# **BBM 202 - ALGORITHMS**

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

**ERKUT ERDEM** 

**ANALYSIS OF ALGORITHMS** 

Feb. 19, 2015

**Acknowledgement:** The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

# **TODAY**

- Analysis of Algorithms
- Observations
- Mathematical models
- Order-of-growth classifications
- Dependencies on inputs
- Memory

### **Cast of characters**



Programmer needs to develop a working solution. ←



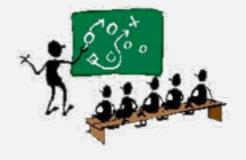


Client wants to solve problem efficiently.

Student might play any or all of these roles someday.



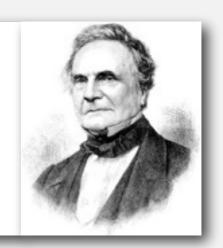
Theoretician wants to understand.

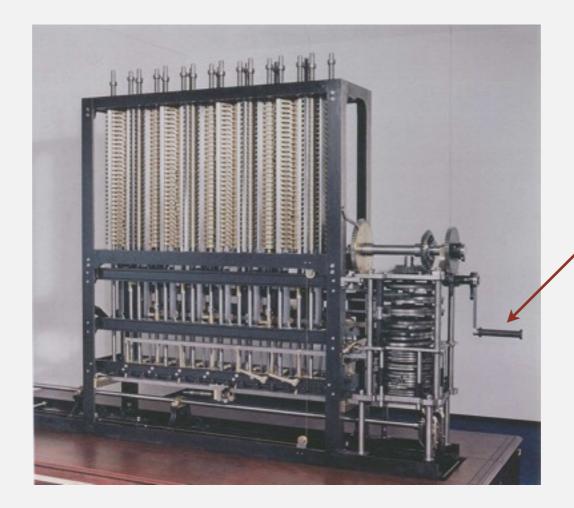


Basic blocking and tackling is sometimes necessary. [this lecture]

### Running time

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise—By what course of calculation can these results be arrived at by the machine in the shortest time?" — Charles Babbage (1864)

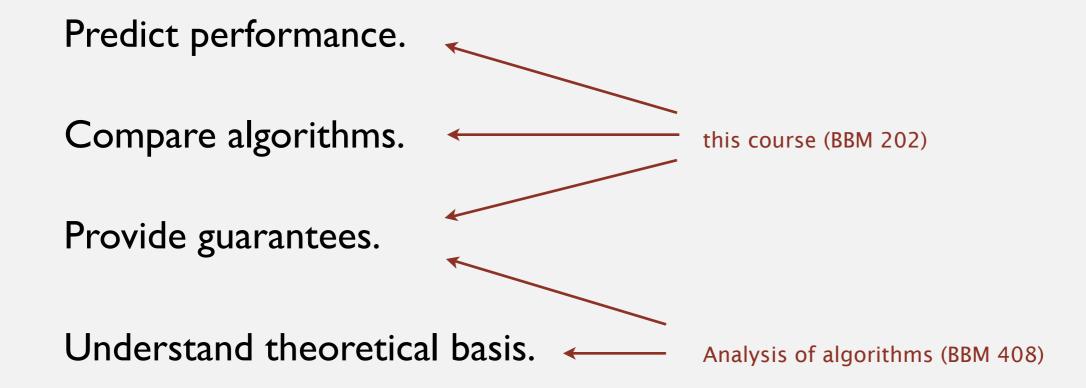




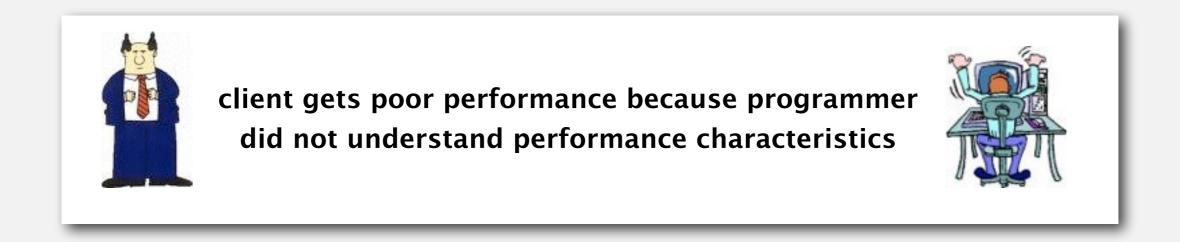
how many times do you have to turn the crank?

**Analytic Engine** 

### Reasons to analyze algorithms



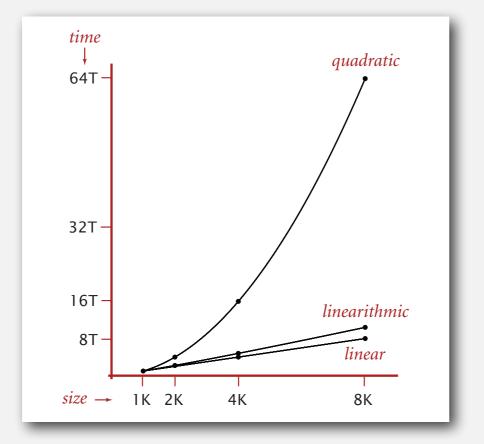
Primary practical reason: avoid performance bugs.



### Some algorithmic successes

#### Discrete Fourier transform.

- Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics, ....
- Brute force:  $N^2$  steps.
- FFT algorithm:  $N \log N$  steps, enables new technology.









Friedrich Gauss 1805

- sFFT: Sparse Fast Fourier Transform algorithm (Hassanieh et al., 2012)
  - A faster Fourier Transform:  $k \log N$  steps (with k sparse coefficients)

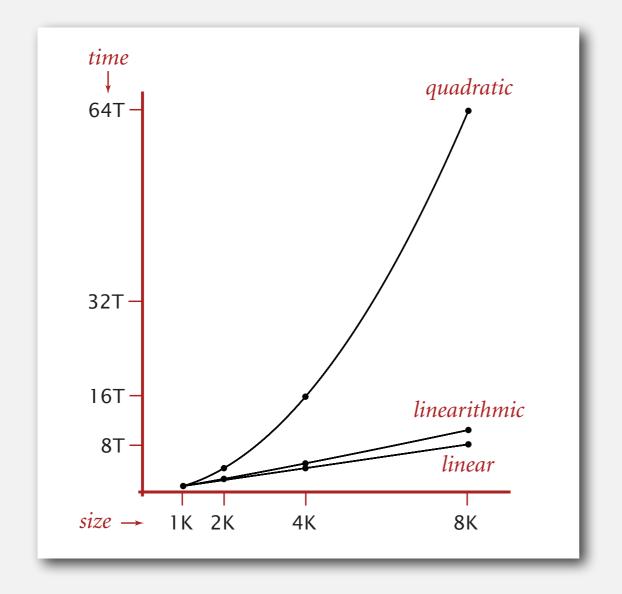
### Some algorithmic successes

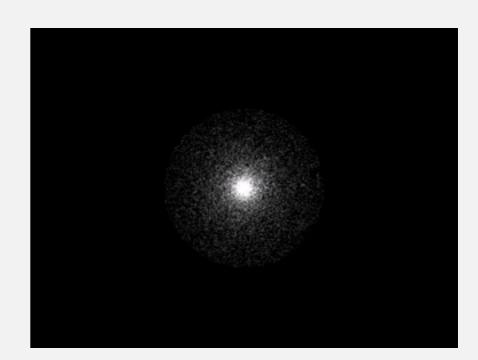
### N-body simulation.

- ullet Simulate gravitational interactions among N bodies.
- Brute force:  $N^2$  steps.
- Barnes-Hut algorithm:  $N \log N$  steps, enables new research.



Andrew Appel PU '81





### The challenge

Q. Will my program be able to solve a large practical input?

Why is my program so slow?

Why does it run out of memory?



Key insight. [Knuth 1970s] Use scientific method to understand performance.

### Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

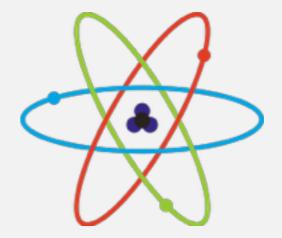
#### Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

#### Principles.

Experiments must be reproducible.

Hypotheses must be falsifiable.



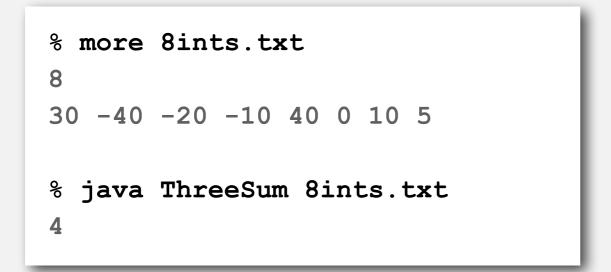
Feature of the natural world = computer itself.

# **ANALYSIS OF ALGORITHMS**

- Observations
- Mathematical models
- Order-of-growth classifications
- Dependencies on inputs
- Memory

### Example: 3-sum

3-sum. Given N distinct integers, how many triples sum to exactly zero?



|   | a[i] | a[j] | a[k] | sum |
|---|------|------|------|-----|
| 1 | 30   | -40  | 10   | 0   |
| 2 | 30   | -20  | -10  | 0   |
| 3 | -40  | 40   | 0    | 0   |
| 4 | -10  | 0    | 10   | 0   |

Context. Deeply related to problems in computational geometry.

### 3-sum: brute-force algorithm

```
public class ThreeSum
   public static int count(int[] a)
      int N = a.length;
      int count = 0;
      for (int i = 0; i < N; i++)
          for (int j = i+1; j < N; j++)
             for (int k = j+1; k < N; k++)
                                                           check each triple
                if (a[i] + a[j] + a[k] == 0)
                                                           for simplicity, ignore
                   count++;
                                                           integer overflow
      return count;
   public static void main(String[] args)
      int[] a = In.readInts(args[0]);
      StdOut.println(count(a));
```

### Measuring the running time

- Q. How to time a program?
- A. Manual.



#### % java ThreeSum 1Kints.txt



70

#### % java ThreeSum 2Kints.txt



tick tick

tick tick tick tick tick tick tick

528

#### % java ThreeSum 4Kints.txt



tick tick

4039

### Measuring the running time

- Q. How to time a program?
- A. Automatic.

```
public class Stopwatch (part of stdlib.jar)

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)
```

```
public static void main(String[] args)
{
  int[] a = In.readInts(args[0]);
  Stopwatch stopwatch = new Stopwatch();
  StdOut.println(ThreeSum.count(a));
  double time = stopwatch.elapsedTime();
}
```

### Measuring the running time

- Q. How to time a program?
- A. Automatic.

```
public class Stopwatch (part of stdlib.jar)

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)
```

```
public class Stopwatch
{
    private final long start = System.currentTimeMillis();

    public double elapsedTime()
    {
        long now = System.currentTimeMillis();
        return (now - start) / 1000.0;
    }
}

implementation (part of stdlib.jar)
```

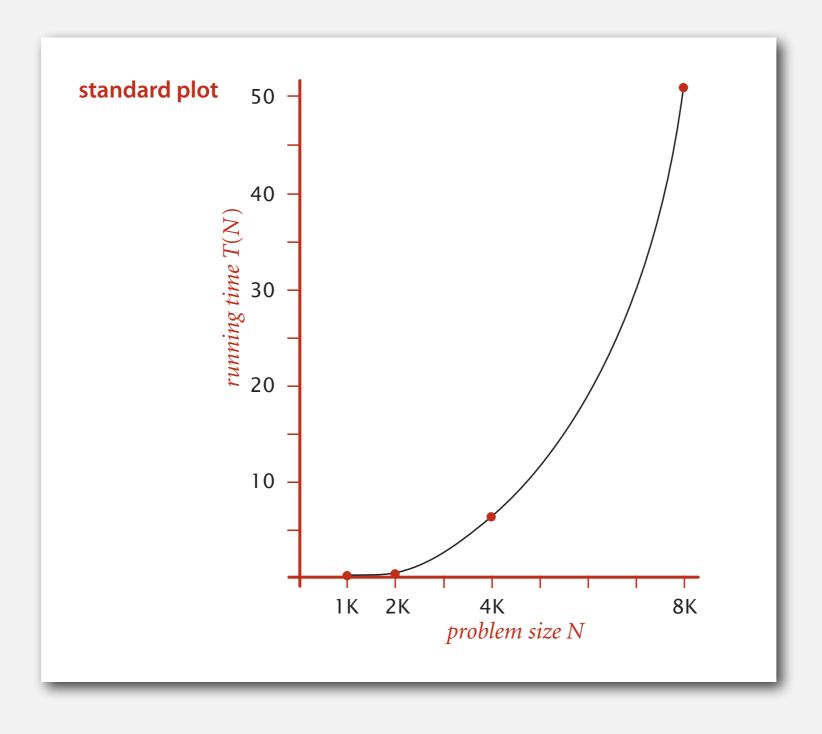
## **Empirical analysis**

Run the program for various input sizes and measure running time.

| N      | time (seconds) † |  |
|--------|------------------|--|
| 250    | 0                |  |
| 500    | 0                |  |
| 1.000  | 0,1              |  |
| 2.000  | 0,8              |  |
| 4.000  | 6,4              |  |
| 8.000  | 51,1             |  |
| 16.000 | ?                |  |

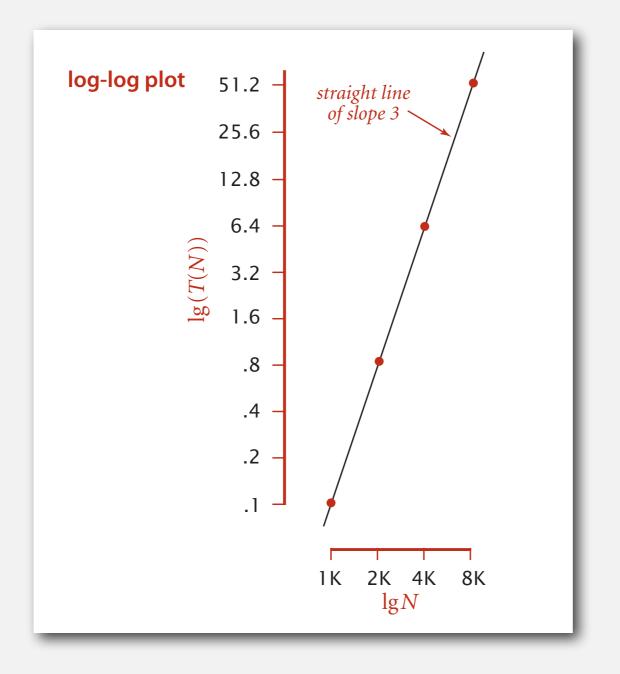
## Data analysis

Standard plot. Plot running time T(N) vs. input size N.



### Data analysis

Log-log plot. Plot running time T(N) vs. input size N using log-log scale.



$$lg(T(N)) = b lg N + c$$
  
 $b = 2.999$   
 $c = -33.2103$ 

$$T(N) = a N^b$$
, where  $a = 2^c$ 

power law

Regression. Fit straight line through data points:  $a N^b$ . Slope Hypothesis. The running time is about  $1.006 \times 10^{-10} \times N^{2.999}$  seconds.

### Prediction and validation

Hypothesis. The running time is about  $1.006 \times 10^{-10} \times N^{2.999}$  seconds.

"order of growth" of running time is about N<sup>3</sup> [stay tuned]

#### Predictions.

- 51.0 seconds for N = 8,000.
- 408.1 seconds for N = 16,000.

#### Observations.

| N      | time (seconds) † |  |
|--------|------------------|--|
| 8.000  | 51,1             |  |
| 8.000  | 51               |  |
| 8.000  | 51,1             |  |
| 16.000 | 410,8            |  |

validates hypothesis!

### **Doubling hypothesis**

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

| time (seconds) † | ratio                  | lg ratio                                                                    |
|------------------|------------------------|-----------------------------------------------------------------------------|
| 0                |                        | -                                                                           |
| 0                | 4,8                    | 2,3                                                                         |
| 0,1              | 6,9                    | 2,8                                                                         |
| 0,8              | 7,7                    | 2,9                                                                         |
| 6,4              | 8                      | 3                                                                           |
| 51,1             | 8                      | 3                                                                           |
|                  | 0<br>0,1<br>0,8<br>6,4 | 0       4,8         0,1       6,9         0,8       7,7         6,4       8 |

seems to converge to a constant  $b \approx 3$ 

Hypothesis. Running time is about  $a N^b$  with  $b = \lg ratio$ . Caveat. Cannot identify logarithmic factors with doubling hypothesis.

### **Doubling hypothesis**

Doubling hypothesis. Quick way to estimate b in a power-law hypothesis.

- Q. How to estimate a (assuming we know b)?
- A. Run the program (for a sufficient large value of N) and solve for a.

| N     | time (seconds) † |  |
|-------|------------------|--|
| 8.000 | 51,1             |  |
| 8.000 | 51               |  |
| 8.000 | 51,1             |  |

$$51.1 = a \times 8000^{3}$$
  
 $\Rightarrow a = 0.998 \times 10^{-10}$ 

Hypothesis. Running time is about  $0.998 \times 10^{-10} \times N^3$  seconds.

almost identical hypothesis to one obtained via linear regression

### **Experimental algorithmics**

### System independent effects.

Algorithm.Input data.determines exponent bin power law

#### System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other applications, ...

determines constant a in power law

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.



e.g., can run huge number of experiments

### In practice, constant factors matter too!

Q. How long does this program take as a function of N?

```
String s = StdIn.readString();
int N = s.length();
...

for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
        distance[i][j] = ...
...</pre>
```

| N     | time |
|-------|------|
| 1.000 | 0,11 |
| 2.000 | 0,35 |
| 4.000 | 1,6  |
| 8.000 | 6,5  |

Jenny  $\sim c_1 N^2$  seconds

| N     | time |
|-------|------|
| 250   | 0,5  |
| 500   | 1,1  |
| 1.000 | 1,9  |
| 2.000 | 3,9  |

Kenny ~ c<sub>2</sub> N seconds

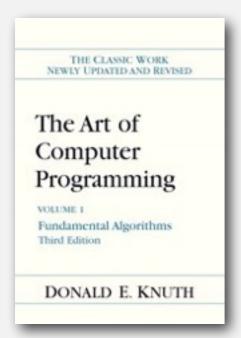
# **ANALYSIS OF ALGORITHMS**

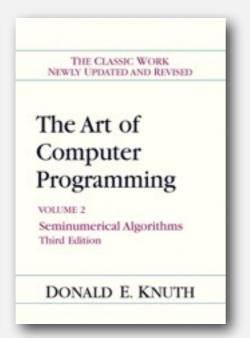
- Observations
- Mathematical models
- Order-of-growth classifications
- Dependencies on inputs
- Memory

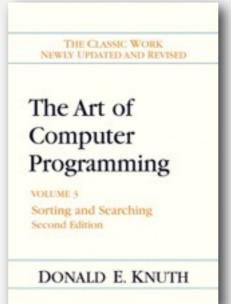
### Mathematical models for running time

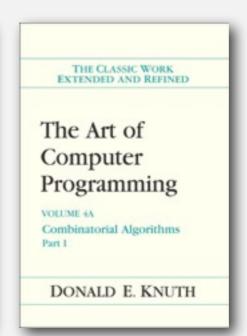
Total running time: sum of  $cost \times frequency$  for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.











Donald Knuth 1974 Turing Award

In principle, accurate mathematical models are available.

# Cost of basic operations

| operation               | example          | nanoseconds † |
|-------------------------|------------------|---------------|
| integer add             | a + b            | 2,1           |
| integer multiply        | a * b            | 2,4           |
| integer divide          | a / b            | 5,4           |
| floating-point add      | a + b            | 4,6           |
| floating-point multiply | a * b            | 4,2           |
| floating-point divide   | a / b            | 13,5          |
| sine                    | Math.sin(theta)  | 91,3          |
| arctangent              | Math.atan2(y, x) | 129           |
|                         |                  |               |

<sup>†</sup> Running OS X on Macbook Pro 2.2GHz with 2GB RAM

## Cost of basic operations

| operation            | example             | nanoseconds †                 |
|----------------------|---------------------|-------------------------------|
| variable declaration | int a               | <b>C</b> <sub>1</sub>         |
| assignment statement | a = b               | <b>C</b> 2                    |
| integer compare      | a < b               | <b>C</b> <sub>3</sub>         |
| array element access | a[i]                | <b>C</b> 4                    |
| array length         | a.length            | <b>C</b> 5                    |
| 1D array allocation  | new int[N]          | c <sub>6</sub> N              |
| 2D array allocation  | new int[N][N]       | c <sub>7</sub> N <sup>2</sup> |
| string length        | s.length()          | <b>C</b> 8                    |
| substring extraction | s.substring(N/2, N) | <b>C</b> 9                    |
| string concatenation | s + t               | c <sub>10</sub> N             |

Novice mistake. Abusive string concatenation.

## **Example: I-sum**

Q. How many instructions as a function of input size N?

```
int count = 0;
for (int i = 0; i < N; i++)
  if (a[i] == 0)
    count++;</pre>
```

| operation            | frequency |
|----------------------|-----------|
| variable declaration | 2         |
| assignment statement | 2         |
| less than compare    | N + 1     |
| equal to compare     | N         |
| array access         | N         |
| increment            | N to 2 N  |

### Example: 2-sum

### Q. How many instructions as a function of input size N?

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
    if (a[i] + a[j] == 0)
        count++;</pre>
```

$$0+1+2+\ldots+(N-1) = \frac{1}{2}N(N-1)$$
$$= {N \choose 2}$$

| operation            | frequency                |
|----------------------|--------------------------|
| variable declaration | N + 2                    |
| assignment statement | N + 2                    |
| less than compare    | ½ (N + 1) (N + 2)        |
| equal to compare     | ½ N (N − 1)              |
| array access         | N (N - 1)                |
| increment            | ½ N (N − 1) to N (N − 1) |

tedious to count exactly

### Simplifying the calculations

"It is convenient to have a measure of the amount of work involved in a computing process, even though it be a very crude one. We may count up the number of times that various elementary operations are applied in the whole process and then given them various weights. We might, for instance, count the number of additions, subtractions, multiplications, divisions, recording of numbers, and extractions of figures from tables. In the case of computing with matrices most of the work consists of multiplications and writing down numbers, and we shall therefore only attempt to count the number of multiplications and recordings." — Alan Turing

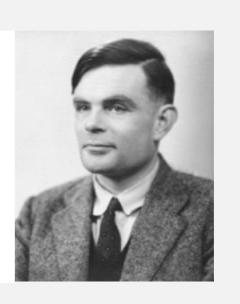
#### ROUNDING-OFF ERRORS IN MATRIX PROCESSES

By A. M. TURING

(National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY

A number of methods of solving sets of linear equations and inverting matrices are discussed. The theory of the rounding-off errors involved is investigated for some of the methods. In all cases examined, including the well-known 'Gauss elimination process', it is found that the errors are normally quite moderate: no exponential build-up need occur.



### Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.

$$0 + 1 + 2 + \ldots + (N - 1) = \frac{1}{2}N(N - 1)$$
$$= \binom{N}{2}$$

| operation            | frequency                   | $=$ $\binom{N}{2}$          |
|----------------------|-----------------------------|-----------------------------|
| variable declaration | N + 2                       |                             |
| assignment statement | N + 2                       |                             |
| less than compare    | $\frac{1}{2}(N + 1)(N + 2)$ |                             |
| equal to compare     | ½ N (N − 1)                 |                             |
| array access         | N (N − 1) ←                 | cost model = array accesses |
| increment            | ½ N (N − 1) to N (N − 1)    |                             |

### Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
  - when N is large, terms are negligible
  - when N is small, we don't care

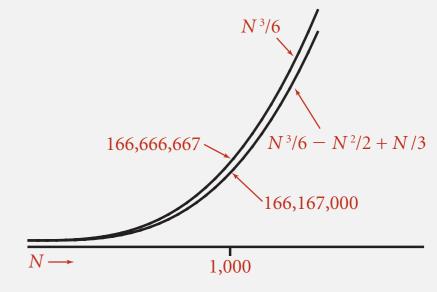
Ex I. 
$$\frac{1}{6}N^3 + 20N + 16 \sim \frac{1}{6}N^3$$

Ex 2. 
$$\frac{1}{6}N^3 + 100N^{4/3} + 56 \sim \frac{1}{6}N^3$$

Ex 3. 
$$\frac{1}{6}N^3 - \frac{1}{2}N^2 + \frac{1}{3}N \sim \frac{1}{6}N^3$$

discard lower-order terms

(e.g., N = 1000: 500 thousand vs. 166 million)



Technical definition. 
$$f(N) \sim g(N)$$
 means  $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$ 

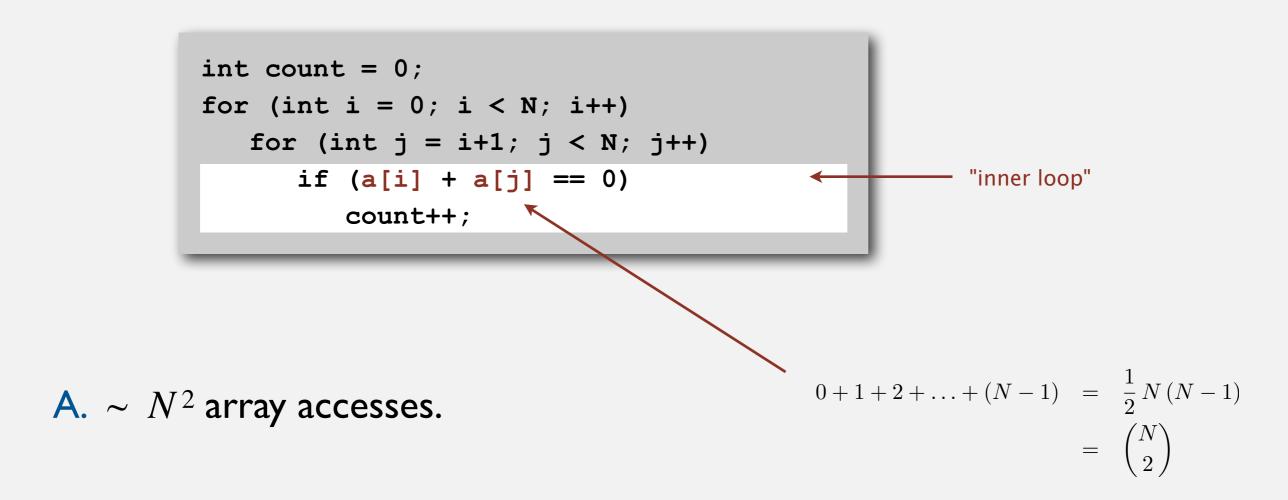
## Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
  - when N is large, terms are negligible
  - when N is small, we don't care

| operation            | frequency                | tilde notation                       |
|----------------------|--------------------------|--------------------------------------|
| variable declaration | N + 2                    | ~ N                                  |
| assignment statement | N + 2                    | ~ N                                  |
| less than compare    | $\frac{1}{2}(N+1)(N+2)$  | ~ ½ N <sup>2</sup>                   |
| equal to compare     | ½ N (N − 1)              | ~ ½ N <sup>2</sup>                   |
| array access         | N (N - 1)                | ~ N <sup>2</sup>                     |
| increment            | ½ N (N − 1) to N (N − 1) | $\sim \frac{1}{2} N^2$ to $\sim N^2$ |

### Example: 2-sum

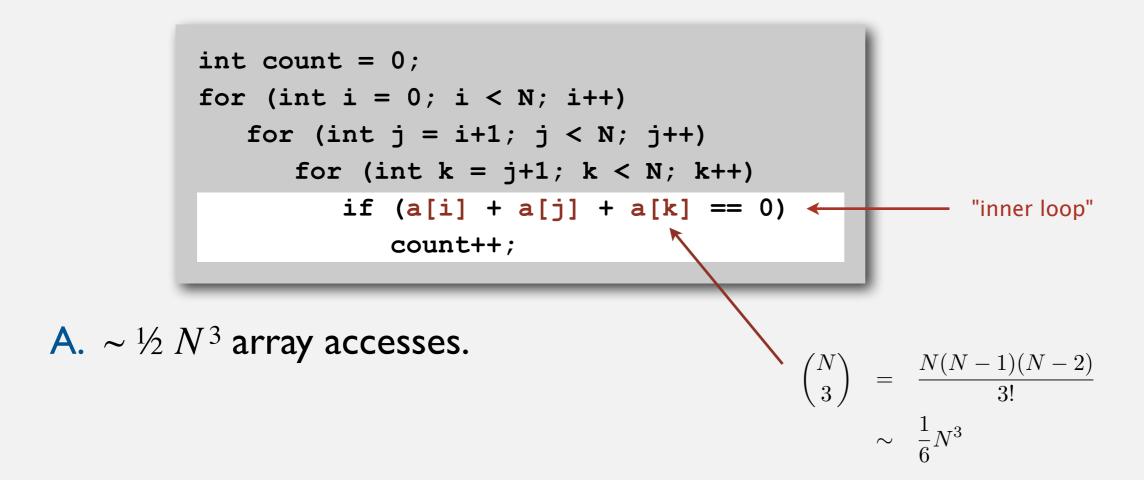
Q. Approximately how many array accesses as a function of input size N?



Bottom line. Use cost model and tilde notation to simplify frequency counts.

### Example: 3-sum

Q. Approximately how many array accesses as a function of input size N?



Bottom line. Use cost model and tilde notation to simplify frequency counts.

### Estimating a discrete sum

- Q. How to estimate a discrete sum?
- A1. Take discrete mathematics course.
- A2. Replace the sum with an integral, and use calculus!

**Ex I.** 
$$1 + 2 + ... + N$$
.

$$\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x \, dx \sim \frac{1}{2} N^2$$

Ex 2. 
$$1 + 1/2 + 1/3 + ... + 1/N$$
.

$$\sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x} dx = \ln N$$

$$\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=j}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} dz \, dy \, dx \sim \frac{1}{6} N^{3}$$

## Mathematical models for running time

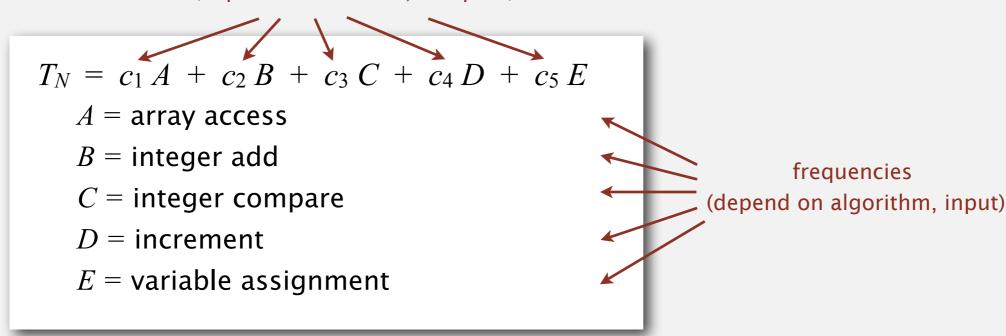
In principle, accurate mathematical models are available.

### In practice,

- Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.



costs (depend on machine, compiler)



Bottom line. We use approximate models in this course:  $T(N) \sim c N^3$ .

# **ANALYSIS OF ALGORITHMS**

- Observations
- Mathematical models
- Order-of-growth classifications
- Dependencies on inputs
- Memory

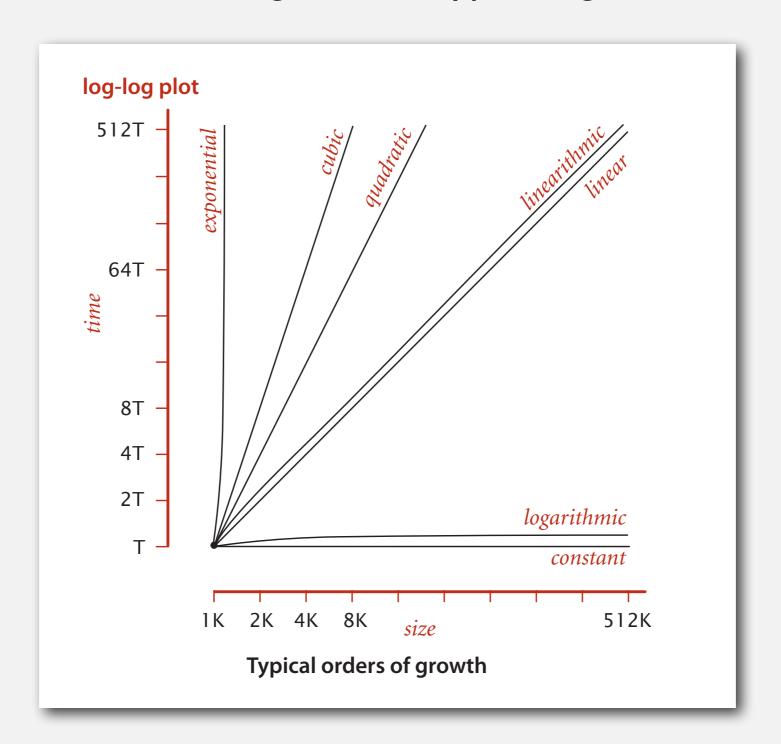
## Common order-of-growth classifications

Good news. the small set of functions

1,  $\log N$ , N,  $N \log N$ ,  $N^2$ ,  $N^3$ , and  $2^N$ 

order of growth discards
leading coefficient

suffices to describe order-of-growth of typical algorithms.



# Common order-of-growth classifications

| order of<br>growth | name         | typical code framework                                                                                      | description           | example              | T(2N) / T(N) |
|--------------------|--------------|-------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|--------------|
| 1                  | constant     | a = b + c;                                                                                                  | statement             | add two<br>numbers   | 1            |
| log N              | logarithmic  | while (N > 1) { N = N / 2; }                                                                                | divide in half        | binary search        | ~ 1          |
| N                  | linear       | for (int i = 0; i < N; i++) { }                                                                             | loop                  | find the<br>maximum  | 2            |
| N log N            | linearithmic | [see mergesort lecture]                                                                                     | divide<br>and conquer | mergesort            | ~ 2          |
| N <sup>2</sup>     | quadratic    | <pre>for (int i = 0; i &lt; N; i++) for (int j = 0; j &lt; N; j++) { }</pre>                                | double loop           | check all<br>pairs   | 4            |
| N <sup>3</sup>     | cubic        | <pre>for (int i = 0; i &lt; N; i++)   for (int j = 0; j &lt; N; j++)     for (int k = 0; k &lt; N; k+</pre> | triple loop           | check all<br>triples | 8            |
| 2 <sup>N</sup>     | exponential  | [see combinatorial search lecture]                                                                          | exhaustive<br>search  | check all<br>subsets | T(N)         |

# Practical implications of order-of-growth

| growth         | problem size solvable in minutes |                  |                      |                      |  |
|----------------|----------------------------------|------------------|----------------------|----------------------|--|
| rate           | 1970s                            | 1980s            | 1990s                | 2000s                |  |
| 1              | any                              | any              | any                  | any                  |  |
| log N          | any                              | any              | any                  | any                  |  |
| N              | millions                         | tens of millions | hundreds of millions | billions             |  |
| N log N        | hundreds of thousands            | millions         | millions             | hundreds of millions |  |
| $N^2$          | hundreds                         | thousand         | thousands            | tens of<br>thousands |  |
| $N^3$          | hundred                          | hundreds         | thousand             | thousands            |  |
| 2 <sup>N</sup> | 20                               | 20s              | 20s                  | 30                   |  |

# Practical implications of order-of-growth

| growth         | problem size solvable in minutes |                     |                            | time to process millions of inputs |         |         |                    |           |
|----------------|----------------------------------|---------------------|----------------------------|------------------------------------|---------|---------|--------------------|-----------|
| rate           | 1970s                            | 1980s               | 1990s                      | 2000s                              | 1970s   | 1980s   | 1990s              | 2000s     |
| 1              | any                              | any                 | any                        | any                                | instant | instant | instant            | instant   |
| log N          | any                              | any                 | any                        | any                                | instant | instant | instant            | instant   |
| N              | millions                         | tens of<br>millions | hundreds<br>of<br>millions | billions                           | minutes | seconds | second             | instant   |
| N log N        | hundreds<br>of<br>thousands      | millions            | millions                   | hundreds<br>of<br>millions         | hour    | minutes | tens of<br>seconds | seconds   |
| N <sup>2</sup> | hundreds                         | thousand            | thousands                  | tens of<br>thousands               | decades | years   | months             | weeks     |
| N³             | hundred                          | hundreds            | thousand                   | thousands                          | never   | never   | never              | millennia |

# Practical implications of order-of-growth

| growth         |              | doscription                       | effect on a program that<br>runs for a few seconds |                                  |  |
|----------------|--------------|-----------------------------------|----------------------------------------------------|----------------------------------|--|
| rate           | name         | description                       | time for 100x<br>more data                         | size for 100x<br>faster computer |  |
| 1              | constant     | independent of input size         | _                                                  | -                                |  |
| log N          | logarithmic  | nearly independent of input size  | _                                                  | -                                |  |
| N              | linear       | optimal for N inputs              | a few minutes                                      | 100x                             |  |
| N log N        | linearithmic | nearly optimal for N inputs       | a few minutes                                      | 100x                             |  |
| $N^2$          | quadratic    | not practical for large problems  | several hours                                      | 10x                              |  |
| N <sup>3</sup> | cubic        | not practical for medium problems | several weeks                                      | 4-5x                             |  |
| 2 <sup>N</sup> | exponential  | useful only for tiny problems     | forever                                            | 1 x                              |  |

## Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.



Goal. Given a sorted array and a key, find index of the key in the array?



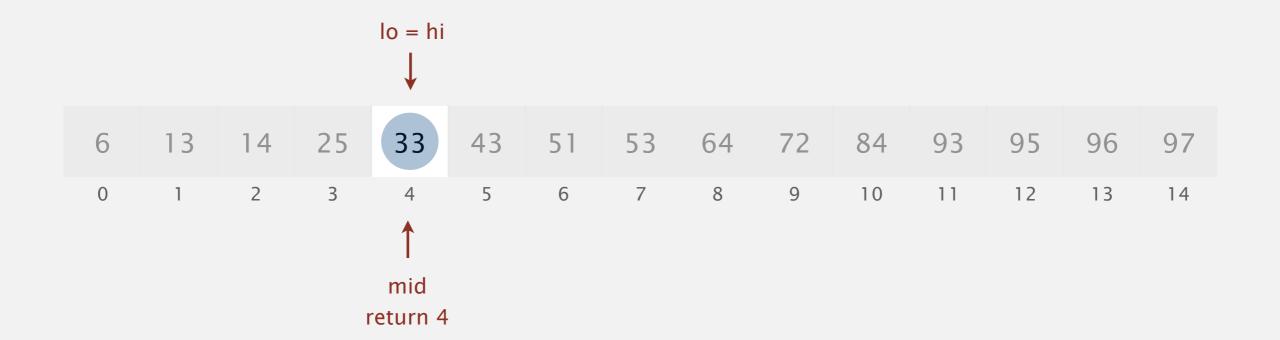
Goal. Given a sorted array and a key, find index of the key in the array?



Goal. Given a sorted array and a key, find index of the key in the array?



Goal. Given a sorted array and a key, find index of the key in the array?



Goal. Given a sorted array and a key, find index of the key in the array?



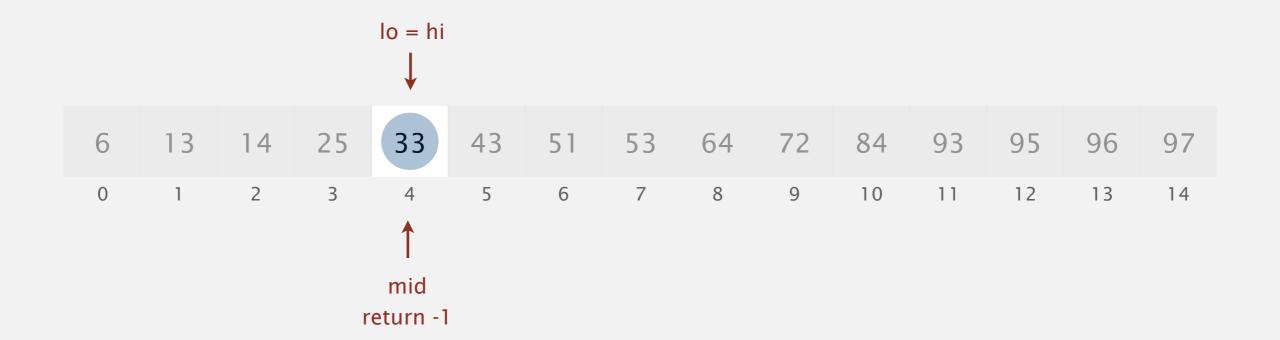
Goal. Given a sorted array and a key, find index of the key in the array?



Goal. Given a sorted array and a key, find index of the key in the array?



Goal. Given a sorted array and a key, find index of the key in the array?



### Binary search: Java implementation

### Trivial to implement?

- First binary search published in 1946; first bug-free one published in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006.

```
public static int binarySearch(int[] a, int key)
{
  int lo = 0, hi = a.length-1;
  while (lo <= hi)
  {
    int mid = lo + (hi - lo) / 2;
    if          (key < a[mid]) hi = mid - 1;
    else if (key > a[mid]) lo = mid + 1;
    else return mid;
  }
  return -1;
}
```

Invariant. If key appears in the array a[], then a[lo]  $\leq key \leq a[hi]$ .

## Binary search: mathematical analysis

Proposition. Binary search uses at most  $1 + \lg N$  compares to search in a sorted array of size N.

Def.  $T(N) \equiv \#$  compares to binary search in a sorted subarray of size at most N.

Binary search recurrence. 
$$T(N) \leq T(N/2) + 1$$
 for  $N > 1$ , with  $T(1) = 1$ .

| left or right half | possible to implement with one 2-way compare (instead of 3-way)

Pf sketch.

$$T(N) \le T(N/2) + 1$$
  
 $\le T(N/4) + 1 + 1$   
 $\le T(N/8) + 1 + 1 + 1$   
...  
 $\le T(N/N) + 1 + 1 + ... + 1$   
 $= 1 + \lg N$ 

given

apply recurrence to first term

apply recurrence to first term

stop applying, T(1) = 1

## Binary search: mathematical analysis

Proposition. Binary search uses at most  $1 + \lg N$  compares to search in a sorted array of size N.

Def.  $T(N) \equiv \#$  compares to binary search in a sorted subarray of size at most N.

Binary search recurrence.  $T(N) \leq T(\lfloor N/2 \rfloor) + 1$  for N > 1, with T(0) = 0.

For simplicity, we prove when  $N=2^n-1$  for some n, so  $\lfloor N/2\rfloor=2^{n-1}-1$ .

$$T(2^{n}-1) \leq T(2^{n-1}-1) + 1$$

$$\leq T(2^{n-2}-1) + 1 + 1$$

$$\leq T(2^{n-3}-1) + 1 + 1 + 1$$

$$\cdots$$

$$\leq T(2^{0}-1) + 1 + 1 + \dots + 1$$

$$= n$$

given

apply recurrence to first term

apply recurrence to first term

stop applying, T(0) = 1

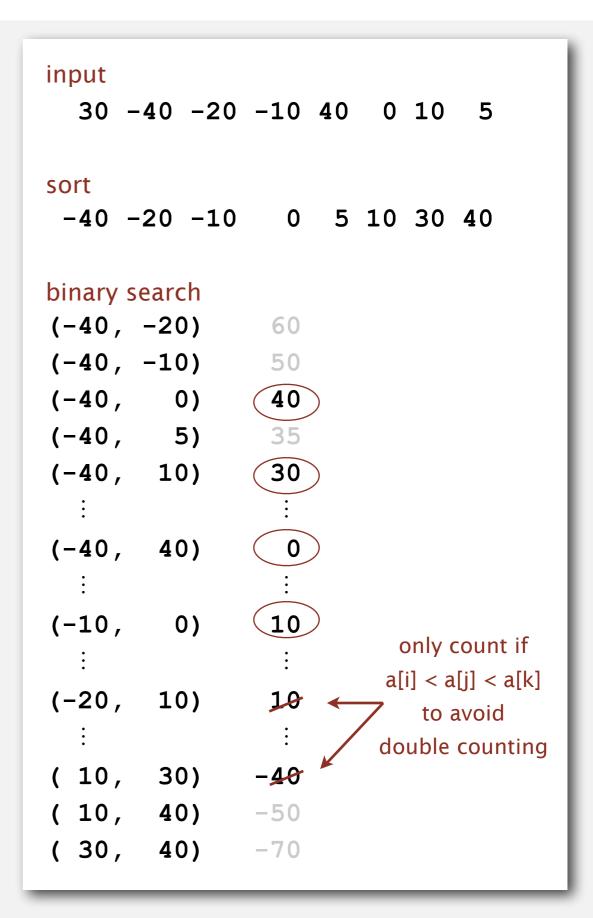
## An N<sup>2</sup> log N algorithm for 3-sum

### Algorithm.

- Sort the *N* (distinct) numbers.
- For each pair of numbers a[i] and a[j],
   binary search for -(a[i] + a[j]).

### Analysis. Order of growth is $N^2 \log N$ .

- Step I:  $N^2$  with insertion sort.
- Step 2:  $N^2 \log N$  with binary search.



### Comparing programs

Hypothesis. The  $N^2 \log N$  three-sum algorithm is significantly faster in practice than the brute-force  $N^3$  algorithm.

| N     | time (seconds) |
|-------|----------------|
| 1.000 | 0,1            |
| 2.000 | 0,8            |
| 4.000 | 6,4            |
| 8.000 | 51,1           |

ThreeSum.java

| N      | time (seconds) |
|--------|----------------|
| 1.000  | 0,14           |
| 2.000  | 0,18           |
| 4.000  | 0,34           |
| 8.000  | 0,96           |
| 16.000 | 3,67           |
| 32.000 | 14,88          |
| 64.000 | 59,16          |

ThreeSumDeluxe.java

Guiding principle. Typically, better order of growth  $\Rightarrow$  faster in practice.

# **ANALYSIS OF ALGORITHMS**

- Observations
- Mathematical models
- Order-of-growth classifications
- Dependencies on inputs
- Memory

## Types of analyses

#### Best case. Lower bound on cost.

- Determined by "easiest" input.
- Provides a goal for all inputs.

### Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

### Average case. Expected cost for random input.

- Need a model for "random" input.
- Provides a way to predict performance.

Ex 1. Array accesses for brute-force 3 sum.

Best:  $\sim \frac{1}{2} N^3$ 

Average:  $\sim \frac{1}{2} N^3$ 

Worst:  $\sim \frac{1}{2} N^3$ 

Ex 2. Compares for binary search.

Best: ~ 1

Average:  $\sim \lg N$ 

Worst:  $\sim \lg N$ 

## Types of analyses

Best case. Lower bound on cost.

Worst case. Upper bound on cost.

Average case. "Expected" cost.

### Actual data might not match input model?

- Need to understand input to effectively process it.
- Approach I: design for the worst case.
- Approach 2: randomize, depend on probabilistic guarantee.

## Theory of Algorithms

#### Goals.

- Establish "difficulty" of a problem.
- Develop "optimal" algorithms.

### Approach.

- Suppress details in analysis: analyze "to within a constant factor".
- Eliminate variability in input model by focusing on the worst case.

### Optimal algorithm.

- Performance guarantee (to within a constant factor) for any input.
- No algorithm can provide a better performance guarantee.

## Commonly-used notations

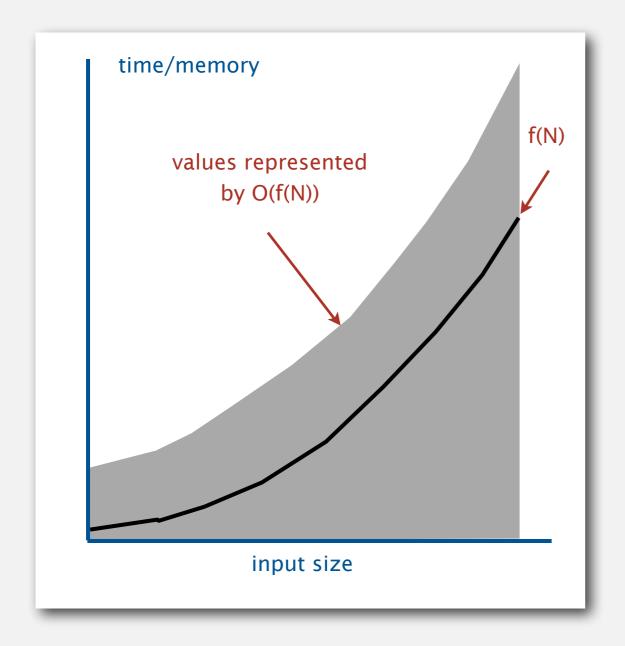
| notation  | provides                  | example             | shorthand for                                                                              | used to                         |
|-----------|---------------------------|---------------------|--------------------------------------------------------------------------------------------|---------------------------------|
| Tilde     | leading term              | ~ 10 N <sup>2</sup> | $10 \text{ N}^2$ $10 \text{ N}^2 + 22 \text{ N log N}$ $10 \text{ N}^2 + 2 \text{ N} + 37$ | provide<br>approximate<br>model |
| Big Theta | asymptotic<br>growth rate | $\Theta(N^2)$       | $\frac{1}{2} N^2$ 10 N <sup>2</sup> 5 N <sup>2</sup> + 22 N log N + 3N                     | classify<br>algorithms          |
| Big Oh    | Θ(N²) and smaller         | O(N <sup>2</sup> )  | 10 N <sup>2</sup><br>100 N<br>22 N log N + 3 N                                             | develop<br>upper bounds         |
| Big Omega | Θ(N²) and larger          | $\Omega(N^2)$       | $\frac{1}{2} N^{2}$ $N^{5}$ $N^{3} + 22 N log N + 3 N$                                     | develop<br>lower bounds         |

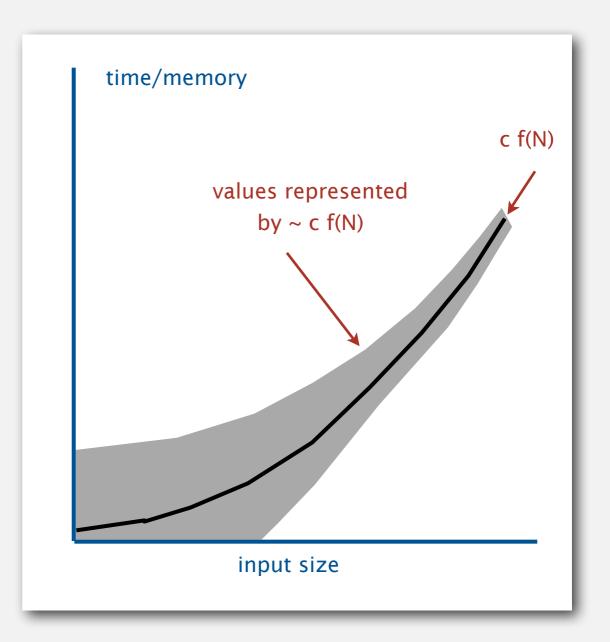
Common mistake. Interpreting big-Oh as an approximate model.

## Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.

- Big-Oh notation suppresses leading constant.
- Big-Oh notation only provides upper bound (not lower bound).





## Theory of algorithms: example I

#### Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. I-SUM = "Is there a 0 in the array?"

### Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for I-SUM: Look at every array entry.
- Running time of the optimal algorithm for I-SUM is O(N).

### Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries (any unexamined one might be 0).
- Running time of the optimal algorithm for I-SUM is  $\Omega(N)$ .

### Optimal algorithm.

- Lower bound equals upper bound (to within a constant factor).
- Ex. Brute-force algorithm for I-SUM is optimal: its running time is  $\Theta(N)$ .

## Theory of algorithms: example 2

#### Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-SUM

### Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for 3-SUM
- Running time of the optimal algorithm for 3-SUM is  $O(N^3)$ .

## Theory of algorithms: example 2

#### Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-SUM

### Upper bound. A specific algorithm.

- Ex. Improved algorithm for 3-SUM
- Running time of the optimal algorithm for 3-SUM is  $O(N^2 \log N)$ .

### Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries to solve 3-SUM.
- Running time of the optimal algorithm for solving 3-SUM is  $\Omega(N)$ .

### Open problems.

- Optimal algorithm for 3-SUM?
- Subquadratic algorithm for 3-SUM?
- Quadratic lower bound for 3-SUM?

## Algorithm design approach

#### Start.

- Develop an algorithm.
- Prove a lower bound.

### Gap?

- Lower the upper bound (discover a new algorithm).
- Raise the lower bound (more difficult).

### Golden Age of Algorithm Design.

- 1970s-.
- Steadily decreasing upper bounds for many important problems.
- Many known optimal algorithms.

#### Caveats.

- Overly pessimistic to focus on worst case?
- Need better than "to within a constant factor" to predict performance.

# **ANALYSIS OF ALGORITHMS**

- Observations
- Mathematical models
- Order-of-growth classifications
- Dependencies on inputs
- Memory

### **Basics**

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). I million or 2<sup>20</sup> bytes.

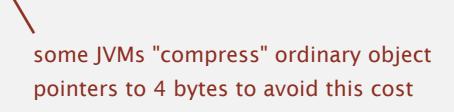
Gigabyte (GB). I billion or 2<sup>30</sup> bytes.



Old machine. We used to assume a 32-bit machine with 4 byte pointers.

Modern machine. We now assume a 64-bit machine with 8 byte pointers.

- Can address more memory.
- Pointers use more space.



## Typical memory usage for primitive types and arrays

### Primitive types.

| type    | bytes |
|---------|-------|
| boolean | 1     |
| byte    | 1     |
| char    | 2     |
| int     | 4     |
| float   | 4     |
| long    | 8     |
| double  | 8     |

for primitive types

### Array overhead. 24 bytes.

| type     | bytes   |
|----------|---------|
| char[]   | 2N + 24 |
| int[]    | 4N + 24 |
| double[] | 8N + 24 |

for one-dimensional arrays

| type       | bytes   |
|------------|---------|
| char[][]   | ~ 2 M N |
| int[][]    | ~ 4 M N |
| double[][] | ~ 8 M N |

for two-dimensional arrays

### Typical memory usage for objects in Java

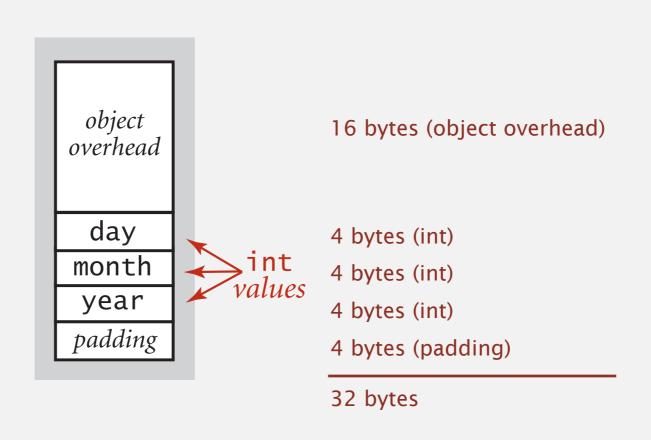
Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

### Ex I. A Date object uses 32 bytes of memory.

```
public class Date
{
    private int day;
    private int month;
    private int year;
}
```



### Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

### Ex 2. A virgin string of length N uses $\sim 2N$ bytes of memory.

```
public class String
                                      obiect
                                                                  16 bytes (object overhead)
   private char[] value;
                                    overhead
   private int offset;
   private int count;
                                                                  8 bytes (reference to array)
                                                 reference
   private int hash;
                                     value
                                                                 2N + 24 bytes (char[] array)
                                    offset
                                                                 4 bytes (int)
}
                                                    int
                                     count
                                                                 4 bytes (int)
                                                   values
                                      hash
                                                                 4 bytes (int)
                                     padding
                                                                  4 bytes (padding)
                                                                 2N + 64 bytes
```

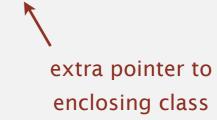
## Typical memory usage summary

### Total memory usage for a data type value:

- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.

padding: round up to multiple of 8

• Object: 16 bytes + memory for each instance variable + 8 if inner class.



Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference, add memory (recursively) for referenced object.

## **Memory profiler**

Classmexer library. Measure memory usage of a Java object by querying JVM.

http://www.javamex.com/classmexer

```
import com.javamex.classmexer.MemoryUtil;

public class Memory {
   public static void main(String[] args) {
      Date date = new Date(12, 31, 1999);
      StdOut.println(MemoryUtil.memoryUsageOf(date));
      String s = "Hello, World";
      StdOut.println(MemoryUtil.memoryUsageOf(s));
      StdOut.println(MemoryUtil.deepMemoryUsageOf(s));
      deep
}
```

### Turning the crank: summary

### Empirical analysis.

- Execute program to perform experiments.
- Assume power law and formulate a hypothesis for running time.
- Model enables us to make predictions.

### Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- Use tilde notation to simplify analysis.
- Model enables us to explain behavior.



#### Scientific method.

- Mathematical model is independent of a particular system;
   applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.