BBM 202 - ALGORITHMS

DEPT. OF COMPUTER ENGINEERING

ERKUT ERDEM

QUICKSORT

Mar. 3, 2015

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

Quicksort

Basic plan.

- Shuffle the array.
- Partition so that, for some j
 - entry a[j] is in place
 - no larger entry to the left of j
 - no smaller entry to the right of j
- Sort each piece recursively.

Sir Charles Antony Richard Hoare 1980 Turing Award

Shuffling

Shuffling

- Shuffling is the process of rearranging an array of elements randomly.
- A good shuffling algorithm is unbiased, where every ordering is equally likely.
- e.g. the Fisher-Yates shuffle (aka. the Knuth shuffle)

http://bl.ocks.org/mbostock/39566aca95eb03ddd526

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

stop i scan because a[i] >= a[lo]

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

stop j scan and exchange a[i] with a[j]

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

stop i scan because a[i] >= a[lo]

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

stop j scan and exchange a[i] with a[j]

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

К	С	А	I	Ε	L	E	Р	U	Т	Μ	Q	R	Х	0	S
↑ Io			1						1						

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

stop i scan because a[i] >= a[lo]

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

stop j scan and exchange a[i] with a[j]

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

stop i scan because a[i] >= a[lo]

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

stop j scan because a[j] <= a[lo]</pre>

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

When pointers cross.

• Exchange a[10] with a[j].

pointers cross: exchange a[lo] with a[j]

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[10].
- Scan j from right to left so long as a[j] > a[10].
- Exchange a[i] with a[j].

When pointers cross.

• Exchange a[lo] with a[j].

Basic plan.

- Scan i from left for an item that belongs on the right.
- Scan j from right for an item that belongs on the left.
- Exchange a[i] and a[j].
- Repeat until pointers cross.

Quicksort: Java code for partitioning

```
private static int partition(Comparable[] a, int lo, int hi)
{
   int i = lo, j = hi+1;
   while (true)
   {
      while (less(a[++i], a[lo]))
                                             find item on left to swap
          if (i == hi) break;
      while (less(a[lo], a[--j]))
                                            find item on right to swap
          if (j == lo) break;
                                               check if pointers cross
       if (i >= j) break;
       exch(a, i, j);
                                                             swap
   }
   exch(a, lo, j);
                                           swap with partitioning item
   return j;
                           return index of item now known to be in place
```


Quicksort: Java implementation

Quicksort trace

Quicksort animation

50 random items

http://www.sorting-algorithms.com/quick-sort

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier (and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier than it might seem.

Staying in bounds. The (j == 10) test is redundant (why?), but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better to stop on keys equal to the partitioning item's key.

Quicksort: empirical analysis

Running time estimates:

- Home PC executes 10⁸ compares/second.
- Supercomputer executes 10¹² compares/second.

	ins	ertion sort (N ²)	mer	gesort (N lo	g N)	quicksort (N log N)					
computer	thousand	million	billion	thousand	million	billion	thousand	million	billion			
home	instant	2.8 hours	317 years	instant	1 second	18 min	instant	0.6 sec	12 min			
super	instant	1 second	1 week	instant	instant	instant	instant	instant	instant			

Lesson I. Good algorithms are better than supercomputers.Lesson 2. Great algorithms are better than good ones.

Quicksort: best-case analysis

Best case. Number of compares is $\sim N \lg N$.

Each partitioning process splits the array exactly in half.

										a	[]						
lo	j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
initial values			Н	А	С	В	F	Ε	G	D	L	Ι	Κ	J	Ν	М	0
rand	om sł	nuffle	Н	А	С	В	F	Ε	G	D	L	Ι	К	J	Ν	М	0
0	7	14	D	А	С	В	F	Е	G	н	L	Ι	Κ	J	Ν	М	0
0	3	6	В	А	С	D	F	Е	G	Н	L		К	J	Ν	Μ	0
0	1	2	А	В	С	D	F	Е	G	Н	L		К	J	Ν	Μ	0
0		0	Α	В	С	D	F	Ε	G	Н	L		К	J	Ν	Μ	0
2		2	А	В	С	D	F	Е	G	Н	L		К	J	Ν	Μ	0
4	5	6	А	В	С	D	Ε	F	G	Н	L		К	J	Ν	Μ	0
4		4	А	В	С	D	Е	F	G	Н	L		К	J	Ν	Μ	0
6		6	А	В	С	D	Е	F	G	Н	L		К	J	Ν	Μ	0
8	11	14	А	В	С	D	Е	F	G	Н	J	Ι	Κ	L	Ν	М	0
8	9	10	А	В	С	D	Е	F	G	Н	Ι	J	К	L	Ν	Μ	0
8		8	А	В	С	D	Е	F	G	Н	Т	J	К	L	Ν	Μ	0
10		10	А	В	С	D	Е	F	G	Н		J	K	L	Ν	Μ	0
12	13	14	А	В	С	D	Е	F	G	Н		J	К	L	М	Ν	0
12		12	А	В	С	D	Е	F	G	Н		J	К	L	М	Ν	0
14		14	А	В	С	D	Е	F	G	Н		J	К	L	Μ	Ν	0
			А	В	С	D	Е	F	G	Н	Ι	J	К	L	М	Ν	0

Quicksort: worst-case analysis

Worst case. Number of compares is $\sim \frac{1}{2} \, N^2$.

One of the subarrays is empty for every partition.

										a	[]						
lo	j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
initial values			А	В	С	D	Ε	F	G	Н	I	J	К	L	М	Ν	0
random shuffle		nuffle	А	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	М	Ν	0
0	0	14	Α	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	М	Ν	0
1	1	14	А	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	М	Ν	0
2	2	14	А	В	С	D	Е	F	G	Н	Ι	J	Κ	L	М	Ν	0
3	3	14	А	В	С	D	Е	F	G	Н	Ι	J	Κ	L	М	Ν	0
4	4	14	А	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	М	Ν	0
5	5	14	А	В	С	D	Е	F	G	Н	Ι	J	Κ	L	М	Ν	0
6	6	14	А	В	С	D	E	F	G	Н	Ι	J	Κ	L	М	Ν	0
7	7	14	А	В	С	D	E	F	G	Н	Ι	J	Κ	L	М	Ν	0
8	8	14	А	В	С	D	Е	F	G	Н	T	J	Κ	L	М	Ν	0
9	9	14	А	В	С	D	Е	F	G	Н		J	Κ	L	М	Ν	0
10	10	14	А	В	С	D	E	F	G	Н		J	K	L	М	Ν	0
11	11	14	А	В	С	D	E	F	G	Н		J	К	L	М	Ν	0
12	12	14	А	В	С	D	E	F	G	Н		J	К	L	М	Ν	0
13	13	14	А	В	С	D	E	F	G	Η		J	К	L	Μ	Ν	0
14		14	А	В	С	D	Е	F	G	Н		J	К	L	Μ	Ν	0
			Α	В	С	D	Ε	F	G	Н	I	J	K	L	М	Ν	0

Quicksort: average-case analysis

Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf.
$$C_N$$
 satisfies the recurrence $C_0 = C_1 = 0$ and for $N \ge 2$:

$$C_N = (N+1) + \left(\frac{C_0 + C_{N-1}}{N}\right) + \left(\frac{C_1 + C_{N-2}}{N}\right) + \ldots + \left(\frac{C_{N-1} + C_0}{N}\right)$$

• Multiply both sides by N and collect terms:

partitioning probability

$$NC_N = N(N+1) + 2(C_0 + C_1 + \dots + C_{N-1})$$

• Subtract this from the same equation for N - 1:

$$NC_N - (N-1)C_{N-1} = 2N + 2C_{N-1}$$

• Rearrange terms and divide by N(N+1):

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

Quicksort: average-case analysis

• Repeatedly apply above equation:

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

$$= \frac{C_{N-2}}{N-1} + \frac{2}{N} + \frac{2}{N+1} \quad \text{substitute previous equation}$$

$$= \frac{C_{N-3}}{N-2} + \frac{2}{N-1} + \frac{2}{N} + \frac{2}{N+1}$$

$$= \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{N+1}$$

• Approximate sum by an integral:

$$C_N = 2(N+1)\left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{N+1}\right)$$

~ $2(N+1)\int_3^{N+1}\frac{1}{x}\,dx$

• Finally, the desired result:

$$C_N \sim 2(N+1) \ln N \approx 1.39N \lg N$$

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.

- $N + (N 1) + (N 2) + \dots + 1 \sim \frac{1}{2} N^2$.
- More likely that your computer is struck by lightning bolt.

Average case. Number of compares is $\sim 1.39 N \lg N$.

- 39% more compares than mergesort.
- But faster than mergesort in practice because of less data movement.

Random shuffle.

- Probabilistic guarantee against worst case.
- Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array

- Is sorted or reverse sorted.
- Has many duplicates (even if randomized!)

Quicksort: practical improvements

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 10 items.
- Note: could delay insertion sort until one pass at end.

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo + CUTOFF - 1)
    {
        Insertion.sort(a, lo, hi);
        return;
    }
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}</pre>
```

Quicksort: practical improvements

Median of sample.

- Best choice of pivot item = median.
- Estimate true median by taking median of sample.
- Median-of-3 (random) items.

~ 12/7 N In N compares (slightly fewer)
 ~ 12/35 N In N exchanges (slightly more)

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo) return;
    int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
    swap(a, lo, m);
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}</pre>
```

Quicksort with median-of-3 and cutoff to insertion sort: visualization

input	.hull.hull.h.h.l.h.h.h.h.h.h.h.h.h.h.h.h
result of first partition	
left subarray partially sorted	
both subarrays partially sorted	
result	

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

- Sort population by age.
- Find collinear points.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge array.
- Small number of key values.

Chicago 09:25:52 Chicago 09:03:13 Chicago 09:21:05 Chicago 09:19:46 Chicago 09:19:32 Chicago 09:00:00 Chicago 09:35:21 Chicago 09:00:59 Houston 09:01:10 Houston 09:00:13 Phoenix 09:37:44 Phoenix 09:00:03 Phoenix 09:14:25 Seattle 09:10:25 Seattle 09:36:14 Seattle 09:22:43 Seattle 09:10:11 Seattle 09:22:54 key

Duplicate keys

Mergesort with duplicate keys.

Always between $\frac{1}{2} N \lg N$ and $N \lg N$ compares.

Quicksort with duplicate keys.

- Algorithm goes quadratic unless partitioning stops on equal keys!
- 1990s C user found this defect in qsort().

several textbook and system implementation also have this defect

Duplicate keys: the problem

Mistake. Put all items equal to the partitioning item on one side. Consequence. $\sim \frac{1}{2} N^2$ compares when all keys equal.

Recommended. Stop scans on items equal to the partitioning item. **Consequence.** $\sim N \lg N$ compares when all keys equal.

3-way partitioning

Goal. Partition array into 3 parts so that:

- Entries between 1t and gt equal to partition item v.
- No larger entries to left of 1t.
- No smaller entries to right of gt.

Dutch national flag problem. [Edsger Dijkstra]

- Conventional wisdom until mid 1990s: not worth doing.
- New approach discovered when fixing mistake in C library qsort().
- Now incorporated into qsort() and Java system sort.

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning algorithm

3-way partitioning.

- Let v be partitioning item a[10].
- Scan i from left to right.
 - a[i] less than v: exchange a[lt] with a[i] and increment both lt and i
 - a[i] greater than v: exchange a[gt] with a[i] and decrement gt
 - a[i] equal to v: increment i

Most of the right properties.

- In-place.
- Not much code.
- Linear time if keys are all equal.

Dijkstra's 3-way partitioning: trace

3-way quicksort: Java implementation

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo) return;</pre>
   int lt = lo, qt = hi;
   Comparable v = a[lo];
   int i = lo;
   while (i <= qt)
   {
      int cmp = a[i].compareTo(v);
              (cmp < 0) exch(a, lt++, i++);
      if
      else if (cmp > 0) exch(a, i, gt--);
                          i++;
      else
   }
                                            before
                                                 V
   sort(a, lo, lt - 1);
                                                 10
   sort(a, gt + 1, hi);
                                                  <V
                                            during
                                                        =V
}
```


hi

hi

>V

>V

gt

ł

gt

lt.

1

lt

<V

10

after

i

=V

3-way quicksort: visual trace

Sorting summary

	inplace?	stable?	worst	average	best	remarks
selection	~		N ² / 2	N ² / 2	N ² / 2	N exchanges
insertion	~	~	N ² / 2	N ² / 4	Ν	use for small N or partially ordered
shell	~		?	?	Ν	tight code, subquadratic
merge		~	N lg N	N lg N	N lg N	N log N guarantee, stable
quick	~		N ² / 2	2 N In N	N lg N	N log N probabilistic guarantee fastest in practice
3-way quick	~		N ² / 2	2 N In N	Ν	improves quicksort in presence of duplicate keys
???	~	~	N lg N	N lg N	N lg N	holy sorting grail