) {
            for (Edge e2 : adj(u)) {
                if (e2.equals(e)) return;
            }
        }
        
        adj.add(u);
        
        if (adj.contains(v)) {
            for (Edge e2 : adj(v)) {
                if (e2.equals(e)) return;
            }
        }
        
        adj.add(v);
        
        int w = e.weight();
        
        E = E + 1;
    }
    
    public Iterable<Edge> adj(int v) {
        return new List() {
            @Override
            public Iterator<Edge> iterator() {
                return new Iterator<Edge>() {
                    int i = 0;
                    int limit = adj.size();
                    
                    @Override
                    public boolean hasNext() {
                        return i < limit;
                    }
                    
                    @Override
                    public Edge next() {
                        Edge e = adj.get(i);
                        return e;
                    }
                    
                    @Override
                    public void remove() {
                        throw new UnsupportedOperationException();
                    }
                }
            }
        };
    }
    
    public Iterable<Edge> edges() {
        return new List() {
            @Override
            public Iterator<Edge> iterator() {
                return new Iterator<Edge>() {
                    int i = 0;
                    int limit = E;
                    
                    @Override
                    public boolean hasNext() {
                        return i < limit;
                    }
                    
                    @Override
                    public Edge next() {
                        Edge e = edges.get(i);
                        return e;
                    }
                    
                    @Override
                    public void remove() {
                        throw new UnsupportedOperationException();
                    }
                }
            }
        };
    }
    
    public int V() { return V; }
    public int E() { return E; }
    public String toString() { return String.valueOf(V) + " vertices, " + String.valueOf(E) + " edges;"; }
}
```

Conventions. Allow self-loops and parallel edges.
Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of edge lists.

```
public class EdgeWeightedGraph {
    private final int V;
    private final Bag<Edge>[] adj;
    public EdgeWeightedGraph(int V) {
        this.V = V;
        adj = (Bag<Edge>[])
            new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Edge>();
    }
    public void addEdge(Edge e) {
        int v = e.either(), w = e.other(v);
        adj[v].add(e);
        adj[w].add(e);
    }
    public Iterable<Edge> adj(int v) { return adj[v]; }
}
```

Minimum spanning tree API

Q. How to represent the MST?

```
public class MST {
    MST(EdgeWeightedGraph G) {
        private final int V;
        private final Bag<Edge>[] adj;
        public EdgeWeightedGraph(int V) {
            this.V = V;
            adj = (Bag<Edge>[])
                new Bag[V];
            for (int v = 0; v < V; v++)
                adj[v] = new Bag<Edge>();
        }
    }
    public void addEdge(Edge e) {
        int v = e.either(), w = e.other(v);
        adj[v].add(e);
        adj[w].add(e);
    }
    public Iterable<Edge> adj(int v) { return adj[v]; }
}
```

```
% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81
```
Kruskal’s algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

In the example graph, edges are sorted by weight:

- 0-7 0.16
- 2-3 0.17
- 1-7 0.19
- 0-2 0.26
- 5-7 0.28
- 1-3 0.29
- 1-5 0.32
- 2-7 0.34
- 4-5 0.35
- 1-2 0.36
- 4-7 0.37
- 0-4 0.38
- 6-2 0.40
- 3-6 0.52
- 6-0 0.58
- 6-4 0.93

In the minimum spanning tree (MST), the edges 0-7, 2-3, 1-7, 0-2, 5-7, 1-3, and 1-5 are considered.

- 0-7 does not create a cycle.
- 2-3 creates a cycle.

The edges 0-7, 2-3, 1-7, 0-2, 5-7, 1-3, and 1-5 are added to the MST.

- 0-7
- 2-3
- 1-7
- 0-2
- 5-7
- 1-3
- 1-5

In the MST, edge 2-3 creates a cycle.
Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.
Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.
Kruskal’s algorithm

• Consider edges in ascending order of weight.
• Add next edge to tree T unless doing so would create a cycle.
Kruskal’s algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

Kruskal’s algorithm: visualization

creates a cycle
not in MST

Kruskal’s algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

Kruskal’s algorithm: visualization
Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.

Pf.

1. Suppose Kruskal’s algorithm colors the edge $e = v \rightarrow w$ black.
2. Cut = set of vertices connected to v in tree T.
3. No crossing edge is black.
4. No crossing edge has lower weight. Why?

Challenge.

Would adding edge $v \rightarrow w$ to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding $v \rightarrow w$ would create a cycle.
- To add $v \rightarrow w$ to T, merge sets containing v and w.

Kruskal’s algorithm: implementation challenge

Challenge.

Would adding edge $v \rightarrow w$ to tree T create a cycle? If not, add it.

How difficult?

- $E + V$
- V
- $\log V$
- $\log \log V$
- 1

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding $v \rightarrow w$ would create a cycle.
- To add $v \rightarrow w$ to T, merge sets containing v and w.

Kruskal’s algorithm: Java implementation

```java
public class KruskalMST
{
    private Queue<Edge> mst = new Queue<Edge>();
    public KruskalMST(EdgeWeightedGraph G)
    {
        MinPQ<Edge> pq = new MinPQ<Edge>();
        for (Edge e : G.edges())
            pq.insert(e);
        UF uf = new UF(G.V());
        while (!pq.isEmpty() && mst.size() < G.V()-1)
        {
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
            if (!uf.connected(v, w))
            {
                uf.union(v, w);
                mst.enqueue(e);
            }
        }
    }
    public Iterable<Edge> edges()
    {  return mst;  }
}
```

Build priority queue
- greedily add edges to MST
- edge $v \rightarrow w$ does not create cycle
- merge sets
- add edge to MST

Case 1: adding $v \rightarrow w$ creates a cycle

Case 2: add $v \rightarrow w$ to T and merge sets containing v and w
Kruskal’s algorithm: running time

Proposition. Kruskal’s algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Pf.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Frequency</th>
<th>Time per op</th>
</tr>
</thead>
<tbody>
<tr>
<td>build pq</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>delete-min</td>
<td>E</td>
<td>$\log E$</td>
</tr>
<tr>
<td>union</td>
<td>V</td>
<td>$\log^* V$</td>
</tr>
<tr>
<td>connected</td>
<td>E</td>
<td>$\log^* V$</td>
</tr>
</tbody>
</table>

† amortized bound using weighted quick union with path compression

Remark. If edges are already sorted, order of growth is $E \log^* V$.

Minimum Spanning Trees

- Greedy algorithm
- Edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
- Context

Prim’s algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

![Prim's algorithm example](image)

![Minimum Spanning Trees](image)
Prim’s algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

MST edges

0-7

min weight edge with exactly one endpoint in T

edges with exactly one endpoint in T (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>0.16</td>
</tr>
<tr>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Prim’s algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

MST edges

0-7

min weight edge with exactly one endpoint in T

edges with exactly one endpoint in T (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>0.19</td>
</tr>
<tr>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Prim’s algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

MST edges

0-7

min weight edge with exactly one endpoint in T

edges with exactly one endpoint in T (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>0.19</td>
</tr>
<tr>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V - 1$ edges.

```
min weight edge with exactly one endpoint in T
```

```
\begin{array}{c}
\text{in MST} \\
5 - 7 & 0.28 \\
1 - 5 & 0.32 \\
4 - 7 & 0.37 \\
0 - 4 & 0.38 \\
6 - 2 & 0.40 \\
3 - 6 & 0.52 \\
6 - 0 & 0.58 \\
\end{array}
```

```
MST edges \\
0 - 7 \\
1 - 7 \\
0 - 2 \\
2 - 3 \\
```

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V - 1$ edges.

```
min weight edge with exactly one endpoint in T
```

```
\begin{array}{c}
\text{in MST} \\
5 - 7 & 0.28 \\
1 - 5 & 0.32 \\
4 - 7 & 0.37 \\
0 - 4 & 0.38 \\
6 - 2 & 0.40 \\
3 - 6 & 0.52 \\
6 - 0 & 0.58 \\
\end{array}
```

```
MST edges \\
0 - 7 \\
1 - 7 \\
0 - 2 \\
2 - 3 \\
```

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V - 1$ edges.

```
min weight edge with exactly one endpoint in T
```

```
\begin{array}{c}
\text{in MST} \\
4 - 5 & 0.35 \\
4 - 7 & 0.37 \\
0 - 4 & 0.38 \\
6 - 2 & 0.40 \\
3 - 6 & 0.52 \\
6 - 0 & 0.58 \\
\end{array}
```

```
MST edges \\
0 - 7 \\
1 - 7 \\
0 - 2 \\
2 - 3 \\
5 - 7 \\
4 - 5 \\
```

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V - 1$ edges.

```
min weight edge with exactly one endpoint in T
```

```
\begin{array}{c}
\text{in MST} \\
4 - 5 & 0.35 \\
4 - 7 & 0.37 \\
0 - 4 & 0.38 \\
6 - 2 & 0.40 \\
3 - 6 & 0.52 \\
6 - 0 & 0.58 \\
\end{array}
```

```
MST edges \\
0 - 7 \\
1 - 7 \\
0 - 2 \\
2 - 3 \\
5 - 7 \\
4 - 5 \\
```

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V - 1$ edges.

```
min weight edge with exactly one endpoint in T
```

```
\begin{array}{c}
\text{in MST} \\
4 - 5 & 0.35 \\
4 - 7 & 0.37 \\
0 - 4 & 0.38 \\
6 - 2 & 0.40 \\
3 - 6 & 0.52 \\
6 - 0 & 0.58 \\
\end{array}
```

```
MST edges \\
0 - 7 \\
1 - 7 \\
0 - 2 \\
2 - 3 \\
5 - 7 \\
4 - 5 \\
```
Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]

Prim's algorithm computes the MST.

Pf. Prim's algorithm is a special case of the greedy MST algorithm.
- Suppose edge $e = \text{min weight edge connecting a vertex on the tree to a vertex not on the tree}$.
- Cut $= \text{set of vertices connected on tree}$.
- No crossing edge is black.
- No crossing edge has lower weight.

Prim's algorithm: visualization

Prim's algorithm: proof of correctness
Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?
- E
- V
- $\log E$
- $\log^* E$
- I

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
- Key = edge; priority = weight of edge.
- Delete-min to determine next edge $e = v \rightarrow w$ to add to T.
- Disregard if both endpoints v and w are in T.
- Otherwise, let v be vertex not in T:
 - add to PQ any edge incident to v (assuming other endpoint not in T)
 - add v to T

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

add to PQ all edges incident to 0

edges on PQ (sorted by weight)
* 0-7 0.16
* 0-2 0.26
* 0-4 0.38
* 6-0 0.58

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

delete 0–7 and add to MST

add to PQ all edges incident to 7

edges on PQ (sorted by weight)
* 1-7 0.19
* 0-2 0.26
* 5-7 0.28
* 2-7 0.34
* 4-7 0.37
* 0-4 0.38
* 6-0 0.58

MST edges
0–7
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
delete 1−7 and add to MST
```

```
MST edges
0−7
```

```
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree $T$.
- Add to $T$ the min weight edge with exactly one endpoint in $T$.
- Repeat until $V-1$ edges.

```
add to PQ all edges incident to 1
```

```
edges on PQ (sorted by weight)

1−7 0.19
0−2 0.26
5−7 0.28
2−7 0.34
4−7 0.37
0−4 0.38
6−0 0.58
```

```
MST edges
0−7 1−7
```

```
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
delete edge 0−2 and add to MST
```

```
edges on PQ (sorted by weight)

0−2  0.26
5−7  0.28
2−7  0.34
4−7  0.37
0−4  0.38
6−0  0.58
```

```
MST edges
0−7  1−7
```

```
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree $T$.
- Add to $T$ the min weight edge with exactly one endpoint in $T$.
- Repeat until $V-1$ edges.

```
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
delete edge 0−2 and add to MST
```

```
edges on PQ (sorted by weight)

0−2  0.26
5−7  0.28
2−7  0.34
4−7  0.37
0−4  0.38
6−0  0.58
```

```
MST edges
0−7  1−7
```
• Start with vertex 0 and greedily grow tree T.
• Add to T the min weight edge with exactly one endpoint in T.
• Repeat until $V-1$ edges.

Prim's algorithm - Lazy implementation

1. Start with vertex 0 and greedily grow tree T.
2. Add to T the min weight edge with exactly one endpoint in T.
3. Repeat until $V-1$ edges.

MST edges
0-7 1-7 0-2

Edges on PQ (sorted by weight)
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
1-2 0.36
4-7 0.37
0-4 0.38
6-0 0.58

MST edges
0-7 1-7 0-2

Edges on PQ (sorted by weight)
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
1-2 0.36
4-7 0.37
0-4 0.38
6-0 0.58

Edges on PQ (sorted by weight)
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
6-0 0.58
Prim's algorithm - Lazy implementation

• Start with vertex 0 and greedily grow tree T.
• Add to T the min weight edge with exactly one endpoint in T.
• Repeat until $V-1$ edges.

add to PQ all edges incident to 3

![Diagram](image1)

Prim's algorithm - Lazy implementation

• Start with vertex 0 and greedily grow tree T.
• Add to T the min weight edge with exactly one endpoint in T.
• Repeat until $V-1$ edges.

delete 5–7 and add to MST

![Diagram](image2)

Prim's algorithm - Lazy implementation

• Start with vertex 0 and greedily grow tree T.
• Add to T the min weight edge with exactly one endpoint in T.
• Repeat until $V-1$ edges.

add to PQ all edges incident to 5

![Diagram](image3)

Prim's algorithm - Lazy implementation

• Start with vertex 0 and greedily grow tree T.
• Add to T the min weight edge with exactly one endpoint in T.
• Repeat until $V-1$ edges.

![Diagram](image4)
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
data MST edges
0-7 1-7 0-2 2-3 5-7
```

Lazy implementation

```
edges on PQ (sorted by weight)
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
```

Delete 1-3 and discard obsolete edge

```
MST edges
0-7 1-7 0-2 2-3 5-7
```

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
data MST edges
0-7 1-7 0-2 2-3 5-7
```

Lazy implementation

```
edges on PQ (sorted by weight)
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
```

Delete 1-5 and discard obsolete edge

```
MST edges
0-7 1-7 0-2 2-3 5-7
```

Lazy implementation

```
MST edges
0-7 1-7 0-2 2-3 5-7
```

Delete 4-5 and add to MST

```
edges on PQ (sorted by weight)
4-5 0.35
3-6 0.52
6-0 0.58
```

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
data MST edges
0-7 1-7 0-2 2-3 5-7
```

Lazy implementation

```
edges on PQ (sorted by weight)
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
```

Delete 2-7 and discard obsolete edge

```
MST edges
0-7 1-7 0-2 2-3 5-7
```

Lazy implementation

```
MST edges
0-7 1-7 0-2 2-3 5-7
```
Prim's algorithm - Lazy implementation

• Start with vertex 0 and greedily grow tree T.
• Add to T the min weight edge with exactly one endpoint in T.
• Repeat until $V-1$ edges.

edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

Prim's algorithm - Lazy implementation

• Start with vertex 0 and greedily grow tree T.
• Add to T the min weight edge with exactly one endpoint in T.
• Repeat until $V-1$ edges.

add to PQ all edges incident to 4

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

Prim's algorithm - Lazy implementation

• Start with vertex 0 and greedily grow tree T.
• Add to T the min weight edge with exactly one endpoint in T.
• Repeat until $V-1$ edges.

delete 4-7 and discard obsolete edge

edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

Prim's algorithm - Lazy implementation

• Start with vertex 0 and greedily grow tree T.
• Add to T the min weight edge with exactly one endpoint in T.
• Repeat until $V-1$ edges.

delete 1-2 and discard obsolete edge

edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

MST edges

0-7 1-7 0-2 2-3 5-7 4-5
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Delete 0–4 and discard obsolete edge

MST edges
0–7 1–7 0–2 2–3 5–7 4–5

edges on PQ (sorted by weight)
0–4 0.38
6–2 0.40
3–6 0.52
6–0 0.58
6–4 0.93

stop since $V-1$ edges

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Delete 6–2 and add to MST

MST edges
0–7 1–7 0–2 2–3 5–7 4–5

edges on PQ (sorted by weight)
6–2 0.40
3–6 0.52
6–0 0.58
6–4 0.93

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Delete 0–4 and discard obsolete edge

MST edges
0–7 1–7 0–2 2–3 5–7 4–5

edges on PQ (sorted by weight)
0–4 0.38
6–2 0.40
3–6 0.52
6–0 0.58
6–4 0.93

stop since $V-1$ edges

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Delete 0–4 and discard obsolete edge

MST edges
0–7 1–7 0–2 2–3 5–7 4–5

edges on PQ (sorted by weight)
0–4 0.38
6–2 0.40
3–6 0.52
6–0 0.58
6–4 0.93

stop since $V-1$ edges
Prim’s algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
public class LazyPrimMST {
    private boolean[] marked; // MST vertices
    private Queue<Edge> mst; // MST edges
    private MinPQ<Edge> pq; // PQ of edges

    public LazyPrimMST(WeightedGraph G) {
        pq = new MinPQ<Edge>();
        mst = new Queue<Edge>();
        marked = new boolean[G.V()];
        visit(G, 0);
        while (!pq.isEmpty()) {
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
            if (marked[v] && marked[w]) continue;
            mst.enqueue(e);
            if (!marked[v]) visit(G, v);
            if (!marked[w]) visit(G, w);
        }
    }
}
```

Prim’s algorithm: lazy implementation

for each edge e = v – w, add to PQ if w not already in T
add v to T
add edge e to tree
add v or w to tree

Proposition. Lazy Prim’s algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

Pf.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete min</td>
<td>E</td>
<td>$\log E$</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>$\log E$</td>
</tr>
</tbody>
</table>

MST edges

0-7 1-7 0-2 2-3 5-7 4-5 6-2

Lazy Prim’s algorithm: running time
Prim’s algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in \(T \).

Eager solution. Maintain a PQ of vertices connected by an edge to \(T \), where priority of vertex \(v \) = weight of shortest edge connecting \(v \) to \(T \).

- Delete min vertex \(v \) and add its associated edge \(e = v \to w \) to \(T \).
- Update PQ by considering all edges \(e = v \to x \) incident to \(v \)
 - ignore if \(x \) is already in \(T \)
 - add \(x \) to PQ if not already on it
 - decrease priority of \(x \) if \(v \to x \) becomes shortest edge connecting \(x \) to \(T \)

Prim’s algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree \(T \).
- Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
- Repeat until \(V-1 \) edges.

Prim’s algorithm: eager implementation

- Start with vertex 0 and greedily grow tree \(T \).
- Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
- Repeat until \(V-1 \) edges.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0-7</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>1-3</td>
<td>0.29</td>
</tr>
<tr>
<td>4</td>
<td>0-0</td>
<td>0.38</td>
</tr>
<tr>
<td>5</td>
<td>1-5</td>
<td>0.32</td>
</tr>
<tr>
<td>6</td>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>7</td>
<td>0-7</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Prim’s algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree \(T \).
- Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
- Repeat until \(V-1 \) edges.

Prim’s algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree \(T \).
- Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
- Repeat until \(V-1 \) edges.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0-7</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>1-5</td>
<td>0.32</td>
</tr>
<tr>
<td>4</td>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>5</td>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>6</td>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>7</td>
<td>0-7</td>
<td>0.16</td>
</tr>
</tbody>
</table>

vertices on PQ
(sorted by weight)

add vertices 7, 2, 4, and 6 to PQ
Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0–7</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>0–2</td>
<td>0.26</td>
</tr>
<tr>
<td>4</td>
<td>0–4</td>
<td>0.38</td>
</tr>
<tr>
<td>6</td>
<td>6–0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

vertices on PQ (sorted by weight)

MST edges

0–7

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0–7</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>0–2</td>
<td>0.26</td>
</tr>
<tr>
<td>5</td>
<td>5–7</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>0–4</td>
<td>0.38</td>
</tr>
<tr>
<td>6</td>
<td>6–0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

vertices on PQ (sorted by weight)

MST edges

0–7 1–7

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0–7</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>0–2</td>
<td>0.26</td>
</tr>
<tr>
<td>1</td>
<td>1–7</td>
<td>0.19</td>
</tr>
<tr>
<td>5</td>
<td>5–7</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>0–4</td>
<td>0.38</td>
</tr>
<tr>
<td>6</td>
<td>6–0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

vertices on PQ (sorted by weight)

MST edges

0–7

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0–7</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>0–2</td>
<td>0.26</td>
</tr>
<tr>
<td>1</td>
<td>1–7</td>
<td>0.19</td>
</tr>
<tr>
<td>5</td>
<td>5–7</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>0–4</td>
<td>0.38</td>
</tr>
<tr>
<td>6</td>
<td>6–0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

vertices on PQ (sorted by weight)

MST edges

0–7 1–7

Prim’s algorithm - Eager implementation

• Start with vertex 0 and greedily grow tree T.
• Add to T the min weight edge with exactly one endpoint in T.
• Repeat until $V-1$ edges.

MST edges

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0–7</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>1–7</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>0–2</td>
<td>0.26</td>
</tr>
<tr>
<td>5</td>
<td>5–7</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>0–4</td>
<td>0.38</td>
</tr>
<tr>
<td>6</td>
<td>6–0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

vertices on PQ (sorted by weight)

add vertex 3 to PQ
already a better connection to 5 and 7 (discard)

MST edges

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0–7</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>1–7</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>0–2</td>
<td>0.26</td>
</tr>
<tr>
<td>5</td>
<td>5–7</td>
<td>0.28</td>
</tr>
<tr>
<td>3</td>
<td>1–3</td>
<td>0.29</td>
</tr>
<tr>
<td>4</td>
<td>0–4</td>
<td>0.38</td>
</tr>
<tr>
<td>6</td>
<td>6–0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

0-7 1-7 0-2
Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0-7</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>1-7</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>2-3</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6</td>
<td>6-2</td>
<td>0.40</td>
</tr>
</tbody>
</table>

MST edges
0-7 1-7 0-2 2-3

- Decrease key of vertex 3 from 0.29 to 0.17
- Decrease key of vertex 6 from 0.58 to 0.40

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0-7</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>1-7</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>2-3</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6</td>
<td>6-2</td>
<td>0.40</td>
</tr>
</tbody>
</table>

MST edges
0-7 1-7 0-2 2-3

Already a better connection to 6 (discard)
Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

\[
\begin{array}{c|c|c}
\text{v} & \text{edgeTo[]} & \text{distTo[]} \\
\hline
7 & 0-7 & 0.16 \\
1 & 1-7 & 0.19 \\
2 & 0-2 & 0.26 \\
3 & 2-3 & 0.17 \\
5 & 5-7 & 0.28 \\
4 & 0-4 & 0.38 \\
6 & 6-2 & 0.40 \\
\end{array}
\]

MST edges
0-7 1-7 0-2 2-3 5-7

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

\[
\begin{array}{c|c|c}
\text{v} & \text{edgeTo[]} & \text{distTo[]} \\
\hline
7 & 0-7 & 0.16 \\
1 & 1-7 & 0.19 \\
2 & 0-2 & 0.26 \\
3 & 2-3 & 0.17 \\
5 & 5-7 & 0.28 \\
4 & 0-4 & 0.38 \\
6 & 6-2 & 0.40 \\
\end{array}
\]

MST edges
0-7 1-7 0-2 2-3 5-7

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

\[
\begin{array}{c|c|c}
\text{v} & \text{edgeTo[]} & \text{distTo[]} \\
\hline
7 & 0-7 & 0.16 \\
1 & 1-7 & 0.19 \\
2 & 0-2 & 0.26 \\
3 & 2-3 & 0.17 \\
5 & 5-7 & 0.28 \\
4 & 4-5 & 0.35 \\
6 & 6-2 & 0.40 \\
\end{array}
\]

MST edges
0-7 1-7 0-2 2-3 5-7

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

\[
\begin{array}{c|c|c}
\text{v} & \text{edgeTo[]} & \text{distTo[]} \\
\hline
7 & 0-7 & 0.16 \\
1 & 1-7 & 0.19 \\
2 & 0-2 & 0.26 \\
3 & 2-3 & 0.17 \\
5 & 5-7 & 0.28 \\
4 & 4-5 & 0.35 \\
6 & 6-2 & 0.40 \\
\end{array}
\]

MST edges
0-7 1-7 0-2 2-3 5-7
Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

\[\begin{array}{c|c|c}
 v & \text{edgeTo[]} & \text{distTo[]} \\
 \hline
 0 & - & - \\
 7 & 0-7 & 0.16 \\
 1 & 1-7 & 0.19 \\
 2 & 0-2 & 0.26 \\
 3 & 2-3 & 0.17 \\
 5 & 5-7 & 0.28 \\
 4 & 4-5 & 0.35 \\
 6 & 6-2 & 0.40 \\
\end{array}\]

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

\[\begin{array}{c|c|c}
 v & \text{edgeTo[]} & \text{distTo[]} \\
 \hline
 0 & - & - \\
 7 & 0-7 & 0.16 \\
 1 & 1-7 & 0.19 \\
 2 & 0-2 & 0.26 \\
 3 & 2-3 & 0.17 \\
 5 & 5-7 & 0.28 \\
 4 & 4-5 & 0.35 \\
 6 & 6-2 & 0.40 \\
\end{array}\]

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

already a better connection to 6 (discard)

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

\[\begin{array}{c|c|c}
 v & \text{edgeTo[]} & \text{distTo[]} \\
 \hline
 0 & - & - \\
 7 & 0-7 & 0.16 \\
 1 & 1-7 & 0.19 \\
 2 & 0-2 & 0.26 \\
 3 & 2-3 & 0.17 \\
 5 & 5-7 & 0.28 \\
 4 & 4-5 & 0.35 \\
 6 & 6-2 & 0.40 \\
\end{array}\]

MST edges

0-7 1-7 0-2 2-3 5-7 4-5
Prim’s algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Index priority queue

Associate an index between 0 and $N-1$ with each key in a priority queue.

- Client can insert and delete-the-minimum.
- Client can change the key by specifying the index.

```
public class IndexMinPQ<Key extends Comparable<Key>> {

    // Create indexed priority queue
    public IndexMinPQ(int N) {
        // Code...
    }

    // Insert a key with index k
    public void insert(int k, Key key) {
        // Code...
    }

    // Decrease the key associated with index k
    public void decreaseKey(int k, Key key) {
        // Code...
    }

    // Return the index of the minimal key
    public int delMin() {
        // Code...
    }

    // Return true if priority queue is empty
    public boolean isEmpty() {
        // Code...
    }

    // Return number of entries in priority queue
    public int size() {
        // Code...
    }
}
```

Index priority queue implementation

Implementation.

- Start with same code as MinPQ.
- Maintain parallel arrays `keys[]`, `pq[]`, and `qp[]` so that:
 - `keys[i]` is the priority of i
 - `pq[i]` is the index of the key in heap position i
 - `qp[i]` is the heap position of the key with index i
- Use `swim(qp[k])` implement `decreaseKey(k, key)`.

Prim’s algorithm: running time

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>V^2</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$E \log V$</td>
</tr>
<tr>
<td>d-way heap (Johnson 1975)</td>
<td>$d \log_d V$</td>
<td>$d \log_d V$</td>
<td>$d \log_d V$</td>
<td>$E \log_d V$</td>
</tr>
<tr>
<td>Fibonacci heap (Fredman-Tarjan 1984)</td>
<td>1 \dagger</td>
<td>$\log V$ \dagger</td>
<td>1 \dagger</td>
<td>$E + V \log V$</td>
</tr>
</tbody>
</table>

\dagger amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.
Minimum Spanning Trees

- Greedy algorithm
- Edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
- Context

Euclidean MST

Given \(N \) points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.

Brute force. Compute \(\sim N^2 / 2 \) distances and run Prim’s algorithm.

Ingenuity. Exploit geometry and do it in \(\sim cN \log N \).

Scientific application: clustering

- **k-clustering.** Divide a set of objects classify into \(k \) coherent groups.
- **Distance function.** Numeric value specifying "closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

Applications.
- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases.
- Skycat: cluster \(10^9 \) sky objects into stars, quasars, galaxies.

Single-link clustering

- **k-clustering.** Divide a set of objects classify into \(k \) coherent groups.
- **Distance function.** Numeric value specifying "closeness" of two objects.

Single link. Distance between two clusters equals the distance between the two closest objects (one in each cluster).

Single-link clustering. Given an integer \(k \), find a \(k \)-clustering that maximizes the distance between two closest clusters.
Single-link clustering algorithm

“Well-known” algorithm for single-link clustering:
• Form V clusters of one object each.
• Find the closest pair of objects such that each object is in a different cluster, and merge the two clusters.
• Repeat until there are exactly k clusters.

Observation. This is Kruskal’s algorithm (stop when k connected components).

Alternate solution. Run Prim’s algorithm and delete k-1 max weight edges.

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1
Gene n
gene expressed
gene not expressed

Graphs

› Minimum Spanning Trees
› Shortest Paths
› Edge-weighted digraph API
› Shortest-paths properties
› Dijkstra’s algorithm
› Edge-weighted DAGs
› Negative weights

Shortest Paths

› Edge-weighted digraph API
› Shortest-paths properties
› Dijkstra’s algorithm
› Edge-weighted DAGs
› Negative weights
Shortest paths in a weighted digraph

Given an edge-weighted digraph, find the shortest (directed) path from \(s \) to \(t \).

edge-weighted digraph

- 4->5: 0.35
- 5->4: 0.35
- 4->7: 0.37
- 5->7: 0.28
- 7->5: 0.28
- 5->1: 0.32
- 0->4: 0.38
- 0->2: 0.26
- 7->3: 0.39
- 1->3: 0.29
- 2->7: 0.34
- 6->2: 0.40
- 3->6: 0.52
- 6->0: 0.58
- 6->4: 0.93

shortest path from 0 to 6

- 0->2: 0.26
- 2->7: 0.34
- 7->3: 0.39
- 3->6: 0.52

Google maps

Car navigation

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?
• Source-sink: from one vertex to another.
• Single source: from one vertex to every other.
• All pairs: between all pairs of vertices.

Restrictions on edge weights?
• Nonnegative weights.
• Arbitrary weights.
• Euclidean weights.

Cycles?
• No directed cycles.
• No "negative cycles."

Simplifying assumption. Shortest paths from s to each vertex v exist.

Weighted directed edge API

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DirectedEdge(int v, int w, double weight)</td>
<td>weighted edge $v \rightarrow w$</td>
</tr>
<tr>
<td>int from()</td>
<td>vertex v</td>
</tr>
<tr>
<td>int to()</td>
<td>vertex w</td>
</tr>
<tr>
<td>double weight()</td>
<td>weight of this edge</td>
</tr>
<tr>
<td>String toString()</td>
<td>string representation</td>
</tr>
</tbody>
</table>

Idiom for processing an edge e: int $v = e$.from(), $w = e$.to();

Shortest Paths

 Française:

Edge-weighted digraph API
• Shortest-paths properties
• Dijkstra’s algorithm
• Edge-weighted DAGs
• Negative weights

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```java
public class DirectedEdge {
    private final int v, w;
    private final double weight;
    public DirectedEdge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }
    public int from() {
        return v;
    }
    public int to() {
        return w;
    }
    public int weight() {
        return weight;
    }
}
```
Edge-weighted digraph API

```java
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<Edge>[] adj;

    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e)
    {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v)
    {  return adj[v];  }

    public String toString()
    {  return "toString()";  }
}
```

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

```java
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<Edge>[] adj;

    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e)
    {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v)
    {  return adj[v];  }

    public String toString()
    {  return "toString()";  }
}
```

Edge-weighted digraph: adjacency-lists representation

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```java
public class SP
{
    SP(EdgeWeightedDigraph G, int s)
    { shortest paths from $s$ in graph $G$
        double distTo(int v)
        { length of shortest path from $s$ to $v$
            Iterable<DirectedEdge> pathTo(int v)
            { shortest path from $s$ to $v$
                boolean hasPathTo(int v)
                { is there a path from $s$ to $v$?

        SP sp = new SP(G, s);
        for (int v = 0; v < G.V(); v++)
        {  StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
            for (DirectedEdge e : sp.pathTo(v))
                StdOut.print(e + "  ");
            StdOut.println();
        }
    }
```
Single-source shortest paths API

Goal. Find the shortest path from \(s \) to every other vertex.

```java
public class SP

SP(EdgeWeightedDigraph G, int s)  // shortest paths from \( s \) in graph \( G \)
  double distTo(int v)  // length of shortest path from \( s \) to \( v \)
  Iterable<DirectedEdge> pathTo(int v)  // shortest path from \( s \) to \( v \)
  boolean hasPathTo(int v)  // is there a path from \( s \) to \( v \)?
```

% java SP tinyEWD.txt 0
0 to 0 (0.00): 0 -> 0 0.00
0 to 1 (1.05): 0 -> 4 0.38 4 -> 5 0.35 5 -> 1 0.32
0 to 2 (0.26): 0 -> 2 0.26
0 to 3 (0.99): 0 -> 2 0.26 2 -> 7 0.34 7 -> 3 0.39
0 to 4 (0.38): 0 -> 4 0.38
0 to 5 (0.73): 0 -> 4 0.38 4 -> 5 0.35
0 to 6 (1.51): 0 -> 2 0.26 2 -> 7 0.34 7 -> 3 0.39 3 -> 6 0.52
0 to 7 (0.60): 0 -> 2 0.26 2 -> 7 0.34
```

**Data structures for single-source shortest paths**

**Goal.** Find the shortest path from \( s \) to every other vertex.

**Observation.** A *shortest-paths tree* (SPT) solution exists. Why?

**Consequence.** Can represent the SPT with two vertex-indexed arrays:
- \( \text{distTo}[v] \) is length of shortest path from \( s \) to \( v \).
- \( \text{edgeTo}[v] \) is last edge on shortest path from \( s \) to \( v \).

```
shortest-paths tree from 0
```

```
public double distTo(int v) { return distTo[v]; }
public Iterable<DirectedEdge> pathTo(int v) {
 Stack<DirectedEdge> path = new Stack<DirectedEdge>();
 for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
 path.push(e);
 return path;
}
```
**Shortest-paths optimality conditions**

**Proposition.** Let $G$ be an edge-weighted digraph. Then $\text{distTo}[]$ are the shortest path distances from $s$ iff:

- For each vertex $v$, $\text{distTo}[v]$ is the length of some path from $s$ to $v$.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

**Pf.** \(\Rightarrow [\text{ sufficient }]\)

- Suppose that $\text{distTo}[w] > \text{distTo}[v] + e.\text{weight}()$ for some edge $e = v \rightarrow w$.
- Then, $e$ gives a path from $s$ to $w$ (through $v$) of length less than $\text{distTo}[w]$.

- Add inequalities; simplify; and substitute $\text{distTo}[v_i] = 0$:
  \[
  \text{distTo}[w] = \text{distTo}[v_i] + e_i.\text{weight}() + \ldots + e_s.\text{weight}() \\
  \text{weight of shortest path from } s \text{ to } w \\
  \text{weight of some path from } s \text{ to } w \\
  \]
- Thus, $\text{distTo}[w]$ is the weight of shortest path to $w$. $\blacksquare$

**Shortest-paths optimality conditions**

**Proposition.** Let $G$ be an edge-weighted digraph. Then $\text{distTo}[]$ are the shortest path distances from $s$ iff:

- For each vertex $v$, $\text{distTo}[v]$ is the length of some path from $s$ to $v$.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

**Pf.** \(\Leftarrow [\text{ necessary }]\)

- Suppose that $\text{distTo}[w] > \text{distTo}[v] + e.\text{weight}()$ for some edge $e = v \rightarrow w$.
- Then, $e$ gives a path from $s$ to $w$ (through $v$) of length less than $\text{distTo}[w]$.

- Add inequalities; simplify; and substitute $\text{distTo}[v_i] = 0$:
  \[
  \text{distTo}[w] = \text{distTo}[v_i] + e_i.\text{weight}() + \ldots + e_s.\text{weight}() \\
  \text{weight of shortest path from } s \text{ to } w \\
  \text{weight of some path from } s \text{ to } w \\
  \]
**Proposition.** Generic algorithm computes SPT (if it exists) from \( s \).

**Pf sketch.**

- Throughout algorithm, \( \text{distTo}[v] \) is the length of a simple path from \( s \) to \( v \) (and \( \text{edgeTo}[v] \) is last edge on path).
- Each successful relaxation decreases \( \text{distTo}[v] \) for some \( v \).
- The entry \( \text{distTo}[v] \) can decrease at most a finite number of times. 

**Generic algorithm (to compute SPT from \( s \))**

- Initialize \( \text{distTo}[s] = 0 \) and \( \text{distTo}[v] = \infty \) for all other vertices.
- Repeat until optimality conditions are satisfied:
  - Relax any edge.

**Efficient implementations.** How to choose which edge to relax?

- **Ex 1.** Dijkstra’s algorithm (nonnegative weights).
- **Ex 2.** Topological sort algorithm (no directed cycles).
- **Ex 3.** Bellman-Ford algorithm (no negative cycles).

---

**Edsger W. Dijkstra: select quotes**

- “Do only what only you can do.”
- “In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.”
- “The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”
- “It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.”
- “APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”
Edsger W. Dijkstra: select quotes

"Object-oriented programming is an exceptionally bad idea which could only have originated in California." — Edsger Dijkstra

Dijkstra's algorithm

- Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges incident from that vertex.
Dijkstra's algorithm

• Consider vertices in increasing order of distance from $s$
  (non-tree vertex with the lowest $\text{distTo}[]$ value).
• Add vertex to tree and relax all edges incident from that vertex.

relax all edges incident from 0

choose vertex 1

relax all edges incident from 1
Dijkstra's algorithm

- Consider vertices in increasing order of distance from \( s \) (non-tree vertex with the lowest \( \text{distTo}[] \) value).
- Add vertex to tree and relax all edges incident from that vertex.

Choose vertex 7

Choose vertex 7

Choose vertex 7

Choose vertex 7

Relax all edges incident from 7

Relax all edges incident from 7

Relax all edges incident from 1

Relax all edges incident from 1
Dijkstra's algorithm

- Consider vertices in increasing order of distance from \( s \) (non-tree vertex with the lowest \( \text{distTo}[\cdot] \) value).
- Add vertex to tree and relax all edges incident from that vertex.

\[
\begin{array}{c|c|c}
\text{v} & \text{distTo[\cdot]} & \text{edgeTo[\cdot]} \\
\hline
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow1 \\
2 & 15.0 & 7\rightarrow2 \\
3 & 20.0 & 1\rightarrow3 \\
4 & 9.0 & 0\rightarrow4 \\
5 & 14.0 & 7\rightarrow5 \\
6 & & \\
7 & 8.0 & 0\rightarrow7 \\
\end{array}
\]

relax all edges incident from 7

select vertex 4

\[
\begin{array}{c|c|c}
\text{v} & \text{distTo[\cdot]} & \text{edgeTo[\cdot]} \\
\hline
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow1 \\
2 & 15.0 & 7\rightarrow2 \\
3 & 20.0 & 1\rightarrow3 \\
4 & 9.0 & 0\rightarrow4 \\
5 & 14.0 & 7\rightarrow5 \\
6 & & \\
7 & 8.0 & 0\rightarrow7 \\
\end{array}
\]

relax all edges incident from 4
Dijkstra's algorithm

- Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest $distTo[]$ value).
- Add vertex to tree and relax all edges incident from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>7→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>29.0</td>
<td>4→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

1. Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest $distTo[]$ value).
2. Add vertex to tree and relax all edges incident from that vertex.

relax all edges incident from 4

select vertex 5

relax all edges incident from 5
Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.
Dijkstra’s algorithm

- Consider vertices in increasing order of distance from $s$
  (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges incident from that vertex.

\[
\begin{array}{c|c|c}
\text{v} & \text{distTo}[] & \text{edgeTo}[] \\
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow1 \\
2 & 14.0 & 5\rightarrow2 \\
3 & 17.0 & 2\rightarrow3 \\
4 & 9.0 & 0\rightarrow4 \\
5 & 13.0 & 4\rightarrow5 \\
6 & 25.0 & 2\rightarrow6 \\
7 & 8.0 & 0\rightarrow7 \\
\end{array}
\]

relax all edges incident from 2

select vertex 3

\[
\begin{array}{c|c|c}
\text{v} & \text{distTo}[] & \text{edgeTo}[] \\
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow1 \\
2 & 14.0 & 5\rightarrow2 \\
3 & 17.0 & 2\rightarrow3 \\
4 & 9.0 & 0\rightarrow4 \\
5 & 13.0 & 4\rightarrow5 \\
6 & 25.0 & 2\rightarrow6 \\
7 & 8.0 & 0\rightarrow7 \\
\end{array}
\]

relax all edges incident from 3

Dijkstra’s algorithm

- Consider vertices in increasing order of distance from $s$
  (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges incident from that vertex.
Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest $distTo[]$ value).

Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest $distTo[]$ value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest $distTo[]$ value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm
Dijkstra's algorithm

- Consider vertices in increasing order of distance from $s$
  (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges incident from that vertex.

<table>
<thead>
<tr>
<th>$v$</th>
<th>$\text{distTo}[]$</th>
<th>$\text{edgeTo}[]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

Dijkstra's algorithm visualization

shortest-paths tree from vertex $s$
**Dijkstra’s algorithm: correctness proof**

**Proposition.** Dijkstra’s algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

**Pf.**

- Each edge \( e = \overrightarrow{v \rightarrow w} \) is relaxed exactly once (when \( v \) is relaxed), leaving \( \text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight()} \).
- Inequality holds until algorithm terminates because:
  - \( \text{distTo}[w] \) cannot increase
  - \( \text{distTo}[v] \) will not change
- Thus, upon termination, shortest-paths optimality conditions hold.

**Dijkstra’s algorithm: Java implementation**

```java
public class DijkstraSP {
 private DirectedEdge[] edgeTo;
 private double[] distTo;
 private IndexMinPQ<Double> pq;
 public DijkstraSP(EdgeWeightedDigraph G, int s) {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];
 pq = new IndexMinPQ<Double>(G.V());
 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;
 pq.insert(s, 0.0);
 while (!pq.isEmpty()) {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }
}
```

**Dijkstra’s algorithm: which priority queue?**

Depends on PQ implementation: \( V \) insert, \( V \) delete-min, \( E \) decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>1</td>
<td>( V )</td>
<td>1</td>
<td>( V^2 )</td>
</tr>
<tr>
<td>binary heap</td>
<td>( \log V )</td>
<td>( \log V )</td>
<td>( \log V )</td>
<td>( E \log V )</td>
</tr>
<tr>
<td>d-way heap (Johnson 1975)</td>
<td>( d \log_d V )</td>
<td>( d \log_d V )</td>
<td>( d \log_d V )</td>
<td>( E \log_{d/V} V )</td>
</tr>
<tr>
<td>Fibonacci heap (Fredman-Tarjan 1984)</td>
<td>( 1 )</td>
<td>( \log V )</td>
<td>( 1 )</td>
<td>( E + V \log V )</td>
</tr>
</tbody>
</table>

\( * \) amortized

**Bottom line.**

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- d-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.
**Priority-first search**

**Insight.** Four of our graph-search methods are the same algorithm!
- Maintain a set of explored vertices \( S \).
- Grow \( S \) by exploring edges with exactly one endpoint leaving \( S \).

**DFS.** Take edge from vertex which was discovered most recently.

**BFS.** Take edge from vertex which was discovered least recently.

**Prim.** Take edge of minimum weight.

**Dijkstra.** Take edge to vertex that is closest to \( S \).

**Challenge.** Express this insight in reusable Java code.

---

**Acyclic edge-weighted digraphs**

**Q.** Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

**A.** Yes!

---

**Shortest Paths**

- Edge-weighted digraph API
- Shortest-paths properties
- Dijkstra’s algorithm
- Edge-weighted DAGs
- Negative weights

---

**Topological sort algorithm**

- Consider vertices in topological order.
- Relax all edges incident from that vertex.
Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

Topological order: 0 1 4 7 5 2 3 6

choose vertex 0

Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

relax all edges incident from 0

Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

relax all edges incident from 0
Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

choose vertex 1

relax all edges incident from 1
Consider vertices in topological order.
Relax all edges incident from that vertex.

Topological sort algorithm

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>1→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

select vertex 4
(Dijkstra would have selected vertex 7)

Topological sort algorithm

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>1→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

relax all edges incident from 4

Topological sort algorithm

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>1→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

relax all edges incident from 4
Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

0 1 4 7 5 2 3 6

v   distTo[]  edgeTo[]
0     0.0        -
1     5.0       0→1
2     17.0      1→2
3     20.0      1→3
4     9.0       0→4
5     13.0      4→5
6     29.0      4→6
7     8.0       0→7

Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

choose vertex 7

0 1 4 7 5 2 3 6

v   distTo[]  edgeTo[]
0     0.0       -
1     5.0       0→1
2     17.0      1→2
3     20.0      1→3
4     9.0       0→4
5     13.0      4→5
6     29.0      4→6
7     8.0       0→7

Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

relax all edges incident from 7

0 1 4 7 5 2 3 6

v   distTo[]  edgeTo[]
0     0.0       -
1     5.0       0→1
2     17.0      1→2
3     20.0      1→3
4     9.0       0→4
5     13.0      4→5
6     29.0      4→6
7     8.0       0→7

Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

relax all edges incident from 7

0 1 4 7 5 2 3 6

v   distTo[]  edgeTo[]
0     0.0       -
1     5.0       0→1
2     15.0      7→2
3     20.0      1→3
4     9.0       0→4
5     13.0      4→5
6     29.0      4→6
7     8.0       0→7
Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

Consider vertices in topological order.
Relax all edges incident from that vertex.

Topological sort algorithm

select vertex 5

relax all edges incident from 5
Consider vertices in topological order.
Relax all edges incident from that vertex.

Topological sort algorithm

Topological sort algorithm

Topological sort algorithm

Topological sort algorithm
Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

Relax all edges incident from 3

Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

Relax all edges incident from 3

Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

Relax all edges incident from 3
Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

\[ v \text{ distTo[]} \text{ edgeTo[]} \]
\[
\begin{array}{c|c|c}
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow\text{1} \\
2 & 14.0 & 5\rightarrow\text{2} \\
3 & 17.0 & 2\rightarrow\text{3} \\
4 & 9.0 & 0\rightarrow\text{4} \\
5 & 13.0 & 4\rightarrow\text{5} \\
6 & 25.0 & 2\rightarrow\text{6} \\
7 & 8.0 & 0\rightarrow\text{7} \\
\end{array}
\]

select vertex 6

Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

\[ v \text{ distTo[]} \text{ edgeTo[]} \]
\[
\begin{array}{c|c|c}
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow\text{1} \\
2 & 14.0 & 5\rightarrow\text{2} \\
3 & 17.0 & 2\rightarrow\text{3} \\
4 & 9.0 & 0\rightarrow\text{4} \\
5 & 13.0 & 4\rightarrow\text{5} \\
6 & 25.0 & 2\rightarrow\text{6} \\
7 & 8.0 & 0\rightarrow\text{7} \\
\end{array}
\]

relax all edges incident from 6
Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

```
 0 1 4 7 5 2 3 6

 v distTo[] edgeTo[]
 0 0.0 -
 1 5.0 0→1
 2 14.0 5→2
 3 17.0 2→3
 4 9.0 0→4
 5 13.0 4→5
 6 25.0 2→6
 7 8.0 0→7
```

shortest-paths tree from vertex s

**Proposition.** Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to $E + V$.

**Pf.**
- Each edge $e = v \rightarrow w$ is relaxed exactly once (when $v$ is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e\text{.weight()}$.  
- Inequality holds until algorithm terminates because:
  - $\text{distTo}[w]$ cannot increase  
  - $\text{distTo}[v]$ will not change  
- Thus, upon termination, shortest-paths optimality conditions hold.

Shortest paths in edge-weighted DAGs

```java
public class AcyclicSP {
 private DirectedEdge[] edgeTo;
 private double[] distTo;
 public AcyclicSP(EdgeWeightedDigraph G, int s) {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];
 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;
 Topological topological = new Topological(G);
 for (int v : topological.order())
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
}
```

Content-aware resizing

**Seam carving.** [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.
**Content-aware resizing**

*Seam carving.* [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

*In the wild.* Photoshop CS 5, Imagemagick, GIMP, ...

---

**Content-aware resizing**

To find vertical seam:
- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path from top to bottom.

---

**Content-aware resizing**

To remove vertical seam:
- Delete pixels on seam (one in each row).
Content-aware resizing

To remove vertical seam:
- Delete pixels on seam (one in each row).

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.
- Negate all weights.
- Find shortest paths.
- Negate weights in result.

Key point: Topological sort algorithm works even with negative edge weights.

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:
- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
  - begin to end (weighted by duration)
  - source to begin (0 weight)
  - end to sink (0 weight)
- One edge for each precedence constraint (0 weight).
Critical path method

**CPM.** Use longest path from the source to schedule each job.

**Parallel job scheduling solution**

**Shortest paths with negative weights: failed attempts**

**Dijkstra.** Doesn’t work with negative edge weights.

**Re-weighting.** Add a constant to every edge weight doesn’t work.

**Bad news.** Need a different algorithm.

Shortest Paths

- Edge-weighted digraph API
- Shortest-paths properties
- Dijkstra’s algorithm
- Edge-weighted DAGs
- Negative weights

Negative cycles

**Def.** A **negative cycle** is a directed cycle whose sum of edge weights is negative.

**Proposition.** A SPT exists iff no negative cycles.

assuming all vertices reachable from s
Bellman-Ford algorithm

Bellman–Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat V times:
  - Relax each edge.

for (int i = 0; i < G.V(); i++)
  for (int v = 0; v < G.V(); v++)
    for (DirectedEdge e : G.adj(v))
      relax(e);

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.
Repeat $V$ times: relax all $E$ edges.
Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.
Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

**Pass 1:**
- $v$  distTo[]  edgeTo[]
  - 0  0.0  -
  - 1  5.0  0→1
  - 2  17.0  1→2
  - 3  20.0  0→3
  - 4  9.0  0→4
  - 5
  - 6
  - 7  8.0  0→7

**Pass 2:**
- $v$  distTo[]  edgeTo[]
  - 0  0.0  -
  - 1  5.0  0→1
  - 2  17.0  1→2
  - 3  20.0  1→3
  - 4  9.0  0→4
  - 5
  - 6
  - 7  8.0  0→7
Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.
Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.
Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

<table>
<thead>
<tr>
<th>$v$</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>28.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

<table>
<thead>
<tr>
<th>$v$</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

<table>
<thead>
<tr>
<th>$v$</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

<table>
<thead>
<tr>
<th>$v$</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

\[ \begin{array}{lcl}
\text{pass 1} \\
0 \rightarrow 1 & 0 \rightarrow 4 & 0 \rightarrow 7 \\
1 \rightarrow 2 & 1 \rightarrow 3 & 1 \rightarrow 7 \\
2 \rightarrow 3 & 2 \rightarrow 6 & 3 \rightarrow 6 \\
3 \rightarrow 5 & 4 \rightarrow 6 & 4 \rightarrow 7 \\
5 \rightarrow 2 & 5 \rightarrow 5 & 6 \rightarrow 7 \\
6 \rightarrow 7 & 7 \rightarrow 2 \\
\end{array} \]

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

\[ \begin{array}{lcl}
\text{pass 1} \\
0 \rightarrow 1 & 0 \rightarrow 4 & 0 \rightarrow 7 \\
1 \rightarrow 2 & 1 \rightarrow 3 & 1 \rightarrow 7 \\
2 \rightarrow 3 & 2 \rightarrow 6 & 3 \rightarrow 6 \\
3 \rightarrow 5 & 4 \rightarrow 6 & 4 \rightarrow 7 \\
5 \rightarrow 2 & 5 \rightarrow 5 & 6 \rightarrow 7 \\
6 \rightarrow 7 & 7 \rightarrow 2 \\
\end{array} \]
Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.
Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2

Bellman-Ford algorithm demo

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 6→7 7→5 7→2

Bellman-Ford algorithm demo

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 6→7 7→5 7→2

Bellman-Ford algorithm demo

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 6→7 7→5 7→2

Bellman-Ford algorithm demo

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 6→7 7→5 7→2

Bellman-Ford algorithm demo

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 6→7 7→5 7→2

Bellman-Ford algorithm demo

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 6→7 7→5 7→2

Bellman-Ford algorithm demo

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 6→7 7→5 7→2
Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.
Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.
Bellman-Ford algorithm visualization

Bellman-Ford algorithm: analysis

**Proposition.** Dynamic programming algorithm computes SPT in any edge-weighted digraph with no negative cycles in time proportional to $E \times V$.

**Pf idea.** After pass $i$, found shortest path containing at most $i$ edges.

Bellman-Ford algorithm: practical improvement

**Observation.** If $\text{distTo}[v]$ does not change during pass $i$, no need to relax any edge pointing from $v$ in pass $i + 1$.

**FIFO implementation.** Maintain queue of vertices whose $\text{distTo}[\cdot]$ changed. be careful to keep at most one copy of each vertex on queue (why?)

**Overall effect.**
- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Bellman-Ford algorithm: Java implementation

```java
public class BellmanFordSP
{
 private double[] distTo;
 private DirectedEdge[] edgeTo;
 private boolean[] onQ;
 private Queue<Integer> queue;

 public BellmanFordSP(EdgeWeightedDigraph G, int s)
 {
 distTo = new double[G.V()];
 edgeTo = new DirectedEdge[G.V()];
 onQ = new boolean[G.V()];
 queue = new Queue<Integer>();

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;

 distTo[s] = 0.0;
 queue.enqueue(s);
 while (!queue.isEmpty())
 {
 int v = queue.dequeue();
 onQ[v] = false;
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }
}
```

private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (!onQ[w])
        {
            queue.enqueue(w);
            onQ[w] = true;
        }
    }
}
Single source shortest-paths implementation: cost summary

<table>
<thead>
<tr>
<th>algorithm</th>
<th>restriction</th>
<th>typical case</th>
<th>worst case</th>
<th>extra space</th>
</tr>
</thead>
<tbody>
<tr>
<td>topological sort</td>
<td>no directed cycles</td>
<td>E + V</td>
<td>E + V</td>
<td>V</td>
</tr>
<tr>
<td>Dijkstra (binary heap)</td>
<td>no negative weights</td>
<td>E log V</td>
<td>E log V</td>
<td>V</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>no negative cycles</td>
<td>E</td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td>Bellman-Ford (queue-based)</td>
<td>no negative cycles</td>
<td>E + V</td>
<td>E</td>
<td>V</td>
</tr>
</tbody>
</table>

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.

![Diagram](image)

Proposition. If any vertex v is updated in phase V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

Finding a negative cycle

Negative cycle. Add two method to the API for sp.

```java
boolean hasNegativeCycle() is there a negative cycle?
Iterable<DirectedEdge> negativeCycle() negative cycle reachable from s
```

Problem. Given table of exchange rates, is there an arbitrage opportunity?

<table>
<thead>
<tr>
<th></th>
<th>USD</th>
<th>EUR</th>
<th>GBP</th>
<th>CHF</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>1</td>
<td>0.741</td>
<td>0.657</td>
<td>1.061</td>
<td>1.011</td>
</tr>
<tr>
<td>EUR</td>
<td>1.350</td>
<td>1</td>
<td>0.888</td>
<td>1.433</td>
<td>1.366</td>
</tr>
<tr>
<td>GBP</td>
<td>1.521</td>
<td>1.126</td>
<td>1</td>
<td>1.614</td>
<td>1.538</td>
</tr>
<tr>
<td>CHF</td>
<td>0.943</td>
<td>0.698</td>
<td>0.620</td>
<td>1</td>
<td>0.953</td>
</tr>
<tr>
<td>CAD</td>
<td>0.995</td>
<td>0.732</td>
<td>0.650</td>
<td>1.049</td>
<td>1</td>
</tr>
</tbody>
</table>

Ex. $1,000 ⇒ 741 Euros ⇒ 1,012.206 Canadian dollars ⇒ $1,007.14497.

$$1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497$$
**Negative cycle application: arbitrage detection**

Currency exchange graph.
- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

**Challenge.** Express as a negative cycle detection problem.

**Negative cycle application: arbitrage detection**

Model as a negative cycle detection problem by taking logs.
- Let weight of edge \( v \rightarrow w \) be \( -\ln \) (exchange rate from currency \( v \) to \( w \)).
- Multiplication turns to addition; \( > 1 \) turns to \( < 0 \).
- Find a directed cycle whose sum of edge weights is \( < 0 \) (negative cycle).

**Remark.** Fastest algorithm is extraordinarily valuable!

**Shortest paths summary**

Dijkstra’s algorithm.
- Nearly linear-time when weights are nonnegative.
- Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.
- Arise in applications.
- Faster than Dijkstra’s algorithm.
- Negative weights are no problem.

Negative weights and negative cycles.
- Arise in applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.