
HACETTEPE UNIVERSITY
DEPARTMENT OF COMPUTER ENGINEERING

BBM204 PROGRAMMING LAB.
ASSIGNMENT #3

Subject: Radix Trees
Submission Date: March 19,2015
Deadline: April 2,2015
Programming Language: ANSI C
Operation System:CentOS 7 (gcc 4.8.2)
Advisors: R.A. Aysun Koçak

1 Introduction

In this experiment, you are supposed to develop a program that will index given folder path by radix
tree. The main purpose of the program is locating files according to given options which are explained
below.

1.1 Background

Figure 1: Radix Tree

A radix tree, Patricia trie /tree is a spe-
cialized set data structure based on the trie
that is used to store a set of strings. A
radix tree is an provides a flexible means
of storing, indexing, and retrieving informa-
tion in a large environment, which is eco-
nomical of index space and of reindexing
time.

In contrast with a regular trie, the edges or nodes
of a Patricia trie can be labeled with sequences
of characters rather than with single characters.
These can be strings of characters, bit strings
such as integers or IP addresses, or generally
arbitrary sequences of objects in lexicographi-
cal order. Each node of radix tree is merged
with its parent. An example can be seen in
Fig.1.

1

2 Problem

As mentioned before, your aim is to index given directory path by radix tree. Your problem consists
of two main steps; building radix tree and locating file(s)/folder(s) via radix tree. So, your first step is
to build a radix tree with the file or folder names. You should get all files and folders under the given
directory and use their names to build a radix tree like in Fig. 1. After you build the tree, your index tree
should be saved as a file (file format is up to you). These steps will be executed after updatedatabase
command. The formal definition of updatedatabase is given below:

NAME
updatedatabase update a database.

SYNOPSIS
updatedatabase [OPTION] PATH

DESCRIPTION
updatedatabase creates or updates a database used by locater. This command initiates
building index tree process for given PATH. Then, the tree will be saved to DBPATH, if DB-
PATH is given with -o option. If it is not given, the tree should be saved to a default location
which is determined by implementer.

OPTIONS
The following options shall be supported:

–help
Output this help message.

-o DBPATH
Write the database to DBPATH instead of using the default database.

Shortly, you should build and save your index tree after updatedatabase command. Second part aims
to locate file(s)/folder(s) according to given options. The formal definition of locater is given below:

NAME
locater find files by name

SYNOPSIS
locater [OPTION]... PATTERN

DESCRIPTION
locater reads database prepared by updatedatabase and writes file names matching PAT-
TERN to standard output, one per line and in an alphabetical order. By default, locater
does not check whether files found in database still exist. locater can never report files
created after the most recent update of the relevant database. For this part, you should re-
construct the index tree and use it to locate files that has a name matching with PATTERN.

OPTIONS
The following options shall be supported:

2

–help
Output this help message

-f, –file
Print only files

-d, –directory
Print only directories

-p [PERMISSION]
Print files/folders with matching permission. PERMISSION will be in octal format (e.g.
755)

-i, –ignore-case
Ignore case distinctions when matching patterns.

-db, –databasefile [DBPATH]
Replace the default database with DBPATH. You should reconstruct the radix tree which
is located in DBPATH (saved via updatedatabase).

3 Usage

Suppose that you have a file hierarchy as given below.

| −− <Example> (7 7 7)
| | −− <BBM> (7 5 5)
| | | −− exp3 . c (7 5 5)
| | | −− exp4 . c (7 5 5)
| | | −− <da ta> (6 4 4)
| | | | −− d a t a 1 . t x t (6 4 4)
| | | | −− d a t a 2 . t x t (6 4 4)
| | −− <b i l > (7 7 7)
| | | −− r e p o r t . t e x (7 0 0)
| | | −− l a t e x i n f o . t e x (7 5 5)
| | −− bam . d a t (6 6 6)
| | −− Exper . t x t (7 7 7)

Here are some usage examples:

$./updatedatabase ./
Create index tree for current directory and save it a location that you determine.
$./updatedatabase -o ./Example/tree.db .
Create index tree for current directory and save it under ./Example folder.
$./locater -f -i ”exp*”
./BBM/exp3.c
./BBM/exp4.c
./Exper.txt
$./locater -f -i ”exp?”

3

./BBM/exp3.c

./BBM/exp4.c
$./locater -i -db ./Example/tree.db ”B*”
Load tree.db from ./Example location and find matching patterns:
./bam.dat
./BBM
./bil
$./locater -i -d -db ./Example/tree.db ”B*”
Load tree.db from ./Example location and find matching patterns:
./BBM
./bil
$./locater -i -d -p ”755”
./BBM
$./locater -i -f -p ”755”
./BBM/exp3.c
./BBM/exp4.c
./bil/latex info.tex
$./locater -i -f -p ”755” ”exp*”
./BBM/exp3.c
./BBM/exp4.c
./bil/latex info.tex
$./locater -i -f -p ”755” ”exp*”
./BBM/exp3.c
./BBM/exp4.c

Patterns

As mentioned above, your program will accept a pattern. This means given abstract string can match
to a number of strings. You will handle two types of patterns in this experiment:

• Star (*) : any number of alpha-numeric character (0..∞)

• Question Mark (?) : One and only one alpha-numeric character

These marks can be used in various ways to express a pattern. These marks can occur at the begin-
ning, middle or the end of a sentence. Here are some examples for star:
dat* will match with: ”dat”, ”data2”, ”daTagram” and so on, and will not match with DATA, Dat
B*L will match with: BIL, BASDFG-23L and so on, and will not match with BBM, B
*L will match with BIL, BBML, L and son on, and will not match with BBM, B

Here are some examples for Question Mark:
B?L will match with BIL, B1L and so on, and will not match with BL, BBML
?IL will match with BIL, 1IL and so on, and will not match with IL, BBIL
BI? will match with BIL, BI1 and so on, and will not match with BI, BILL

4

Hint

You will implement your program in C. You have to perform file and directory operations using UNIX
system calls. You may want to use the following system functions:

open(), close(), lseek(), read(), fcntl(),write() stat(), fstat(), lstat(), unlink()utime(), chdir(), getcwd(),
opendir(), readdir(), closedir(),rmdir()

Important Issues

• Test your program on ”dev.cs.hacettepe.edu.tr” before submission.

• Projects without a proper Makefile won’t be graded.

• Your output has to be in alphabetical order(according to file/folder name, not full path).

• DO NOT use ”system” functions(except listed above).

• Do not use fopen() or fclose() functions; use open() and close() functions instead if needed.

• Use dirent.h, stat.h libraries and related libraries for file and directory operations

• And please pay attention items that are listed below for your report:

1. Use report format in ftp://ftp.cs.hacettepe.edu.tr/pub/dersler/genel/

2. Choose proper topics and give meaningful information by considering grammar and spelling
rules

3. Define the problems and explain your solutions (the report should contain your algorithm,too)

4. Give information about radix tree(e.g. advantages, disadvantages)

5. Give references that you used

Notes

Give necessary details in your report. Save all your work until the assignment is graded.You can ask
your questions about the experiment on Piazza.

Your submission will be in the format below:

studentid.zip
— – <report>
— – — – report.pdf
— – <src>
— – — –*.c
— – — – *.h
— – — – Makefile

You will submit it to dersler.cs.hacettepe.edu.tr , BBM204 course. You have a right to do late submis-
sion. April 3, 2015 (evaluated over 90 points) and April 4, 2015 (evaluated over 80 points).

5

References

• http://en.wikipedia.org/wiki/Radix tree

• Donald R. Morrison. 1968. PATRICIA – Practical Algorithm To Retrieve Information Coded in
Alphanumeric. J. ACM 15, 4 (October 1968)

• http://linux.die.net/man/8/updatedb

• http://linux.die.net/man/1/locate

6

