Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:
• Empty.
• Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node’s key is:
• Larger than all keys in its left subtree.
• Smaller than all keys in its right subtree.

BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:
• A Key and a Value.
• A reference to the left and right subtree.

```java
private class Node
{
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val)
    {
        this.key = key;
        this.val = val;
    }
}
```

Key and Value are generic types; Key is Comparable.
public class BST<Key extends Comparable<Key>, Value> {
 private Node root;

 private class Node {
 /* see previous slide */
 }

 public void put(Key key, Value val) {
 /* see next slides */
 }

 public Value get(Key key) {
 /* see next slides */
 }

 public void delete(Key key) {
 /* see next slides */
 }

 public Iterable<Key> iterator() {
 /* see next slides */
 }
}
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

compare H and E
(go right)

H
A
C
R
S
X

successful search for H

compare H and R
(go left)

S
X
A
C
R
E
H
M

successful search for H

S
X
A
C
H
R
M

successful search for H

S
X
A
C
R
E
H
M
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

- **Successful search for H**
 - Diagram showing search hitting H

- **Unsuccessful search for G**
 - Diagram showing search not hitting G
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

compare G and E (go right)

unsuccessful search for G

compare G and R (go left)
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G
Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G.
- Compare G and S (go left).

```
    S
   / \   
  G   X
 / \   /   
A   R  C   H
  \   /   /   
  M  E  S  M
```

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G.
- Compare G and E (go right).

```
    E
   /   
  G   S
 / \   /   
A   R  C   H
  \   /   /   
  M  E  S  M
```

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G.
- Compare G and S (go left).

```
    S
   /   
  G   X
 /   /   
A   R  C   H
  \   /   /   
  M  E  S  M
```

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G.
- Compare G and E (go right).

```
    E
   /   
  G   S
 / \   /   
A   R  C   H
  \   /   /   
  M  E  S  M
```
Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G
Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G

![Binary search tree operations]

33

- Insert G

34

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G

![Binary search tree operations]

35

BST search

Get. Return value corresponding to given key, or `null` if no such key.

- Successful (left) and unsuccessful (right) search in a BST

![BST search]

36
BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```java
public Value get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if       (cmp < 0)  x = x.left;
        else if  (cmp > 0)  x = x.right;
        else if  (cmp == 0) return x.val;
    }
    return null;
}
```

Cost. Number of compares is equal to 1 + depth of node.

BST insert: Java implementation

Put. Associate value with key.

```java
public void put(Key key, Value val) {
    root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if       (cmp < 0)  x.left  = put(x.left,  key, val);
    else if  (cmp > 0)  x.right = put(x.right, key, val);
    else if  (cmp == 0) x.val    = val;
    return x;
}
```

Cost. Number of compares is equal to 1 + depth of node.

BST insert

Put. Associate value with key.

Search for key, then two cases:
- Key in tree ⇒ reset value.
- Key not in tree ⇒ add new node.
Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to 1 + depth of node.

Remark. Tree shape depends on order of insertion.

Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1-1 if array has no duplicate keys.

BSTs: mathematical analysis

Proposition. If N distinct keys are inserted into a BST in random order, the expected number of compares for a search/insert is \(\sim 2 \ln N \).

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If N distinct keys are inserted in random order, expected height of tree is \(\sim 4.311 \ln N \).

But... Worst-case height is \(N \).
(exponentially small chance when keys are inserted in random order.)
ST implementations: frequency counter

![Graph showing frequency counter results](image)

ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Ordered Ops?</th>
<th>Operations on Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequential search</td>
<td>N</td>
<td>N</td>
<td>N/2, N</td>
<td>no</td>
</tr>
<tr>
<td>binary search</td>
<td>lg N</td>
<td>N</td>
<td>lg N, N/2</td>
<td>yes, compareTo()</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N, 1.39 lg N</td>
<td>stay tuned, compareTo()</td>
</tr>
</tbody>
</table>

Binary Search Trees

- BSTs
- Ordered operations
- Deletion

Minimum and maximum

- **Minimum.** Smallest key in table.
- **Maximum.** Largest key in table.

Q. How to find the min / max?
Floor and ceiling

Floor. Largest key ≤ to a given key.

Ceiling. Smallest key ≥ to a given key.

Q. How to find the floor /ceiling?

Computing the floor

Case 1. [k equals the key at root]

The floor of k is k.

Case 2. [k is less than the key at root]

The floor of k is in the left subtree.

Case 3. [k is greater than the key at root]

The floor of k is in the right subtree (if there is any key ≤ k in right subtree); otherwise it is the key in the root.

Subtree counts

In each node, we store the number of nodes in the subtree rooted at that node; to implement size(), return the count at the root.

Remark. This facilitates efficient implementation of rank() and select().

```java
public Key floor(Key key) {
    Node x = floor(root, key);
    if (x == null) return null;
    return x.key;
}

private Node floor(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp == 0) return x;
    if (cmp < 0) return floor(x.left, key);
    Node t = floor(x.right, key);
    if (t != null) return t;
    else           return x;
}
```
BST implementation: subtree counts

private class Node {
 private Key key;
 private Value val;
 private Node left;
 private Node right;
 private int N;
 public int size() {
 return size(root);
 }
 private int size(Node x) {
 if (x == null) return 0;
 return x.N;
 }
 private Node put(Node x, Key key, Value val) {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else {
 x.val = val;
 x.N = 1 + size(x.left) + size(x.right);
 }
 return x;
 }
 public int rank(Key key) {
 return rank(key, root);
 }
 private int rank(Key key, Node x) {
 if (x == null) return 0;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) return rank(key, x.left);
 else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
 else {
 return size(x.left);
 }
 }
 public Key select(int k) {
 if (k < 0) return null;
 if (k >= size()) return null;
 Node x = select(root, k);
 return x.key;
 }
 private Node select(Node x, int k) {
 if (x == null) return null;
 int t = size(x.left);
 if (t > k) return select(x.left, k);
 else if (t < k) return select(x.right, k-t-1);
 else {
 return x;
 }
 }
 public Iterable<Key> keys() {
 Queue<Key> q = new Queue<Key>();
 inorder(root, q);
 return q;
 }
 private void inorder(Node x, Queue<Key> q) {
 if (x == null) return;
 inorder(x.left, q);
 q.enqueue(x.key);
 inorder(x.right, q);
 }
}

Rank

Rank. How many keys < k ?

Easy recursive algorithm (4 cases!)

Inorder traversal

• Traverse left subtree.
• Enqueue key.
• Traverse right subtree.

Property. Inorder traversal of a BST yields keys in ascending order.
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

BST: ordered symbol table operations summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Sequential search</th>
<th>Binary search</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>N</td>
<td>lg N</td>
<td>h</td>
</tr>
<tr>
<td>insert</td>
<td>1</td>
<td>N</td>
<td>h</td>
</tr>
<tr>
<td>min / max</td>
<td>N</td>
<td>1</td>
<td>h</td>
</tr>
<tr>
<td>floor / ceiling</td>
<td>N</td>
<td>lg N</td>
<td>h</td>
</tr>
<tr>
<td>rank</td>
<td>N</td>
<td>lg N</td>
<td>h</td>
</tr>
<tr>
<td>select</td>
<td>N</td>
<td>1</td>
<td>h</td>
</tr>
<tr>
<td>ordered iteration</td>
<td>N lg N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

h = height of BST (proportional to log N if keys inserted in random order)

ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>guarantees</th>
<th>average case</th>
<th>ordered iteration?</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>search:</td>
<td>N</td>
<td>N/2</td>
<td>no</td>
<td>equals()</td>
</tr>
<tr>
<td>linked list</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>search:</td>
<td>N</td>
<td>N/2</td>
<td></td>
<td>compareTo()</td>
</tr>
<tr>
<td>ordered array</td>
<td>lg N</td>
<td>N/2</td>
<td>yes</td>
<td>compareTo()</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>1.39 lg N</td>
<td>yes</td>
<td>compareTo()</td>
</tr>
</tbody>
</table>

Next. Deletion in BSTs.
BST deletion: lazy approach

To remove a node with a given key:
• Set its value to null.
• Leave key in tree to guide searches (but don’t consider it equal to search key).

Cost. $\sim 2 \ln N'$ per insert, search, and delete (if keys in random order), where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

Deleting the minimum

To delete the minimum key:
• Go left until finding a node with a null left link.
• Replace that node by its right link.
• Update subtree counts.

public void deleteMin() {
 root = deleteMin(root);
}
private Node deleteMin(Node x) {
 if (x.left == null) return x.right;
 x.left = deleteMin(x.left);
 x.N = 1 + size(x.left) + size(x.right);
 return x;
}

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

Case 1. [1 child] Delete t by replacing parent link.
Hibbard deletion

To delete a node with key \(k \): search for node \(t \) containing key \(k \).

Case 2. [2 children]
- Find successor \(x \) of \(t \).
- Delete the minimum in \(t \)'s right subtree.
- Put \(x \) in \(t \)'s spot.

Hibbard deletion: Java implementation

```java
public void delete(Key key) {
  root = delete(root, key);
}

private Node delete(Node x, Key key) {
  if (x == null) return null;
  int cmp = key.compareTo(x.key);
  if      (cmp < 0) x.left  = delete(x.left,  key);
  else if (cmp > 0) x.right = delete(x.right, key);
  else {
    if (x.right == null) return x.left;

    Node t = x;
    x = min(t.right);
    x.right = deleteMin(t.right);
    x.left = t.left;
  }
  x.N = size(x.left) + size(x.right) + 1;
  return x;
}
```

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) \(\Rightarrow \sqrt{N} \) per op.

Longstanding open problem. Simple and efficient delete for BSTs.

ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered iteration?</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequential search (linked list)</td>
<td>N</td>
<td>N/2</td>
<td>N/2</td>
<td>no</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>(\lg N)</td>
<td>(\lg N)</td>
<td>(\lg N)</td>
<td>(\sqrt{N})</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>1.39 (\lg N)</td>
<td>1.39 (\lg N)</td>
</tr>
</tbody>
</table>

Red-black BST. Guarantee logarithmic performance for all operations.