Given an edge-weighted digraph, find the shortest (directed) path from \(s \) to \(t \).

Shortest Paths

- Edge-weighted digraph API
- Shortest-paths properties
- Dijkstra's algorithm
- Edge-weighted DAGs
- Negative weights

Shortest Paths in a Weighted Digraph

edge-weighted digraph

- 4→5 0.35
- 5→4 0.35
- 4→7 0.37
- 5→7 0.28
- 7→5 0.28
- 5→1 0.32
- 0→4 0.38
- 0→2 0.26
- 7→3 0.39
- 1→3 0.29
- 2→7 0.34
- 6→2 0.40
- 3→6 0.52
- 6→0 0.58
- 6→4 0.93

shortest path from 0 to 6

- 0→2 0.26
- 2→7 0.34
- 7→3 0.39
- 3→6 0.52
Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?
- Source-sink: from one vertex to another.
- Single source: from one vertex to every other.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?
- Nonnegative weights.
- Arbitrary weights.
- Euclidean weights.

Cycles?
- No directed cycles.
- No "negative cycles."

Simplifying assumption. Shortest paths from \(s \) to each vertex \(v \) exist.
Shortest Paths

- Edge-weighted digraph API
- Shortest-paths properties
- Dijkstra’s algorithm
- Edge-weighted DAGs
- Negative weights

Weighted directed edge API

```
public class DirectedEdge
    DirectedEdge(int v, int w, double weight)
    weighted edge v→w
    int from() vertex v
    int to() vertex w
    double weight() weight of this edge
    String toString() string representation
```

Idiom for processing an edge e: `int v = e.from(), w = e.to();`

Weighted directed edge: implementation in Java

Similar to `Edge` for undirected graphs, but a bit simpler.

```
public class DirectedEdge
    private final int v, w;
    private final double weight;
    public DirectedEdge(int v, int w, double weight)
        this.v = v;
        this.w = w;
        this.weight = weight;
    public int from() return v;
    public int to() return w;
    public double weight() return weight;
```

Conventions. Allow self-loops and parallel edges.
Edge-weighted digraph: adjacency-lists representation

Same as EdgeWeightedDigraph except replace Graph with Digraph.

public class EdgeWeightedDigraph
{
 private final int V;
 private final Bag<Edge>[] adj;

 public EdgeWeightedDigraph(int V)
 {
 this.V = V;
 adj = (Bag<DirectedEdge>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<DirectedEdge>();
 }

 public void addEdge(DirectedEdge e)
 {
 int v = e.from();
 adj[v].add(e);
 }

 public Iterable<DirectedEdge> adj(int v)
 {
 return adj[v];
 }
}

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP
{
 public SF new SF(EdgeWeightedDigraph G, int s)
 {
 double distTo(int v)
 {
 return -1;
 }
 Iterable<DirectedEdge> pathTo(int v)
 {
 return null;
 }
 boolean hasPathTo(int v)
 {
 return false;
 }
 }
}

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP
{
 public SF new SP(EdgeWeightedDigraph G, int s)
 {
 double distTo(int v)
 {
 return -1;
 }
 Iterable<DirectedEdge> pathTo(int v)
 {
 return null;
 }
 boolean hasPathTo(int v)
 {
 return false;
 }
 }
}

% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38 4->5 0.35
0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52
0 to 7 (0.60): 0->2 0.26 2->7 0.34
Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
- $\text{distTo}[v]$ is length of shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on shortest path from s to v.

Data structures for single-source shortest paths

```java
public double distTo(int v)
{
  return distTo[v];
}

public Iterable<DirectedEdge> pathTo(int v)
{
  Stack<DirectedEdge> path = new Stack<DirectedEdge>();
  for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
    path.push(e);
  return path;
}
```

Edge relaxation

Relax edge $e = v \rightarrow w$.
- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v,
 update $\text{distTo}[w]$ and $\text{edgeTo}[w]$.
Edge relaxation

Relax edge $e = v \rightarrow w$.
- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update $\text{distTo}[w]$ and $\text{edgeTo}[w]$.

```java
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph. Then $\text{distTo}[v]$ are the shortest path distances from s iff:
- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

Pf.\Leftarrow [necessary]
- Suppose that $\text{distTo}[w] > \text{distTo}[v] + e.\text{weight}()$ for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than $\text{distTo}[w]$.

Proposition. Generic algorithm computes SPT (if it exists) from s.

Pf sketch.
- Throughout algorithm, $\text{distTo}[v]$ is the length of a simple path from s to v.
- Each successful relaxation decreases $\text{distTo}[v]$ for some v.
- The entry $\text{distTo}[v]$ can decrease at most a finite number of times.
Generic shortest-paths algorithm

<table>
<thead>
<tr>
<th>Efficient implementations. How to choose which edge to relax?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex 1. Dijkstra’s algorithm (nonnegative weights).</td>
</tr>
<tr>
<td>Ex 2. Topological sort algorithm (no directed cycles).</td>
</tr>
<tr>
<td>Ex 3. Bellman-Ford algorithm (no negative cycles).</td>
</tr>
</tbody>
</table>

Generic algorithm (to compute SPT from s)

- Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
- Repeat until optimality conditions are satisfied:
 - Relax any edge.

Shortest Paths

- Edge-weighted digraph API
- Shortest-paths properties
- Dijkstra's algorithm
- Edge-weighted DAGs
- Negative weights

Edsger W. Dijkstra: select quotes

- “Do only what only you can do.”
- “In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.”
- “The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”
- “It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.”
- “APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”

Edsger W. Dijkstra: select quotes

- “Object-oriented programming is an exceptionally bad idea which could only have originated in California.”
 — Edsger Dijkstra

Edsger W. Dijkstra
Turing award 1972

www.cs.utexas.edu/users/EWD
Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

An edge-weighted digraph

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

Choose source vertex 0

Relax all edges incident from 0

Relax all edges incident from 0
Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $distTo[]$ value).
- Add vertex to tree and relax all edges incident from that vertex.

Graph

```
0 ---- 1 ---- 3
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
0---- 4 ---- 7
```

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

Choose vertex

```
0 ---- 1 ---- 3
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
0---- 4 ---- 7
```

Relax all edges incident from 1

```
0 ---- 1 ---- 3
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
0---- 4 ---- 7
```

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

```
0 ---- 1 ---- 3
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
0---- 4 ---- 7
```

Relax all edges incident from 1

```
0 ---- 1 ---- 3
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
0---- 4 ---- 7
```

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>1→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0 ✔</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.
Dijkstra's algorithm

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges incident from that vertex.

```
v     \text{distTo[]}  \text{edgeTo[]}
0     0.0        -
1     5.0       0→1
2     15.0      7→2
3     20.0      1→3
4     9.0       0→4
5     14.0      7→5
6     8.0       0→7
```

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges incident from that vertex.

```
v     \text{distTo[]}  \text{edgeTo[]}
0     0.0        -
1     5.0       0→1
2     15.0      7→2
3     20.0      1→3
4     9.0       0→4
5     14.0      7→5
6     8.0       0→7
```

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges incident from that vertex.

```
v     \text{distTo[]}  \text{edgeTo[]}
0     0.0        -
1     5.0       0→1
2     15.0      7→2
3     20.0      1→3
4     9.0       0→4
5     14.0      7→5
6     8.0       0→7
```

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges incident from that vertex.

```
v     \text{distTo[]}  \text{edgeTo[]}
0     0.0        -
1     5.0       0→1
2     15.0      7→2
3     20.0      1→3
4     9.0       0→4
5     14.0      7→5
6     8.0       0→7
```

relax all edges incident from 4

```
Dijkstra's algorithm

- Consider vertices in increasing order of distance from \( s \) (non-tree vertex with the lowest \( \text{distTo}[] \) value).
- Add vertex to tree and relax all edges incident from that vertex.

```
v distTo[] edgeTo[]
0 0.0 -
1 5.0 0→1
2 15.0 7→2
3 20.0 1→3
4 9.0 0→4
5 13.0 4→5
6 29.0 4→6
7 8.0 0→7
```

select vertex 5

```
v distTo[] edgeTo[]
0 0.0 -
1 5.0 0→1
2 14.0 5→2
3 20.0 1→3
4 9.0 0→4
5 13.0 4→5
6 29.0 4→6
7 8.0 0→7
```

relax all edges incident from 5

```
v distTo[] edgeTo[]
0 0.0 -
1 5.0 0→1
2 5.0 7→2
3 14.0 1→3
4 9.0 0→4
5 13.0 4→5
6 26.0 5→6
7 8.0 0→7
```

relax all edges incident from 5
Dijkstra's algorithm

- Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

\[
\begin{array}{c|cc}
  v & \text{distTo[]} & \text{edgeTo[]} \\
  0 & 0.0 & - \\
  1 & 5.0 & 0 \rightarrow 1 \\
  2 & 14.0 & 5 \rightarrow 2 \\
  3 & 20.0 & 1 \rightarrow 3 \\
  4 & 9.0 & 0 \rightarrow 4 \\
  5 & 13.0 & 4 \rightarrow 5 \\
  6 & 26.0 & 5 \rightarrow 6 \\
  7 & 8.0 & 0 \rightarrow 7 \\
\end{array}
\]

Select vertex 2

- Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

\[
\begin{array}{c|cc}
  v & \text{distTo[]} & \text{edgeTo[]} \\
  0 & 0.0 & - \\
  1 & 5.0 & 0 \rightarrow 1 \\
  2 & 14.0 & 5 \rightarrow 2 \\
  3 & 20.0 & 1 \rightarrow 3 \\
  4 & 9.0 & 0 \rightarrow 4 \\
  5 & 13.0 & 4 \rightarrow 5 \\
  6 & 26.0 & 5 \rightarrow 6 \\
  7 & 8.0 & 0 \rightarrow 7 \\
\end{array}
\]

Relax all edges incident from 2

- Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

\[
\begin{array}{c|cc}
  v & \text{distTo[]} & \text{edgeTo[]} \\
  0 & 0.0 & - \\
  1 & 5.0 & 0 \rightarrow 1 \\
  2 & 14.0 & 5 \rightarrow 2 \\
  3 & 20.0 & 1 \rightarrow 3 \\
  4 & 9.0 & 0 \rightarrow 4 \\
  5 & 13.0 & 4 \rightarrow 5 \\
  6 & 26.0 & 5 \rightarrow 6 \\
  7 & 8.0 & 0 \rightarrow 7 \\
\end{array}
\]

Relax all edges incident from 2

- Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

\[
\begin{array}{c|cc}
  v & \text{distTo[]} & \text{edgeTo[]} \\
  0 & 0.0 & - \\
  1 & 5.0 & 0 \rightarrow 1 \\
  2 & 14.0 & 5 \rightarrow 2 \\
  3 & 17.0 & 2 \rightarrow 3 \\
  4 & 9.0 & 0 \rightarrow 4 \\
  5 & 13.0 & 4 \rightarrow 5 \\
  6 & 25.0 & 2 \rightarrow 6 \\
  7 & 8.0 & 0 \rightarrow 7 \\
\end{array}
\]
Dijkstra's algorithm

- Consider vertices in increasing order of distance from \( s \) (non-tree vertex with the lowest \( \text{distsTo}[] \) value).
- Add vertex to tree and relax all edges incident from that vertex.

\[
\begin{array}{c|c|c}
\text{v} & \text{distsTo[]} & \text{edgeTo[]} \\
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow1 \\
2 & 14.0 & 5\rightarrow2 \\
3 & 17.0 & 2\rightarrow3 \\
4 & 9.0 & 0\rightarrow4 \\
5 & 13.0 & 4\rightarrow5 \\
6 & 25.0 & 2\rightarrow6 \\
7 & 8.0 & 0\rightarrow7 \\
\end{array}
\]

select vertex 3

Dijkstra's algorithm

- Consider vertices in increasing order of distance from \( s \) (non-tree vertex with the lowest \( \text{distsTo}[] \) value).
- Add vertex to tree and relax all edges incident from that vertex.

\[
\begin{array}{c|c|c}
\text{v} & \text{distsTo[]} & \text{edgeTo[]} \\
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow1 \\
2 & 14.0 & 5\rightarrow2 \\
3 & 17.0 & 2\rightarrow3 \\
4 & 9.0 & 0\rightarrow4 \\
5 & 13.0 & 4\rightarrow5 \\
6 & 25.0 & 2\rightarrow6 \\
7 & 8.0 & 0\rightarrow7 \\
\end{array}
\]

relax all edges incident from 3

Dijkstra's algorithm

- Consider vertices in increasing order of distance from \( s \) (non-tree vertex with the lowest \( \text{distsTo}[] \) value).
- Add vertex to tree and relax all edges incident from that vertex.

\[
\begin{array}{c|c|c}
\text{v} & \text{distsTo[]} & \text{edgeTo[]} \\
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow1 \\
2 & 14.0 & 5\rightarrow2 \\
3 & 17.0 & 2\rightarrow3 \\
4 & 9.0 & 0\rightarrow4 \\
5 & 13.0 & 4\rightarrow5 \\
6 & 25.0 & 2\rightarrow6 \\
7 & 8.0 & 0\rightarrow7 \\
\end{array}
\]

relax all edges incident from 3
Dijkstra’s algorithm

- Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest $\text{distTo[]}$ value).
- Add vertex to tree and relax all edges incident from that vertex.

\[
\begin{array}{c|c|c}
\text{v} & \text{distTo[]} & \text{edgeTo[]} \\
\hline
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow1 \\
2 & 14.0 & 5\rightarrow2 \\
3 & 17.0 & 2\rightarrow3 \\
4 & 9.0 & 0\rightarrow4 \\
5 & 13.0 & 4\rightarrow5 \\
6 & 25.0 & 2\rightarrow6 \\
7 & 8.0 & 0\rightarrow7 \\
\end{array}
\]

select vertex 6

relax all edges incident from 6
Dijkstra’s algorithm

- Consider vertices in increasing order of distance from $s$ (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges incident from that vertex.

<table>
<thead>
<tr>
<th>$v$</th>
<th>$\text{distTo}[]$</th>
<th>$\text{edgeTo}[]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

Dijkstra’s algorithm: correctness proof

**Proposition.** Dijkstra’s algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

**Pf.**

- Each edge $e = v \rightarrow w$ is relaxed exactly once (when $v$ is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e\text{.weight()}$.
- Inequality holds until algorithm terminates because:
  - $\text{distTo}[w]$ cannot increase
  - $\text{distTo}[v]$ will not change
- Thus, upon termination, shortest-paths optimality conditions hold.
Dijkstra's algorithm: Java implementation

```java
public class DijkstraSP {
 private DirectedEdge[] edgeTo;
 private double[] distTo;
 private IndexMinPQ<Double> pq;

 public DijkstraSP(EdgeWeightedDigraph G, int s) {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];
 pq = new IndexMinPQ<Double>(G.V());

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 pq.insert(s, 0.0);
 while (!pq.isEmpty()) {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v)) relax(e);
 }
 }
}
```

Dijkstra's algorithm: Java implementation

```java
private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
 else pq.insert(w, distTo[w]);
 }
}
```

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: \( V \) insert, \( V \) delete-min, \( E \) decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>1</td>
<td>( V )</td>
<td>1</td>
<td>( V )</td>
</tr>
<tr>
<td>binary heap</td>
<td>( \log V )</td>
<td>( \log V )</td>
<td>( \log V )</td>
<td>( E \log V )</td>
</tr>
<tr>
<td>d-way heap (Johnson 1975)</td>
<td>( d \log )</td>
<td>( d \log )</td>
<td>( \log )</td>
<td>( E \log )</td>
</tr>
<tr>
<td>Fibonacci heap (Fredman-Tarjan 1984)</td>
<td>1</td>
<td>( \log V )</td>
<td>1</td>
<td>( E + V \log V )</td>
</tr>
</tbody>
</table>

Bottom line.
- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- d-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Priority-first search

**Insight.** Four of our graph-search methods are the same algorithm!
- Maintain a set of explored vertices \( S \).
- Grow \( S \) by exploring edges with exactly one endpoint leaving \( S \).

**DFS.** Take edge from vertex which was discovered most recently.
**BFS.** Take edge from vertex which was discovered least recently.
**Prim.** Take edge of minimum weight.
**Dijkstra.** Take edge to vertex that is closest to \( S \).

**Challenge.** Express this insight in reusable Java code.
Shortest Paths

- Edge-weighted digraph API
- Shortest-paths properties
- Dijkstra's algorithm
- Edge-weighted DAGs
- Negative weights

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!

Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

an edge-weighted DAG

topological order: 0 1 4 7 5 2 3 6
Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

choose vertex 0

prove that 0 is the source vertex

relax all edges incident from 0

relax all edges incident from 0

relax all edges incident from 0
Consider vertices in topological order.
Relax all edges incident from that vertex.

Topological sort algorithm

choose vertex 1

relax all edges incident from 1

relax all edges incident from 1

relax all edges incident from 1
Consider vertices in topological order.
Relax all edges incident from that vertex.

Topological sort algorithm
Consider vertices in topological order.
Relax all edges incident from that vertex.

Topological sort algorithm

choose vertex 7

relax all edges incident from 7

relax all edges incident from 7

relax all edges incident from 7
Consider vertices in topological order.
Relax all edges incident from that vertex.

select vertex 5

relax all edges incident from 5

relax all edges incident from 5
Topological sort algorithm

- Consider vertices in topological order.
- Relax all edges incident from that vertex.

0 1 4 7 5 2 3 6

v distTo[] edgeTo[]
0 0.0 -
1 5.0 0→1
2 14.0 5→2
3 20.0 1→3
4 9.0 0→4
5 13.0 4→5
6 26.0 5→6
7 8.0 0→7

select vertex 2

relax all edges incident from 2

0 1 4 7 5 2 3 6

v distTo[] edgeTo[]
0 0.0 -
1 5.0 0→1
2 14.0 5→2
3 20.0 1→3
4 9.0 0→4
5 13.0 4→5
6 26.0 5→6
7 8.0 0→7

relax all edges incident from 2
Topological sort algorithm
- Consider vertices in topological order.
- Relax all edges incident from that vertex.

1. Consider vertices in topological order.
2. Relax all edges incident from that vertex.
3. Consider vertices in topological order.
4. Relax all edges incident from that vertex.
5. Consider vertices in topological order.
6. Relax all edges incident from that vertex.
Consider vertices in topological order.
Relax all edges incident from that vertex.

select vertex 6
relax all edges incident from 6

shortest-paths tree from vertex s
**Proposition.** Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to $E + V$.

**Pf.**

- Each edge $e = v \rightarrow w$ is relaxed exactly once (when $v$ is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e\.\text{weight}()$.
- Inequality holds until algorithm terminates because:
  - $\text{distTo}[w]$ cannot increase
  - $\text{distTo}[v]$ will not change
- Thus, upon termination, shortest-paths optimality conditions hold.

**Shortest paths in edge-weighted DAGs**

**public class AcyclicSP**

```java
private DirectedEdge[] edgeTo;
private double[] distTo;

public AcyclicSP(EdgeWeightedDigraph G, int s)
{
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 Topological topological = new Topological(G);
 for (int v : topological.order())
 for (DirectedEdge e : G.adj(v))
 relax(e);
}
```

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

**Content-aware resizing**

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.
To find vertical seam:
- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path from top to bottom.

To remove vertical seam:
- Delete pixels on seam (one in each row).
Formulate as a shortest paths problem in edge-weighted DAGs.
- Negate all weights.
- Find shortest paths.
- Negate weights in result.

Key point. Topological sort algorithm works even with negative edge weights.

Longest paths in edge-weighted DAGs

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:
- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
  - begin to end (weighted by duration)
  - source to begin (0 weight)
  - end to sink (0 weight)
- One edge for each precedence constraint (0 weight).

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

Critical path method

CPM. Use longest path from the source to schedule each job.
Shortest Paths

- Edge-weighted digraph API
- Shortest-paths properties
- Dijkstra’s algorithm
- Edge-weighted DAGs
- Negative weights

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

Re-weighting. Add a constant to every edge weight doesn’t work.

Bad news. Need a different algorithm.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists if and only if no negative cycles.

Bellman-Ford algorithm

Initialize `distTo[s] = 0` and `distTo[v] = ∞` for all other vertices.

Repeat `V` times:
- Relax each edge.

For:
```java
for (int i = 0; i < G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (DirectedEdge e : G.adj(v))
 relax(e);
```
Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.
Repeat $V$ times: relax all $E$ edges.

**Bellman-Ford algorithm demo**

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→4</td>
</tr>
</tbody>
</table>

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2

**Bellman-Ford algorithm demo**

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0→4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
**Bellman-Ford algorithm demo**

Repeat \( V \) times: relax all \( E \) edges.

<table>
<thead>
<tr>
<th>vertex</th>
<th>distance to ( 0 )</th>
<th>edge to ( 0 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0 ( \rightarrow ) 1</td>
</tr>
<tr>
<td>2</td>
<td>9.0</td>
<td>0 ( \rightarrow ) 4</td>
</tr>
<tr>
<td>3</td>
<td>9.0</td>
<td>0 ( \rightarrow ) 4</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0 ( \rightarrow ) 4</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
<tr>
<td>6</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
</tbody>
</table>

**Bellman-Ford algorithm demo**

Repeat \( V \) times: relax all \( E \) edges.

<table>
<thead>
<tr>
<th>vertex</th>
<th>distance to ( 0 )</th>
<th>edge to ( 0 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0 ( \rightarrow ) 1</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>1 ( \rightarrow ) 2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>1 ( \rightarrow ) 2</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0 ( \rightarrow ) 4</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
<tr>
<td>6</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
</tbody>
</table>

**Bellman-Ford algorithm demo**

Repeat \( V \) times: relax all \( E \) edges.

<table>
<thead>
<tr>
<th>vertex</th>
<th>distance to ( 0 )</th>
<th>edge to ( 0 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0 ( \rightarrow ) 1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>1 ( \rightarrow ) 2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1 ( \rightarrow ) 2</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0 ( \rightarrow ) 4</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
<tr>
<td>6</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
</tbody>
</table>

**Bellman-Ford algorithm demo**

Repeat \( V \) times: relax all \( E \) edges.

<table>
<thead>
<tr>
<th>vertex</th>
<th>distance to ( 0 )</th>
<th>edge to ( 0 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0 ( \rightarrow ) 1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>1 ( \rightarrow ) 2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1 ( \rightarrow ) 2</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0 ( \rightarrow ) 4</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
<tr>
<td>6</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0 ( \rightarrow ) 7</td>
</tr>
</tbody>
</table>
Repeat \( V \) times: relax all \( E \) edges.

Bellman-Ford algorithm demo

Repeat \( V \) times: relax all \( E \) edges.

Bellman-Ford algorithm demo

Repeat \( V \) times: relax all \( E \) edges.

Bellman-Ford algorithm demo

Repeat \( V \) times: relax all \( E \) edges.
Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

\begin{itemize}
\item \textbf{pass 0}
\item $0 \rightarrow 1, 0 \rightarrow 4, 0 \rightarrow 7, 1 \rightarrow 2, 1 \rightarrow 3, 1 \rightarrow 7, 2 \rightarrow 3, 2 \rightarrow 6, 3 \rightarrow 6, 3 \rightarrow 5, 4 \rightarrow 6, 4 \rightarrow 7, 5 \rightarrow 2, 5 \rightarrow 6, 7 \rightarrow 5, 7 \rightarrow 2$
\end{itemize}

Bellman-Ford algorithm demo

\begin{itemize}
\item \textbf{pass 0}
\item $0 \rightarrow 1, 0 \rightarrow 4, 0 \rightarrow 7, 1 \rightarrow 2, 1 \rightarrow 3, 1 \rightarrow 7, 2 \rightarrow 3, 2 \rightarrow 6, 3 \rightarrow 6, 3 \rightarrow 5, 4 \rightarrow 6, 4 \rightarrow 7, 5 \rightarrow 2, 5 \rightarrow 6, 7 \rightarrow 5, 7 \rightarrow 2$
\end{itemize}

Bellman-Ford algorithm demo

\begin{itemize}
\item \textbf{pass 0}
\item $0 \rightarrow 1, 0 \rightarrow 4, 0 \rightarrow 7, 1 \rightarrow 2, 1 \rightarrow 3, 1 \rightarrow 7, 2 \rightarrow 3, 2 \rightarrow 6, 3 \rightarrow 6, 3 \rightarrow 5, 4 \rightarrow 6, 4 \rightarrow 7, 5 \rightarrow 2, 5 \rightarrow 6, 7 \rightarrow 5, 7 \rightarrow 2$
\end{itemize}

Bellman-Ford algorithm demo

\begin{itemize}
\item \textbf{pass 0}
\item $0 \rightarrow 1, 0 \rightarrow 4, 0 \rightarrow 7, 1 \rightarrow 2, 1 \rightarrow 3, 1 \rightarrow 7, 2 \rightarrow 3, 2 \rightarrow 6, 3 \rightarrow 6, 3 \rightarrow 5, 4 \rightarrow 6, 4 \rightarrow 7, 5 \rightarrow 2, 5 \rightarrow 6, 7 \rightarrow 5, 7 \rightarrow 2$
\end{itemize}
Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

v  distTo[]  edgeTo[]
0    0.0        -
1    5.0       0→1
2    17.0      1→2
3    20.0      1→3
4     9.0       0→4
5    13.0      4→5
6    28.0      2→6
7     8.0       0→7

pass 0
0→1 0→4 0→7 1→2 1→3 1→7 2→6 3→6 4→5 4→7 5→2 5→6 7→5 7→2

Bellman-Ford algorithm demo

v  distTo[]  edgeTo[]
0    0.0        -
1    5.0       0→1
2    17.0      1→2
3    20.0      1→3
4     9.0       0→4
5    13.0      4→5
6    28.0      2→6
7     8.0       0→7

pass 0
0→1 0→4 0→7 1→2 1→3 1→7 2→6 3→6 4→5 4→7 5→2 5→6 7→5 7→2

Bellman-Ford algorithm demo

v  distTo[]  edgeTo[]
0    0.0        -
1    5.0       0→1
2    14.0      5→2
3    20.0      1→3
4     9.0       0→4
5    13.0      4→5
6    28.0      2→6
7     8.0       0→7

pass 0
0→1 0→4 0→7 1→2 1→3 1→7 2→6 3→6 4→5 4→7 5→2 5→6 7→5 7→2

Bellman-Ford algorithm demo

v  distTo[]  edgeTo[]
0    0.0        -
1    5.0       0→1
2    14.0      5→2
3    20.0      1→3
4     9.0       0→4
5    13.0      4→5
6    28.0      2→6
7     8.0       0→7

pass 0
0→1 0→4 0→7 1→2 1→3 1→7 2→6 3→6 4→5 4→7 5→2 5→6 7→5 7→2
Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

<table>
<thead>
<tr>
<th>$v$</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 0

0→3 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2

Repeat $V$ times: relax all $E$ edges.

<table>
<thead>
<tr>
<th>$v$</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
Repeat $V$ times: relax all $E$ edges.

### Bellman-Ford algorithm demo

#### pass 1

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

#### pass 2

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Repeat $V$ times: relax all $E$ edges.

### Bellman-Ford algorithm demo

#### pass 1

<table>
<thead>
<tr>
<th>$v$</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0-&gt;1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5-&gt;2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1-&gt;3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0-&gt;4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4-&gt;5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5-&gt;6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0-&gt;7</td>
</tr>
</tbody>
</table>

### Bellman-Ford algorithm demo

#### pass 1

<table>
<thead>
<tr>
<th>$v$</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0-&gt;1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5-&gt;2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2-&gt;3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0-&gt;4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4-&gt;5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5-&gt;6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0-&gt;7</td>
</tr>
</tbody>
</table>

2-3 successfully relaxed in pass 1, but not pass 0.
Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

2-6 successfully relaxed in pass 0 and pass 1

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Repeat $V$ times: relax all $E$ edges.
Repeat $V$ times: relax all $E$ edges.

Bellman-Ford algorithm demo

Pass 1

Bellman-Ford algorithm demo

Pass 1

Bellman-Ford algorithm demo

Pass 1

Bellman-Ford algorithm demo

Pass 1
Repeat \( V \) times: relax all \( E \) edges.

**Bellman-Ford algorithm demo**

**Bellman-Ford algorithm visualization**

**Bellman-Ford algorithm demo**

**Bellman-Ford algorithm demo**
Proposition. Dynamic programming algorithm computes SPT in any edge-weighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass $i$, found shortest path containing at most $i$ edges.

Bellman-Ford algorithm: analysis

**Bellman-Ford algorithm**

Initialize $\text{distTo}\[s\] = 0$ and $\text{distTo}\[v\] = \infty$ for all other vertices.
Repeat $V$ times:
- Relax each edge.

**Observation.** If $\text{distTo}\[v\]$ does not change during pass $i$, no need to relax any edge pointing from $v$ in pass $i + 1$.

**FIFO implementation.** Maintain queue of vertices whose $\text{distTo}\[\cdot\]$ changed. Be careful to keep at most one copy of each vertex on queue (why?)

**Overall effect.**
- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Bellman-Ford algorithm: Java implementation

```java
public class BellmanFordSP {
 private double[] distTo;
 private DirectedEdge[] edgeTo;
 private boolean[] onQ;
 private Queue<Integer> queue;
 public BellmanFordSPT(EdgeWeightedDigraph G, int s) {
 distTo = new double[G.V()];
 edgeTo = new DirectedEdge[G.V()];
 onQ = new boolean[G.V()];
 queue = new Queue<Integer>();
 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;
 queue.enqueue(s);
 while (!queue.isEmpty()) {
 int v = queue.dequeue();
 onQ[v] = false;
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }
 private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (!onQ[w]) {
 queue.enqueue(w);
 onQ[w] = true;
 }
 }
 }
}
```

Bellman-Ford algorithm: practical improvement

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

Single source shortest-paths implementation: cost summary

<table>
<thead>
<tr>
<th>algorithm</th>
<th>restriction</th>
<th>typical case</th>
<th>worst case</th>
<th>extra space</th>
</tr>
</thead>
<tbody>
<tr>
<td>topological sort</td>
<td>no directed cycles</td>
<td>$E + V$</td>
<td>$E + V$</td>
<td>$V$</td>
</tr>
<tr>
<td>Dijkstra (binary heap)</td>
<td>no negative weights</td>
<td>$E \log V$</td>
<td>$E \log V$</td>
<td>$V$</td>
</tr>
<tr>
<td>Bellman Ford</td>
<td>no negative cycles</td>
<td>$E V$</td>
<td>$E V$</td>
<td>$V$</td>
</tr>
<tr>
<td>Bellman Ford (queue-based)</td>
<td>no negative cycles</td>
<td>$E V$</td>
<td>$E V$</td>
<td>$V$</td>
</tr>
</tbody>
</table>

Bellman-Ford algorithm: analysis

**Bellman-Ford algorithm**

Initialize $\text{distTo}\[s\] = 0$ and $\text{distTo}\[v\] = \infty$ for all other vertices.
Repeat $V$ times:
- Relax each edge.

**Observation.** If $\text{distTo}\[v\]$ does not change during pass $i$, no need to relax any edge pointing from $v$ in pass $i + 1$.

**FIFO implementation.** Maintain queue of vertices whose $\text{distTo}\[\cdot\]$ changed. Be careful to keep at most one copy of each vertex on queue (why?)

**Overall effect.**
- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Bellman-Ford algorithm: Java implementation

```java
public class BellmanFordSP {
 private double[] distTo;
 private DirectedEdge[] edgeTo;
 private boolean[] onQ;
 private Queue<Integer> queue;
 public BellmanFordSPT(EdgeWeightedDigraph G, int s) {
 distTo = new double[G.V()];
 edgeTo = new DirectedEdge[G.V()];
 onQ = new boolean[G.V()];
 queue = new Queue<Integer>();
 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;
 queue.enqueue(s);
 while (!queue.isEmpty()) {
 int v = queue.dequeue();
 onQ[v] = false;
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }
 private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (!onQ[w]) {
 queue.enqueue(w);
 onQ[w] = true;
 }
 }
 }
}
```

Bellman-Ford algorithm: practical improvement

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.
Finding a negative cycle

**Negative cycle.** Add two methods to the API for $s$.

- `boolean hasNegativeCycle()` - is there a negative cycle?
- `Iterable<DirectedEdge> negativeCycle()` - negative cycle reachable from $s$.

**Example**

```
 digraph
 4->5 0.35
 5->4 -0.66
 4->7 0.37
 5->7 0.28
 7->5 0.28
 5->1 0.32
 0->4 0.38
 0->2 0.26
 7->3 0.39
 1->3 0.29
 2->7 0.34
 6->2 0.40
 3->6 0.22
 6->0 0.58
 6->4 0.93
```

**Negative cycle**

- `4->5->7->5` with weight $-0.66 + 0.37 + 0.28 = 0.09$.
- Possible cycle: `0->4->7->5->4->7->5...->1->3->6` with product of edge weights $> 1$.

**Observation.** If there is a negative cycle, Bellman-Ford gets stuck in loop, updating `distTo[]` and `edgeTo[]` entries of vertices in the cycle.

**Challenge.** Express as a negative cycle detection problem.

**Currency exchange graph.**
- **Vertex** = currency.
- **Edge** = transaction, with weight equal to exchange rate.
- **Problem:** Find a directed cycle whose product of edge weights is $> 1$.

**Negative cycle application: arbitrage detection**

**Problem.** Given table of exchange rates, is there an arbitrage opportunity?

<table>
<thead>
<tr>
<th></th>
<th>USD</th>
<th>EUR</th>
<th>GBP</th>
<th>CHF</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>1</td>
<td>0.741</td>
<td>0.657</td>
<td>1.061</td>
<td>1.011</td>
</tr>
<tr>
<td>EUR</td>
<td>1.35</td>
<td>1</td>
<td>0.888</td>
<td>1.433</td>
<td>1.366</td>
</tr>
<tr>
<td>GBP</td>
<td>1.521</td>
<td>1.126</td>
<td>1</td>
<td>1.614</td>
<td>1.538</td>
</tr>
<tr>
<td>CHF</td>
<td>0.943</td>
<td>0.698</td>
<td>0.62</td>
<td>1</td>
<td>0.953</td>
</tr>
<tr>
<td>CAD</td>
<td>0.995</td>
<td>0.732</td>
<td>0.65</td>
<td>1.049</td>
<td>1</td>
</tr>
</tbody>
</table>

**Ex.** $1,000 \Rightarrow 741$ Euros $\Rightarrow 1,012.206$ Canadian dollars $\Rightarrow 1,007.14497$.

**Challenge.** Express as a negative cycle detection problem.
Model as a negative cycle detection problem by taking logs.
• Let weight of edge $v \rightarrow w$ be $-\ln$ (exchange rate from currency $v$ to $w$).
• Multiplication turns to addition; $>1$ turns to $<0$.
• Find a directed cycle whose sum of edge weights is $<0$ (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!