BBM 202 - ALGORITHMS

DEPT. OF COMPUTER ENGINEERING

ERKUT ERDEM

ANALYSIS OF ALGORITHMS

Feb. 19, 2015

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

Cast of characters

Programmer needs to develop a working solution.

Client wants to solve problem efficiently.

Student might play any or all of these roles someday.

Theoretician wants to understand.

Basic blocking and tackling is sometimes necessary. [this lecture]

TODAY

- **→** Analysis of Algorithms
- **→** Observations
- Mathematical models
- **→** Order-of-growth classifications
- > Dependencies on inputs
- ▶ Memory

Running time

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise—By what course of calculation can these results be arrived at by the machine in the shortest time?" — Charles Babbage (1864)

how many times do you have to turn the crank?

Analytic Engine

Predict performance.

Compare algorithms. this course (BBM 202)

Provide guarantees.

Understand theoretical basis. Analysis of algorithms (BBM 408)

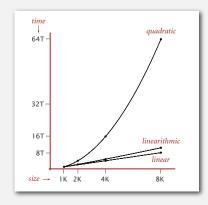
Primary practical reason: avoid performance bugs.

client gets poor performance because programmer did not understand performance characteristics

Some algorithmic successes

N-body simulation.

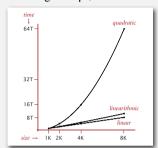
- ullet Simulate gravitational interactions among N bodies.
- Brute force: N^2 steps.
- ullet Barnes-Hut algorithm: $N\log N$ steps, enables new research.



Some algorithmic successes

Discrete Fourier transform.

- Break down waveform of *N* samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N^2 steps.
- FFT algorithm: $N \log N$ steps, enables new technology.



- sFFT: Sparse Fast Fourier Transform algorithm (Hassanieh et al., 2012)
 - A faster Fourier Transform: $k \log N$ steps (with k sparse coefficients)

The challenge

Q. Will my program be able to solve a large practical input?

Why is my program so slow? Why does it run out of memory?

Key insight. [Knuth 1970s] Use scientific method to understand performance.

0

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

Experiments must be reproducible.

Hypotheses must be falsifiable.

Feature of the natural world = computer itself.

9

Example: 3-sum

3-sum. Given N distinct integers, how many triples sum to exactly zero?

```
% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5
% java ThreeSum 8ints.txt
4
```

	a[i]	a[j]	a[k]	sum
1	30	-40	10	0
2	30	-20	-10	0
3	-40	40	0	0
4	-10	0	10	0

Context. Deeply related to problems in computational geometry.

ANALYSIS OF ALGORITHMS

- ▶ Observations
- Mathematical models
- Order-of-growth classifications
- Dependencies on inputs
- ▶ Memory

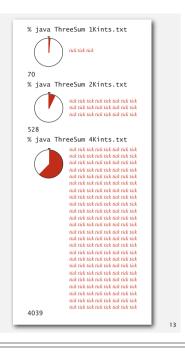
3-sum: brute-force algorithm

```
public class ThreeSum
   public static int count(int[] a)
      int N = a.length;
      int count = 0;
      for (int i = 0; i < N; i++)
         for (int j = i+1; j < N; j++)
                                                         - check each triple
            for (int k = j+1; k < N; k++)
               if (a[i] + a[j] + a[k] == 0)
                                                          for simplicity, ignore
                   count++;
                                                          integer overflow
      return count;
   public static void main(String[] args)
      int[] a = In.readInts(args[0]);
      StdOut.println(count(a));
```

Measuring the running time

Q. How to time a program?

A. Manual.



Measuring the running time

Q. How to time a program?

A. Automatic.

```
public class Stopwatch (part of stdlib.jar)

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)
```

```
public class Stopwatch
{
   private final long start = System.currentTimeMillis();

   public double elapsedTime()
   {
      long now = System.currentTimeMillis();
      return (now - start) / 1000.0;
   }
}

implementation (part of stdlib.jar)
```

Measuring the running time

Q. How to time a program?

A. Automatic.

```
public class Stopwatch (part of stdlib.jar)

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)
```

```
public static void main(String[] args)
{
   int[] a = In.readInts(args[0]);
   Stopwatch stopwatch = new Stopwatch();
   StdOut.println(ThreeSum.count(a));
   double time = stopwatch.elapsedTime();
}
```

14

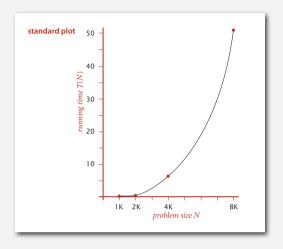
Empirical analysis

Run the program for various input sizes and measure running time.

N	time (seconds) †
250	0
500	0
1.000	0,1
2.000	0,8
4.000	6,4
8.000	51,1
16.000	?

Data analysis

Standard plot. Plot running time T(N) vs. input size N.



17

Prediction and validation

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

"order of growth" of running time is about N³ [stay tuned]

Predictions.

- 51.0 seconds for N = 8,000.
- 408.1 seconds for N = 16,000.

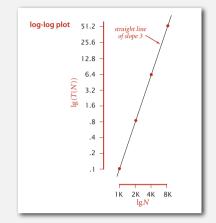
Observations.

N	time (seconds) †
8.000	51,1
8.000	51
8.000	51,1
16.000	410,8

validates hypothesis!

Data analysis

Log-log plot. Plot running time T(N) vs. input size N using log-log scale.



lg(T(N)) = b lg N + c b = 2.999c = -33.2103

 $T(N) = a N^b$, where $a = 2^c$

Regression. Fit straight line through data points: $a\,N^{\,b}$. Slope Hypothesis. The running time is about $1.006\times 10^{\,-10}\times N^{\,2.999}$ seconds.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

N	time (seconds) †	ratio	lg ratio
250	0		-
500	0	4,8	2,3
1.000	0,1	6,9	2,8
2.000	0,8	7,7	2,9
4.000	6,4	8	3
8.000	51,1	8	3

seems to converge to a constant b ≈ 3

Hypothesis. Running time is about $a N^b$ with $b = \lg$ ratio.

 ${\color{red}\textbf{Caveat.}} \ \, \textbf{Cannot identify logarithmic factors with doubling hypothesis.}$

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law hypothesis.

- Q. How to estimate a (assuming we know b)?
- A. Run the program (for a sufficient large value of N) and solve for a.

N	time (seconds) †	
8.000	51,1	
8.000	51	
8.000	51,1	

$$51.1 = a \times 8000^{3}$$

 $\Rightarrow a = 0.998 \times 10^{-10}$

Hypothesis. Running time is about $0.998 \times 10^{-10} \times N^3$ seconds.

almost identical hypothesis to one obtained via linear regression

2

In practice, constant factors matter too!

Q. How long does this program take as a function of N?

```
String s = StdIn.readString();
int N = s.length();
...
for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
        distance[i][j] = ...
...</pre>
```

N	time
1.000	0,11
2.000	0,35
4.000	1,6
8.000	6,5

N	time
250	0,5
500	1,1
1.000	1,9
2.000	3,9

Jenny $\sim c_1 \ N^2 \ seconds$

Kenny ~ c₂ N seconds

Experimental algorithmics

System independent effects.

- Algorithm.
- determines exponent b
- Input data.
- in power law

System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other applications, ...

determines constant a in power law

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

e.g., can run huge number of experiments

22

ANALYSIS OF ALGORITHMS

- **→** Observations
- Mathematical models
- **→** Order-of-growth classifications
- Dependencies on inputs
- ▶ Memory

Mathematical models for running time

Total running time: sum of $cost \times frequency$ for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.



THE CLASSIC WORK EXTENDED AND REFINED

The Art of

Computer

Programming

DONALD E. KNUTH

Donald Knuth 1974 Turing Award

In principle, accurate mathematical models are available.

25

Cost of basic operations

operation	example	nanoseconds †
variable declaration	int a	c ₁
assignment statement	a = b	C ₂
integer compare	a < b	C ₃
array element access	a[i]	C4
array length	a.length	C 5
1D array allocation	new int[N]	c ₆ N
2D array allocation	new int[N][N]	C7 N ²
string length	s.length()	C ₈
substring extraction	s.substring(N/2, N)	C 9
string concatenation	s + t	C ₁₀ N

Novice mistake. Abusive string concatenation.

Cost of basic operations

operation	example	nanoseconds †
integer add	a + b	2,1
integer multiply	a * b	2,4
integer divide	a / b	5,4
floating-point add	a + b	4,6
floating-point multiply	a * b	4,2
floating-point divide	a / b	13,5
sine	Math.sin(theta)	91,3
arctangent	Math.atan2(y, x)	129

[†] Running OS X on Macbook Pro 2.2GHz with 2GB RAM

2

Example: I-sum

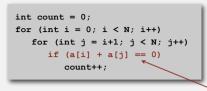
Q. How many instructions as a function of input size N?

```
int count = 0;
for (int i = 0; i < N; i++)
  if (a[i] == 0)
     count++;</pre>
```

operation	frequency
variable declaration	2
assignment statement	2
less than compare	N + 1
equal to compare	N
array access	N
increment	N to 2 N

Example: 2-sum

Q. How many instructions as a function of input size N?



operation	frequency
variable declaration	N + 2
assignment statement	N + 2
less than compare	½ (N + 1) (N + 2)
equal to compare	½ N (N – 1)
array access	N (N - 1)
increment	½ N (N − 1) to N (N − 1)

tedious to count exactly

 $0+1+2+...+(N-1) = \frac{1}{2}N(N-1)$

Simplification I: cost model

Cost model. Use some basic operation as a proxy for running time.

 $0+1+2+\ldots+(N-1) = \frac{1}{2}N(N-1)$

operation	frequency	$=\binom{N}{2}$
variable declaration	N + 2	
assignment statement	N + 2	
less than compare	½ (N + 1) (N + 2)	
equal to compare	½ N (N – 1)	
array access	N (N − 1) ←	cost model = array accesse
increment	½ N (N - 1) to N (N - 1)	

Simplifying the calculations

"It is convenient to have a measure of the amount of work involved in a computing process, even though it be a very crude one. We may count up the number of times that various elementary operations are applied in the whole process and then given them various weights. We might, for instance, count the number of additions, subtractions, multiplications, divisions, recording of numbers, and extractions of figures from tables. In the case of computing with matrices most of the work consists of multiplications and writing down numbers, and we shall therefore only attempt to count the number of multiplications and recordings. " — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES

By A. M. TURING

(National Physical Laboratory, Teddington, Middlesex) [Received 4 November 1947]

SUMMARY

A number of methods of solving sets of linear equations and inverting matrices re discussed. The theory of the rounding-off errors involved is investigated for ome of the methods. In all cases examined, including the well-known 'Gauss limination process', it is found that the errors are normally quite moderate: no

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

Ex I.
$$\frac{1}{6}N^3 + 20N + 16 \sim \frac{1}{6}N^3$$

Ex 2.
$$\frac{1}{6}N^3 + 100N^{4/3} + 56 \sim \frac{1}{6}N^3$$

Ex 3.
$$\frac{1}{6}N^3 - \frac{1}{2}N^2 + \frac{1}{3}N \sim \frac{1}{6}N^3$$

discard lower-order terms

(e.g., N = 1000: 500 thousand vs. 166 million)

Leading-term approximation

$$\mbox{Technical definition.} \ \ f(N) \sim g(N) \ \ \mbox{means} \quad \lim_{N \to -\infty} \frac{f(N)}{g(N)} \ = \ 1$$

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

operation	frequency	tilde notation
variable declaration	N + 2	~ N
assignment statement	N + 2	~ N
less than compare	½ (N + 1) (N + 2)	~ ½ N²
equal to compare	½ N (N – 1)	~ ½ N²
array access	N (N - 1)	~ N ²
increment	½ N (N − 1) to N (N − 1)	$\sim \frac{1}{2} N^2$ to $\sim N^2$

33

Example: 3-sum

Q. Approximately how many array accesses as a function of input size N?

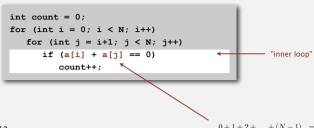
int count = 0; for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) for (int k = j+1; k < N; k++) if (a[i] + a[j] + a[k] == 0) count++;

A.
$$\sim \frac{1}{2} N^3$$
 array accesses.
$$\binom{N}{3} = \frac{N(N-1)(N-2)}{3!}$$

Bottom line. Use cost model and tilde notation to simplify frequency counts.

Example: 2-sum

Q. Approximately how many array accesses as a function of input size N?



A. ~ N^2 array accesses.

$$0 + 1 + 2 + ... + (N - 1) = \frac{1}{2}N(N - 1)$$

= $\binom{N}{}$

Bottom line. Use cost model and tilde notation to simplify frequency counts.

34

Estimating a discrete sum

Q. How to estimate a discrete sum?

A1. Take discrete mathematics course.

A2. Replace the sum with an integral, and use calculus!

Ex I.
$$1 + 2 + ... + N$$
.
$$\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x \, dx \sim \frac{1}{2} N^2$$

Ex 2.
$$1 + 1/2 + 1/3 + ... + 1/N$$
.
$$\sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x} dx = \ln N$$

Ex 3. 3-sum triple loop.
$$\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=j}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} dz \, dy \, dx \sim \frac{1}{6} N^3$$

In principle, accurate mathematical models are available.

In practice,

- Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.

frequencies

(depend on algorithm, input)

costs (depend on machine, compiler)

 $T_N = c_1 A + c_2 B + c_3 C + c_4 D + c_5 E$ A = array access B = integer add C = integer compare

D = increment

E= variable assignment

Bottom line. We use approximate models in this course: $T(N) \sim c N^3$.

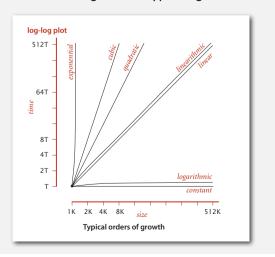
37

Common order-of-growth classifications

Good news. the small set of functions

1, $\log N$, N, $N \log N$, N^2 , N^3 , and 2^N

suffices to describe order-of-growth of typical algorithms.



ANALYSIS OF ALGORITHMS

- ▶ Observations
- Mathematical models
- Order-of-growth classifications
- Dependencies on inputs
- ▶ Memory

Common order-of-growth classifications

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) {</pre>	double loop	check all pairs	4
N^3	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k+</pre>	triple loop	check all triples	8
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Practical implications of order-of-growth

growth	problem size solvable in minutes						
rate	1970s	1970s 1980s		2000s			
1	any	any	any	any			
log N	any	any	any	any			
N	millions	tens of millions	hundreds of millions	billions			
N log N	hundreds of thousands	millions	millions	hundreds of millions			
N ²	hundreds	thousand	thousands	tens of thousands			
N ³	hundred	hundreds	thousand	thousands			
2 ^N	20	20s	20s	30			

41

Practical implications of order-of-growth

growth		effect on a program that runs for a few seconds		
rate	name	description	time for 100x more data	size for 100x faster computer
1	constant	independent of input size	-	-
log N	logarithmic	nearly independent of input size	-	-
N	linear	optimal for N inputs	a few minutes	100x
N log N	linearithmic	nearly optimal for N inputs	a few minutes	100x
N ²	quadratic	not practical for large problems	several hours	10x
N^3	cubic	not practical for medium problems	several weeks	4-5×
2 ^N	exponential	useful only for tiny problems	forever	1x

Practical implications of order-of-growth

growth	pr	oblem size so	lvable in minut	es	tii	me to process i	millions of inp	uts
rate	1970s	1980s	1990s	2000s	1970s	1980s	1990s	2000s
1	any	any	any	any	instant	instant	instant	instant
log N	any	any	any	any	instant	instant	instant	instant
N	millions	tens of millions	hundreds of millions	billions	minutes	seconds	second	instant
N log N	hundreds of thousands	millions	millions	hundreds of millions	hour	minutes	tens of seconds	seconds
N ²	hundreds	thousand	thousands	tens of thousands	decades	years	months	weeks
N^3	hundred	hundreds	thousand	thousands	never	never	never	millennia

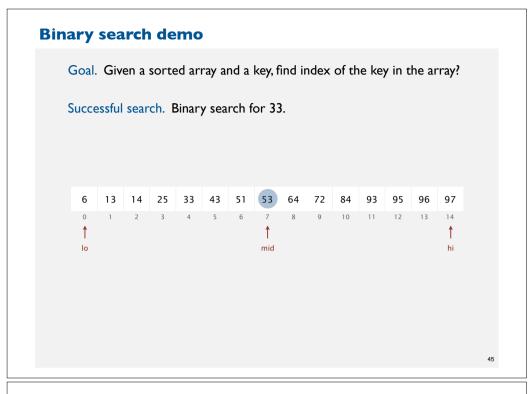
Binary search

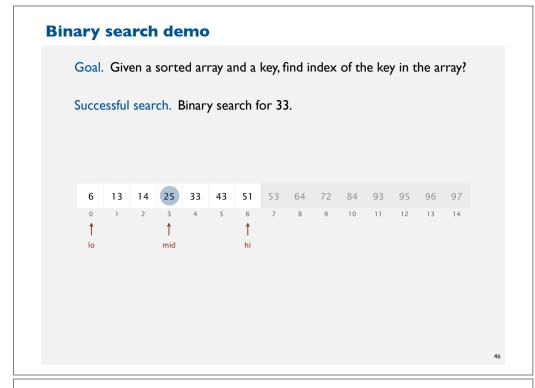
Goal. Given a sorted array and a key, find index of the key in the array?

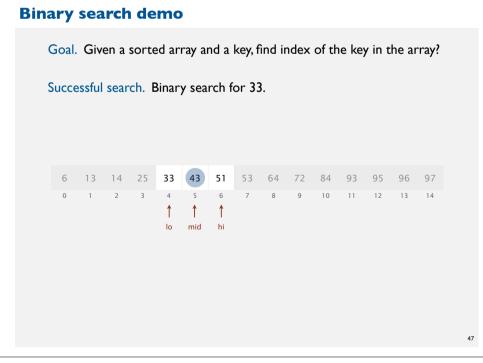
Binary search. Compare key against middle entry.

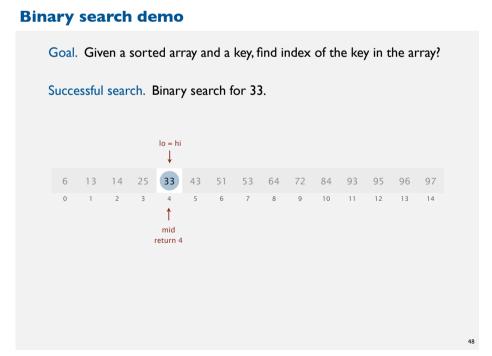
- Too small, go left.
- Too big, go right.
- Equal, found.

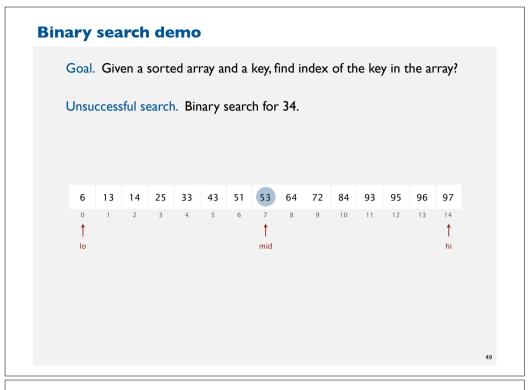
6	13	14	25	33	43	51	53	64	72	84	93	95	96	97
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
↑							↑							↑
lo							mid							hi

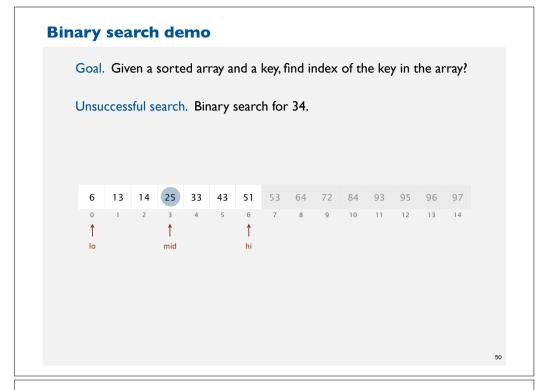


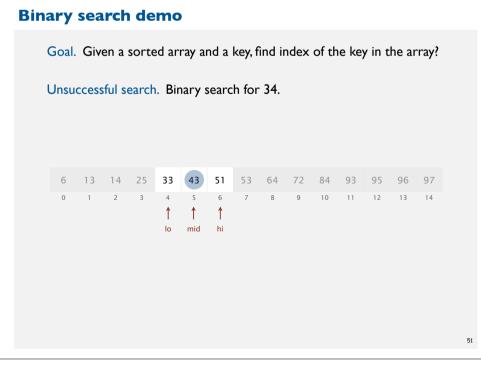


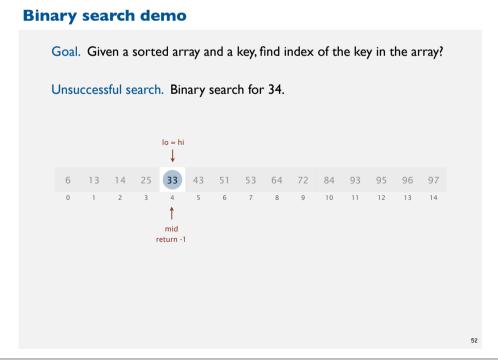












Binary search: Java implementation

Trivial to implement?

- First binary search published in 1946; first bug-free one published in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006.

Invariant. If key appears in the array a[], then $a[lo] \le key \le a[hi]$.

53

Binary search: mathematical analysis

Proposition. Binary search uses at most $1 + \lg N$ compares to search in a sorted array of size N.

Def. $T(N) \equiv \#$ compares to binary search in a sorted subarray of size at most N.

Binary search recurrence. $T(N) \le T(\lfloor N/2 \rfloor) + 1$ for N > 1, with T(0) = 0.

For simplicity, we prove when $N=2^n-1$ for some n, so $\lfloor N/2 \rfloor = 2^{n-1}-1$.

$$T(2^{n}-1) \leq T(2^{n-1}-1) + 1$$
 given
$$\leq T(2^{n-2}-1) + 1 + 1$$
 apply recurrence to first term
$$\leq T(2^{n-3}-1) + 1 + 1 + 1$$
 apply recurrence to first term
$$\cdots$$

$$\leq T(2^{0}-1) + 1 + 1 + \dots + 1$$

$$= n$$
 stop applying, T(0) = 1

Binary search: mathematical analysis

Proposition. Binary search uses at most $1 + \lg N$ compares to search in a sorted array of size N.

Def. $T(N) \equiv \#$ compares to binary search in a sorted subarray of size at most N.

Binary search recurrence.
$$T(N) \leq T(N/2) + 1$$
 for $N > 1$, with $T(1) = 1$.

left or right half possible to implement with one 2-way compare (instead of 3-way)

Pf sketch.

```
T(N) \leq T(N/2) + 1 given \leq T(N/4) + 1 + 1 apply recurrence to first term \leq T(N/8) + 1 + 1 + 1 apply recurrence to first term \cdots \leq T(N/N) + 1 + 1 + \dots + 1 = 1 + \lg N stop applying, T(1) = 1
```

An N² log N algorithm for 3-sum

Algorithm.

- Sort the N (distinct) numbers.
- For each pair of numbers a[i] and a[j],
 binary search for (a[i] + a[j]).

30 -40 -20 -10 40 0 10 5 -40 -20 -10 0 5 10 30 40 binary search (-40, -20)(-40, -10)(-40, 0)40 (-40, 5)(-40, 10) (-40, 40)(-10, 0) only count if a[i] < a[j] < a[k](-20, 10)to avoid (10, 30) (10, 40) (30, 40)

Analysis. Order of growth is $N^2 \log N$.

- Step I: N^2 with insertion sort.
- Step 2: $N^2 \log N$ with binary search.

Comparing programs

Hypothesis. The $N^2\log N$ three-sum algorithm is significantly faster in practice than the brute-force N^3 algorithm.

N	time (seconds)
1.000	0,1
2.000	0,8
4.000	6,4
8.000	51,1

ThreeSum.java

N	time (seconds)
1.000	0,14
2.000	0,18
4.000	0,34
8.000	0,96
16.000	3,67
32.000	14,88
64.000	59,16

ThreeSumDeluxe.java

Guiding principle. Typically, better order of growth \Rightarrow faster in practice.

57

Types of analyses

Best case. Lower bound on cost.

- Determined by "easiest" input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- Need a model for "random" input.
- Provides a way to predict performance.

Ex 1. Array accesses for brute-force 3 sum.

Best: $\sim \frac{1}{2} N^3$ Average: $\sim \frac{1}{2} N^3$ Worst: $\sim \frac{1}{2} N^3$ Ex 2. Compares for binary search.

Best: ~ 1 Average: $\sim \lg N$ Worst: $\sim \lg N$

ANALYSIS OF ALGORITHMS

- → Observations
- Mathematical models
- Order-of-growth classifications
- Dependencies on inputs
- ▶ Memory

Types of analyses

Best case. Lower bound on cost.

Worst case. Upper bound on cost.

Average case. "Expected" cost.

Actual data might not match input model?

- Need to understand input to effectively process it.
- Approach I: design for the worst case.
- Approach 2: randomize, depend on probabilistic guarantee.

59

е

Theory of Algorithms

Goals.

- Establish "difficulty" of a problem.
- Develop "optimal" algorithms.

Approach.

- Suppress details in analysis: analyze "to within a constant factor".
- Eliminate variability in input model by focusing on the worst case.

Optimal algorithm.

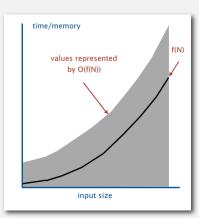
- Performance guarantee (to within a constant factor) for any input.
- No algorithm can provide a better performance guarantee.

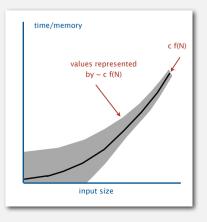
61

Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.

- Big-Oh notation suppresses leading constant.
- Big-Oh notation only provides upper bound (not lower bound).





Commonly-used notations

notation	provides	example	shorthand for	used to
Tilde	leading term	~ 10 N ²	10 N ² 10 N ² + 22 N log N 10 N ² + 2 N + 37	provide approximate model
Big Theta	asymptotic growth rate	Θ(N²)	$\frac{1}{2}$ N ² 10 N ² 5 N ² + 22 N log N + 3N	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	O(N ²)	10 N ² 100 N 22 N log N + 3 N	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{1}{2}$ N ² N ⁵ N ³ + 22 N log N + 3 N	develop lower bounds

Common mistake. Interpreting big-Oh as an approximate model.

Theory of algorithms: example I

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. I-SUM = "Is there a 0 in the array?"

Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for I-SUM: Look at every array entry.
- Running time of the optimal algorithm for I-SUM is O(N).

Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries (any unexamined one might be 0).
- Running time of the optimal algorithm for I-SUM is $\Omega(N)$.

Optimal algorithm.

- Lower bound equals upper bound (to within a constant factor).
- Ex. Brute-force algorithm for I-SUM is optimal: its running time is $\Theta(N)$.

Theory of algorithms: example 2

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-SUM

Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for 3-SUM
- Running time of the optimal algorithm for 3-SUM is $O(N^3)$.

65

Algorithm design approach

Start.

- Develop an algorithm.
- Prove a lower bound.

Gap?

- Lower the upper bound (discover a new algorithm).
- Raise the lower bound (more difficult).

Golden Age of Algorithm Design.

- 1970s-.
- Steadily decreasing upper bounds for many important problems.
- Many known optimal algorithms.

Caveats.

- Overly pessimistic to focus on worst case?
- Need better than "to within a constant factor" to predict performance.

Theory of algorithms: example 2

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-SUM

Upper bound. A specific algorithm.

- Ex. Improved algorithm for 3-SUM
- Running time of the optimal algorithm for 3-SUM is $O(N^2 \log N)$.

Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries to solve 3-SUM.
- Running time of the optimal algorithm for solving 3-SUM is $\Omega(N)$.

Open problems.

- Optimal algorithm for 3-SUM?
- Subquadratic algorithm for 3-SUM?
- Quadratic lower bound for 3-SUM?

.

ANALYSIS OF ALGORITHMS

- **→** Observations
- Mathematical models
- **→** Order-of-growth classifications
- Dependencies on inputs
- **▶** Memory

Basics

Bit. 0 or 1.

Byte. 8 bits. ↓ ↓

Megabyte (MB). I million or 2²⁰ bytes.

Gigabyte (GB). I billion or 2³⁰ bytes.

Old machine. We used to assume a 32-bit machine with 4 byte pointers.

Modern machine. We now assume a 64-bit machine with 8 byte pointers.

- Can address more memory.
- Pointers use more space.

some JVMs "compress" ordinary object pointers to 4 bytes to avoid this cost

69

Typical memory usage for objects in Java

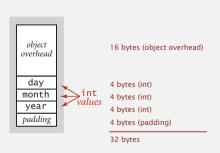
Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex I. A Date object uses 32 bytes of memory.

```
public class Date
{
    private int day;
    private int month;
    private int year;
...
}
```



Typical memory usage for primitive types and arrays

Primitive types.

type	bytes			
boolean	1			
byte	1			
char	2			
int	4			
float	4			
long	8			
double	8			
for primitive types				

Array overhead. 24 bytes.

type	bytes
char[]	2N + 24
int[]	4N + 24
double[]	8N + 24

for one-dimensional arrays

type	bytes
char[][]	~ 2 M N
int[][]	~ 4 M N
double[][]	~ 8 M N

for two-dimensional arrays

-

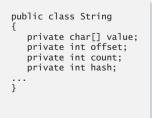
Typical memory usage for objects in Java

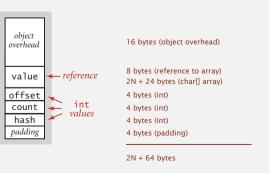
Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 2. A virgin string of length N uses $\sim 2N$ bytes of memory.





- 7

Typical memory usage summary

Total memory usage for a data type value:

• Primitive type: 4 bytes for int, 8 bytes for double, ...

• Object reference: 8 bytes.

• Array: 24 bytes + memory for each array entry.

• Object: 16 bytes + memory for each instance variable + 8 if inner class.

extra pointer to enclosing class

padding: round up

to multiple of 8

Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference, add memory (recursively) for referenced object.

73

Turning the crank: summary

Empirical analysis.

- Execute program to perform experiments.
- Assume power law and formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- Use tilde notation to simplify analysis.
- Model enables us to explain behavior.

Scientific method.

- Mathematical model is independent of a particular system; applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.

75

Memory profiler

Classmexer library. Measure memory usage of a Java object by querying JVM.

http://www.javamex.com/classmexer