
Mar. 5, 2015

BBM 202 - ALGORITHMS

PRIORITY QUEUES AND HEAPSORT

 
DEPT. OF COMPUTER ENGINEERING

 
ERKUT ERDEM

Acknowledgement:.The$course$slidesareadapted$from$the$slides$preparedbyR.$Sedgewick$ 
and$K.$WayneofPrinceton$University.

TODAY

‣ Heapsort
‣ API
‣ Elementary implementations
‣ Binary heaps
‣ Heapsort

3

Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.
Priority queue. Remove the largest (or smallest) item.

P 1 P P
Q 2 P Q P Q
E 3 P Q E E P Q
 Q 2 P E E P
X 3 P E X E P X
A 4 P E X A A E P X
M 5 P E X A M A E M P X
 X 4 P E M A A E M P
P 5 P E M A P A E M P P
L 6 P E M A P L A E L M P P
E 7 P E M A P L E A E E L M P P
 P 6 E M A P L E A E E L M P

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue 4

Priority queue API

Requirement. Generic items are Comparable.

 public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create an empty priority queue

MaxPQ(Key[] a) create a priority queue with given keys

void insert(Key v) insert a key into the priority queue

Key delMax() return and remove the largest key

boolean isEmpty() is the priority queue empty?

Key max() return the largest key

int size() number of entries in the priority queue

Key must be Comparable

(bounded type parameter)

5

Priority queue applications

• Event-driven simulation. [customers in a line, colliding particles]

• Numerical computation. [reducing roundoff error]

• Data compression. [Huffman codes]

• Graph searching. [Dijkstra's algorithm, Prim's algorithm]

• Computational number theory. [sum of powers]

• Artificial intelligence. [A* search]

• Statistics. [maintain largest M values in a sequence]

• Operating systems. [load balancing, interrupt handling]

• Discrete optimization. [bin packing, scheduling]

• Spam filtering. [Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Challenge. Find the largest M items in a stream of N items (N huge, M
large).
• Fraud detection: isolate $$ transactions.

• File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N items.

6

Priority queue client example

% more tinyBatch.txt
Turing 6/17/1990 644.08
vonNeumann 3/26/2002 4121.85
Dijkstra 8/22/2007 2678.40
vonNeumann 1/11/1999 4409.74
Dijkstra 11/18/1995 837.42
Hoare 5/10/1993 3229.27
vonNeumann 2/12/1994 4732.35
Hoare 8/18/1992 4381.21
Turing 1/11/2002 66.10
Thompson 2/27/2000 4747.08
Turing 2/11/1991 2156.86
Hoare 8/12/2003 1025.70
vonNeumann 10/13/1993 2520.97
Dijkstra 9/10/2000 708.95
Turing 10/12/1993 3532.36
Hoare 2/10/2005 4050.20

% java TopM 5 < tinyBatch.txt
Thompson 2/27/2000 4747.08
vonNeumann 2/12/1994 4732.35
vonNeumann 1/11/1999 4409.74
Hoare 8/18/1992 4381.21
vonNeumann 3/26/2002 4121.85

sort key

Challenge. Find the largest M items in a stream of N items (N huge, M large).

7

Priority queue client example

implementatio
n

time space

sort N log N N

elementary PQ M N M

binary heap N log M M

best in theory N M

order of growth of finding the largest M in a stream of N items

MinPQ<Transaction> pq = new MinPQ<Transaction>();

while (StdIn.hasNextLine())
{
 String line = StdIn.readLine();
 Transaction item = new Transaction(line);
 pq.insert(item);
 if (pq.size() > M)
 pq.delMin();
}

pq contains 
largest M items

use a min-oriented pq
Transaction data  

type is Comparable

(ordered by $$)

PRIORITY QUEUES AND HEAPSORT

‣ Heapsort
‣ API
‣ Elementary implementations
‣ Binary heaps
‣ Heapsort

9

Priority queue: unordered and ordered array implementation

P 1 P P
Q 2 P Q P Q
E 3 P Q E E P Q
 Q 2 P E E P
X 3 P E X E P X
A 4 P E X A A E P X
M 5 P E X A M A E M P X
 X 4 P E M A A E M P
P 5 P E M A P A E M P P
L 6 P E M A P L A E L M P P
E 7 P E M A P L E A E E L M P P
 P 6 E M A P L E A E E L M P

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue

10

Priority queue: unordered array implementation

public class UnorderedMaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq; // pq[i] = ith element on pq
 private int N; // number of elements on pq

 public UnorderedMaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void insert(Key x)
 { pq[N++] = x; }

 public Key delMax()
 {
 int max = 0;
 for (int i = 1; i < N; i++)
 if (less(max, i)) max = i;
 exch(max, N-1);
 return pq[--N];
 }
}

no generic 
array creation

less() and exch()  
similar to sorting methods

null out entry

to prevent loitering

11

Priority queue elementary implementations

Challenge. Implement all operations efficiently.

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

goal log N log N log N

order-of-growth of running time for priority queue with N items

PRIORITY QUEUES AND HEAPSORT

‣ Heapsort
‣ API
‣ Elementary implementations
‣ Binary heaps
‣ Heapsort

Binary tree. Empty or node with links to left and right binary trees.  

Complete tree. Perfectly balanced, except for bottom level.  
 
 
 
 
 
 
 
 

Property. Height of complete tree with N nodes is ⎣lg N⎦.
Pf. Height only increases when N is a power of 2.

13

Binary tree

complete tree with N = 16 nodes (height = 4)

14

A complete binary tree in nature

15

Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary
tree.  

Heap-ordered binary tree.
• Keys in nodes.

• Parent's key no smaller than 
children's keys.  

Array representation.
• Indices start at 1.

• Take nodes in level order.

• No explicit links needed!

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations

16

Binary heap properties

Proposition. Largest key is a[1], which is root of binary tree.  

Proposition. Can use array indices to move through tree.
• Parent of node at k is at k/2.

• Children of node at k are at 2k and 2k+1.

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations

5

E

N

I

P

H

T

G

S

O

R

A

violates heap order
(larger key than parent)

E

N

I

S

H

P

G

T

O

R

A5

2

1

Bottom-up reheapify (swim)

Scenario. Child's key becomes larger key than its parent's key.

To eliminate the violation:
• Exchange key in child with key in parent.

• Repeat until heap order restored.

Peter principle. Node promoted to level of incompetence.

private void swim(int k)
{
 while (k > 1 && less(k/2, k))
 {
 exch(k, k/2);
 k = k/2;
 }
}

17

Promotion in a heap

parent of node at k is at k/2

Insert. Add node at end, then swim it up.
Cost. At most 1 + lg N compares.

Heap operations

E

N

I

P

G

H

S

T

O

R

A

key to insert

E

N

I

P

G

H

S

T

O

R

A

add key to heap
violates heap order

E

N

I

S

G

P

H

T

O

R

A

swim up

E

N

I

S

G

P

H

T

O

R

A

key to remove

violates
heap order

exchange key
with root

E

N

I

S

G

P

T

H

O

R

A

remove node
from heap

E

N

I

P

G

H

S

O

R

A

sink down

insert remove the maximum

18

Insertion in a heap

public void insert(Key x)
{
 pq[++N] = x;
 swim(N);
}

Scenario. Parent's key becomes smaller than one (or both) of its children's
keys.
To eliminate the violation:
• Exchange key in parent with key in larger child.

• Repeat until heap order restored.

Power struggle. Better subordinate promoted.

private void sink(int k)
{
 while (2*k <= N)
 {
 int j = 2*k;
 if (j < N && less(j, j+1)) j++;
 if (!less(k, j)) break;
 exch(k, j);
 k = j;
 }
}

19

Demotion in a heap

children of node  
at k are 2k and 2k+1

5

E

P

I

H

N

S

G

T

O

R

A

violates heap order
(smaller than a child)

E

P

I

S

H

N

G

T

O

R

A5

10

2

2

Top-down reheapify (sink)

why not smaller child?

Delete max. Exchange root with node at end, then sink it down.
Cost. At most 2 lg N compares.

20

Delete the maximum in a heap

public Key delMax()
{
 Key max = pq[1];
 exch(1, N--);
 sink(1);
 pq[N+1] = null;
 return max;
}

prevent loitering

Heap operations

E

N

I

P

G

H

S

T

O

R

A

key to insert

E

N

I

P

G

H

S

T

O

R

A

add key to heap
violates heap order

E

N

I

S

G

P

H

T

O

R

A

swim up

E

N

I

S

G

P

H

T

O

R

A

key to remove

violates
heap order

exchange key
with root

E

N

I

S

G

P

T

H

O

R

A

remove node
from heap

E

N

I

P

G

H

S

O

R

A

sink down

insert remove the maximum

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

21

Binary heap operations

T P R N H O A E I G

R

H O AN

E I G

P

T

heap ordered

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

22

Binary heap operations

T P R N H O A E I G

R

H O AN

E I G S

P

T

add to heap

insert S

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

23

Binary heap operations

T P R N H O A E I G S

11

11

R

H O AN

E I G S

P

T

violates heap order
(swim up)

insert S

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

24

Binary heap operations

11

11

R

H

O AN

E I G

S

P

T

5

5

T P R N S O A E I G H

11

insert S

violates heap order
(swim up)

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

25

Binary heap operations

11

11

R

H

O AN

E I G

S

P

T

5

5

2

2

T S R N P O A E I G H

11

insert S

violates heap order
(swim up)

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

26

Binary heap operations

T S R N P O A E I G H

R

H

O AN

E I G

S

P

T

heap ordered

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

27

Binary heap operations

T S R N P O A E I G H

R

H

O AN

E I G

S

P

T

remove the maximum

1

1

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

28

Binary heap operations

T S R N P O A E I G H

R

H

O AN

E I G

S

P

T

remove the maximum

1

1

11

11 exchange with root

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

29

Binary heap operations

H S R N P O A E I G T

R

H

O AN

E I G

S

P

T

remove the maximum

1

1

11

11 exchange with root

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

30

Binary heap operations

R

H

O AN

E I G

S

P

T

remove the maximum

1

1
violates heap order

(sink down)

H S R N P O A E I G T

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

31

Binary heap operations

S H R N P O A E I G T

RH

O AN

E I G

S

P

T

remove the maximum

1

1

2

2

violates heap order
(sink down)

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

32

Binary heap operations

S P R N H O A E I G T

R

O A

P

E I G

S

T

remove the maximum

1

1

2

2

5

5

violates heap order
(sink down)

N H

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

33

Binary heap operations

S P R N H O A E I G

R

O A

P

E I G

S

H

heap ordered

N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

34

Binary heap operations

S P R N H O A E I G

R

O A

P

E I G

S

H

remove the maximum

1

1

N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

35

Binary heap operations

S P R N H O A E I G

R

O A

P

E I G

S

H

remove the maximum

1

1

exchange with root

N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

36

Binary heap operations

G P R N H O A E I S

R

O A

P

E I

G

S

H

remove the maximum

1

1

exchange with root

10

10

N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

37

Binary heap operations

G P R N H O A E I S

R

O A

P

E I

G

S

H

remove the maximum

1

1
violates heap order

(sink down)

N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

38

Binary heap operations

R P G N H O A E I S

R

O A

P

E I

G

S

H

remove the maximum

1

1
violates heap order

(sink down)

3

3

N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

39

Binary heap operations

R P O N H G A E I S

R

O

A

P

E I

G

S

H

remove the maximum

1

1
violates heap order

(sink down)

3

3

6

6N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

40

Binary heap operations

R P O N H G A E I

R

O

A

P

E I

GH

heap ordered

N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

41

Binary heap operations

R P O N H G A E I S

R

O

A

P

E I

GH

insert S

S add to heap

10

N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

42

Binary heap operations

R P O N H G A E I S

R

O

A

P

E I

GH

insert S

S10

10

violates heap order
(swim up)

N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

43

Binary heap operations

R P O N S G A E I H

R

O

A

P

E I

G

H

insert S

S

10

10

violates heap order
(swim up)

5

5N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

44

Binary heap operations

R S O N P G A E I H

R

O

AP

E I

G

H

insert S

S

10

10

violates heap order
(swim up)

5

5

2

2

N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

45

Binary heap operations

S R O N P G A E I H

R O

AP

E I

G

H

insert S

S

10

10

violates heap order
(swim up)

5

5

2

2

1

1

N

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

46

Binary heap operations

S R O N P G A E I H

R O

AP

E I

G

H

heap ordered

S

N

47

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq;
 private int N;

 public MaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity+1]; }

 public boolean isEmpty()
 { return N == 0; }
 public void insert(Key key)
 { /* see previous code */ }
 public Key delMax()
 { /* see previous code */ }

 private void swim(int k)
 { /* see previous code */ }
 private void sink(int k)
 { /* see previous code */ }

 private boolean less(int i, int j)
 { return pq[i].compareTo(pq[j]) < 0; }
 private void exch(int i, int j)
 { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}

array helper functions

heap helper functions

PQ ops

48

Priority queues implementation cost summary

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

binary heap log N log N 1

d-ary heap logd N d logd N 1

Fibonacci 1 log N † 1

impossible 1 1 1

order-of-growth of running time for priority queue with N items

† amortized

why impossible?

49

Binary heap considerations

Immutability of keys.
• Assumption: client does not change keys while they're on the PQ.

• Best practice: use immutable keys.  

Underflow and overflow.
• Underflow: throw exception if deleting from empty PQ.

• Overflow: add no-arg constructor and use resizing array.  

Minimum-oriented priority queue.
• Replace less() with greater().

• Implement greater().  

Other operations.
• Remove an arbitrary item.

• Change the priority of an item.
can implement with sink() and swim() [stay tuned]

leads to log N

amortized time per op

(how to make worst case?)

50

Immutability: implementing in Java

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.  
 
 
 
 
 
 
 
 
 
 

Immutable. String, Integer, Double, Color, Vector, Transaction, Point2D.
Mutable. StringBuilder, Stack, Counter, Java array.

public final class Vector {
 private final int N;
 private final double[] data;

 public Vector(double[] data) {
 this.N = data.length;
 this.data = new double[N];
 for (int i = 0; i < N; i++)
 this.data[i] = data[i];
 }

 …
}

defensive copy of mutable

instance variables

all instance variables private and final

instance methods don't change

instance variables

can't override instance methods

51

Immutability: properties

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

Advantages.
• Simplifies debugging.

• Safer in presence of hostile code.

• Simplifies concurrent programming.

• Safe to use as key in priority queue or symbol table.  

Disadvantage. Must create new object for each data type value.

“ Classes should be immutable unless there's a very good reason

 to make them mutable.… If a class cannot be made immutable,

 you should still limit its mutability as much as possible. ”

 — Joshua Bloch (Java architect)

PRIORITY QUEUES AND HEAPSORT

‣ Heapsort
‣ API
‣ Elementary implementations
‣ Binary heaps
‣ Heapsort

53

Heapsort

Basic plan for in-place sort.
• Create max-heap with all N keys.

• Repeatedly remove the maximum key.

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

start with array of keys

in arbitrary order

build a max-heap

(in place)

sorted result

(in place)

Starting point. Array in arbitrary order.

54

Heapsort

S O R T E X A M P L E

1 2 3 4 5 6 7 8 9 10 11

5

10 11

R

E X AT

M P L E

O

S

8 9

4 76

32

1

we assume array entries are indexed 1 to N

Heap construction. Build max heap using bottom-up method.

55

Heapsort

1-node heaps

S O R T E X A M P L E

R

E X AT

M P L E

O

S

8 9 10 11

10 118 9

6 7

76

Heap construction. Build max heap using bottom-up method.

56

Heapsort

sink 5

5

S O R T E X A M P L E

5

R

E X AT

M P L E

O

S

Heap construction. Build max heap using bottom-up method.

57

Heapsort

sink 5

5

10

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

5 10

Heap construction. Build max heap using bottom-up method.

58

Heapsort

sink 5

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

3-node heap

Heap construction. Build max heap using bottom-up method.

59

Heapsort

sink 4

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

4

4

Heap construction. Build max heap using bottom-up method.

60

Heapsort

sink 4

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

3-node heap

Heap construction. Build max heap using bottom-up method.

61

Heapsort

sink 3

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

3

3

Heap construction. Build max heap using bottom-up method.

62

Heapsort

sink 3

R

E

X

AT

M P

L

E

O

S

S O X T L R A M P E E

3 6

6

3

Heap construction. Build max heap using bottom-up method.

63

Heapsort

sink 3

R

E

X

AT

M P

L

E

O

S

S O X T L A A M P E E

3-node heap

Heap construction. Build max heap using bottom-up method.

64

Heapsort

sink 2

R

E

X

AT

M P

L

E

O

S

S O X T L R A M P E E

2

2

Heap construction. Build max heap using bottom-up method.

65

Heapsort

R

E

X

A

T

M P

L

E

O

S

S T X O L R A M P E E

4

2

2 4

sink 2

Heap construction. Build max heap using bottom-up method.

66

Heapsort

R

E

X

A

T

M

P L

EO

S

S T X P L R A M O E E

9

4

2

2 4 9

sink 2

Heap construction. Build max heap using bottom-up method.

67

Heapsort

sink 2

R

E

X

A

T

M

P L

EO

S

S T X P L R A M O E E

7-node heap

Heap construction. Build max heap using bottom-up method.

68

Heapsort

sink 1

R

E

X

A

T

M

P L

EO

S

S T X P L R A M O E E

1

1

Heap construction. Build max heap using bottom-up method.

69

Heapsort

sink 1

R

E

X

A

T

M

P L

EO

S

X T S P L R A M O E E

1 3

3

1

Heap construction. Build max heap using bottom-up method.

70

Heapsort

R

E

X

A

T

M

P L

EO

S

X T S P L R A M O E E

11-node heapend of construction phase

Sortdown. Repeatedly delete the largest remaining item.

71

Heapsort

exchange 1 and 11

T

P

S

X T S P L R A M O E E

1

1

11

11

R

E

A

M

L

O

X

E

Sortdown. Repeatedly delete the largest remaining item.

72

Heapsort

R

E

A

T

M

P L

O

S

E T S P L R A M O E X

1

1

11

11

X

E

exchange 1 and 11

Sortdown. Repeatedly delete the largest remaining item.

73

Heapsort

R

E

A

M

P L

O

S

E T S P L R A M O E X

1

1

T

E

sink 1

X

Sortdown. Repeatedly delete the largest remaining item.

74

Heapsort

R

E

A

T

M

P L

E

O

S

T E S P L R A M O E X

1

1

2

2

sink 1

X

Sortdown. Repeatedly delete the largest remaining item.

75

Heapsort

R

E

A

T

M

P

LE

O

S

T P S E L R A M O E X

1

1

2

2

4

4

sink 1

X

Sortdown. Repeatedly delete the largest remaining item.

76

Heapsort

R

E

A

T

M

P

L

E

O

S

T P S O L R A M E E X

1

1

2

2

4

4

9

9

sink 1

X

Sortdown. Repeatedly delete the largest remaining item.

77

Heapsort

R

E

A

T

M

P

L

E

O

S

T P S O L R A M E E X

X

Sortdown. Repeatedly delete the largest remaining item.

78

Heapsort

T P S O L R A M E E X

1

1

exchange 1 and 10

10

10

T

P S

O L R A

M E E X

Sortdown. Repeatedly delete the largest remaining item.

79

Heapsort

E P S O L R A M E T X

1

1

exchange 1 and 10

10

10 T

P S

O L R A

M E

E

X

Sortdown. Repeatedly delete the largest remaining item.

80

Heapsort

E P S O L R A M E T X

1

1

sink 1

T

P S

O L R A

M E

E

X

Sortdown. Repeatedly delete the largest remaining item.

81

Heapsort

S P E O L R A M E T X

1

1

sink 1

T

P

S

O L R A

M E

E

X

3

3

Sortdown. Repeatedly delete the largest remaining item.

82

Heapsort

S P R O L E A M E T X

1

1

sink 1

T

P

S

O L

R

A

M E

E

X

3

3 6

6

Sortdown. Repeatedly delete the largest remaining item.

83

Heapsort

S P R O L E A M E T X

T

P

S

O L

R

A

M E

E

X

Sortdown. Repeatedly delete the largest remaining item.

84

Heapsort

S P R O L E A M E T X

1

1

exchange 1 and 9

T

P

S

O L

R

A

M E

E

X

9

9

Sortdown. Repeatedly delete the largest remaining item.

85

Heapsort

E P R O L E A M S T X

1

1

exchange 1 and 9

T

P

S

O L

R

A

M

E

E

X

9

9

Sortdown. Repeatedly delete the largest remaining item.

86

Heapsort

E P R O L E A M S T X

1

1

sink 1

T

P

S

O L

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

87

Heapsort

R P E O L E A M S T X

1

1

sink 1

T

P

S

O L

R

A

M

E

E

X

3

3

Sortdown. Repeatedly delete the largest remaining item.

88

Heapsort

R P E O L E A M S T X

T

P

S

O L

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

89

Heapsort

R P E O L E A M S T X

1

1

exchange 1 and 8

T

P

S

O L

R

A

M

E

E

X

8

8

Sortdown. Repeatedly delete the largest remaining item.

90

Heapsort

M P E O L E A R S T X

1

1

exchange 1 and 8

T

P

S

O L

R

A

M

E

E

X

8

8

Sortdown. Repeatedly delete the largest remaining item.

91

Heapsort

M P E O L E A R S T X

1

1

sink 1

T

P

S

O L

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

92

Heapsort

P M E O L E A R S T X

1

1

sink 1

T

P

S

O L

R

A

M E

E

X

2

2

Sortdown. Repeatedly delete the largest remaining item.

93

Heapsort

P O E M L E A R S T X

1

1

sink 1

T

P

S

O

L

R

AM

E

E

X

2

2

4

4

Sortdown. Repeatedly delete the largest remaining item.

94

Heapsort

P O E M L E A R S T X

T

P

S

O

L

R

AM

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

95

Heapsort

P O E M L E A R S T X

1

1

exchange 1 and 7

T

P

S

O

L

R

AM

E

E

X

7

7

Sortdown. Repeatedly delete the largest remaining item.

96

Heapsort

A O E M L E P R S T X

1

1

exchange 1 and 7

T

P

S

O

L

R

A

M

E

E

X

7

7

Sortdown. Repeatedly delete the largest remaining item.

97

Heapsort

A O E M L E P R S T X

1

1

sink 1

T

P

S

O

L

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

98

Heapsort

O A E M L E P R S T X

1

1

sink 1

T

P

S

O

L

R

A

M

E

E

X

2

2

Sortdown. Repeatedly delete the largest remaining item.

99

Heapsort

O M E A L E P R S T X

1

1

sink 1

T

P

S

O

L

R

A

M E

E

X

2

2

4

4

Sortdown. Repeatedly delete the largest remaining item.

100

Heapsort

O M E A L E P R S T X

sink 1

T

P

S

O

L

R

A

M E

E

X

Sortdown. Repeatedly delete the largest remaining item.

101

Heapsort

O M E A L E P R S T X

1

1

exchange 1 and 6

T

P

S

O

L

R

A

M E

E

X

6

6

Sortdown. Repeatedly delete the largest remaining item.

102

Heapsort

E M E A L O P R S T X

1

1

exchange 1 and 6

T

P

S

OL

R

A

M E

E

X

6

6

Sortdown. Repeatedly delete the largest remaining item.

103

Heapsort

E M E A L O P R S T X

T

P

S

OL

R

A

M E

E

X

1

sink 1

1

Sortdown. Repeatedly delete the largest remaining item.

104

Heapsort

M E E A L O P R S T X

T

P

S

OL

R

A

M

EE

X

1

sink 1

1

2

2

Sortdown. Repeatedly delete the largest remaining item.

105

Heapsort

M L E A E O P R S T X

T

P

S

O

L

R

A

M

E

E

X

1

sink 1

1

2

2

5

5

Sortdown. Repeatedly delete the largest remaining item.

106

Heapsort

M L E A E O P R S T X

T

P

S

O

L

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

107

Heapsort

M L E A E O P R S T X

T

P

S

O

L

R

A

M

E

E

X

1

exchange 1 and 5

1

5

5

Sortdown. Repeatedly delete the largest remaining item.

108

Heapsort

E L E A M O P R S T X

T

P

S

O

L

R

A M

E

E

X

1

exchange 1 and 5

1

5

5

Sortdown. Repeatedly delete the largest remaining item.

109

Heapsort

E L E A M O P R S T X

T

P

S

O

L

R

A M

E

E

X

1

1

sink 1

Sortdown. Repeatedly delete the largest remaining item.

110

Heapsort

L E E A M O P R S T X

T

P

S

O

L

R

A M

EE

X

1

1

sink 1

2

2

Sortdown. Repeatedly delete the largest remaining item.

111

Heapsort

L E E A M O P R S T X

T

P

S

O

L

R

A M

EE

X

Sortdown. Repeatedly delete the largest remaining item.

112

Heapsort

L E E A M O P R S T X

T

P

S

O

L

R

A M

EE

X

1 4

4

1

exchange 1 and 4

Sortdown. Repeatedly delete the largest remaining item.

113

Heapsort

A E E L M O P R S T X

T

P

S

OL

R

A

M

EE

X

1 4

4

1

exchange 1 and 4

Sortdown. Repeatedly delete the largest remaining item.

114

Heapsort

A E E L M O P R S T X

T

P

S

OL

R

A

M

EE

X

1

1

sink 1

Sortdown. Repeatedly delete the largest remaining item.

115

Heapsort

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

1

1

sink 1

2

2

Sortdown. Repeatedly delete the largest remaining item.

116

Heapsort

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

117

Heapsort

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

1

exchange 1 and 3

1

3

3

Sortdown. Repeatedly delete the largest remaining item.

118

Heapsort

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

1

exchange 1 and 3

1

3

3

Sortdown. Repeatedly delete the largest remaining item.

119

Heapsort

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

1

sink 1

1

Sortdown. Repeatedly delete the largest remaining item.

120

Heapsort

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

121

Heapsort

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

exchange 1 and 2

1 2

2

1

Sortdown. Repeatedly delete the largest remaining item.

122

Heapsort

A E E L M O P R S T X

T

P

S

OL

R

A

M

E E

X

exchange 1 and 2

1 2

2

1

Sortdown. Repeatedly delete the largest remaining item.

123

Heapsort

A E E L M O P R S T X

T

P

S

OL

R

A

M

E E

X

Sortdown. Repeatedly delete the largest remaining item.

124

Heapsort

A E E L M O P R S T X

T

P

S

OL

R

A

M

E E

X

end of sortdown phase

Ending point. Array in sorted order.

125

Heapsort

A E E L M O P R S T X

T

P

S

OL

R

A

M

E E

X

1 2 3 4 5 6 7 8 9 10 11
126

Heapsort: heap construction

First pass. Build heap using bottom-up method.

for (int k = N/2; k >= 1; k--)
 sink(a, k, N);

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

127

Heapsort: sortdown

Second pass.
• Remove the maximum, one at a time.

• Leave in array, instead of nulling out.

while (N > 1)
{
 exch(a, 1, N--);
 sink(a, 1, N);
}

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

128

Heapsort: Java implementation

public class Heap
{
 public static void sort(Comparable[] pq)
 {
 int N = pq.length;
 for (int k = N/2; k >= 1; k--)
 sink(pq, k, N);
 while (N > 1)
 {
 exch(pq, 1, N);
 sink(pq, 1, --N);
 }
 }

 private static void sink(Comparable[] pq, int k, int N)
 { /* as before */ }

 private static boolean less(Comparable[] pq, int i, int j)
 { /* as before */ }

 private static void exch(Comparable[] pq, int i, int j)
 { /* as before */ }

}

but convert from

1-based indexing to

0-base indexing

129

Heapsort: trace

 a[i]
 N k 0 1 2 3 4 5 6 7 8 9 10 11
 S O R T E X A M P L E
 11 5 S O R T L X A M P E E
 11 4 S O R T L X A M P E E
 11 3 S O X T L R A M P E E
 11 2 S T X P L R A M O E E
 11 1 X T S P L R A M O E E
 X T S P L R A M O E E
 10 1 T P S O L R A M E E X
 9 1 S P R O L E A M E T X
 8 1 R P E O L E A M S T X
 7 1 P O E M L E A R S T X
 6 1 O M E A L E P R S T X
 5 1 M L E A E O P R S T X
 4 1 L E E A M O P R S T X
 3 1 E A E L M O P R S T X
 2 1 E A E L M O P R S T X
 1 1 A E E L M O P R S T X
 A E E L M O P R S T X

initial values

heap-ordered

sorted result

Heapsort trace (array contents just after each sink)

Heapsort animation

130

http://www.sorting-algorithms.com/heap-sort

50 random items

in order

algorithm position

not in order

Proposition. Heap construction uses fewer than 2 N compares and
exchanges.
Proposition. Heapsort uses at most 2 N lg N compares and exchanges. 

Significance. In-place sorting algorithm with N log N worst-case.

• Mergesort: no, linear extra space.

• Quicksort: no, quadratic time in worst case.

• Heapsort: yes! 

Bottom line. Heapsort is optimal for both time and space, but:
• Inner loop longer than quicksort’s.

• Makes poor use of cache memory.

• Not stable.

131

Heapsort: mathematical analysis

in-place merge possible, not practical

N log N worst-case quicksort possible,

not practical

132

Sorting algorithms: summary

key comparisons to sort N distinct randomly-ordered keys

inplace? stable? worst average best remarks

selection x N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

insertion x x N 2 / 2 N 2 / 4 N use for small N or partially ordered

shell x ? ? N tight code, subquadratic

quick x N 2 / 2 2 N ln N N lg N N log N probabilistic guarantee  
fastest in practice

3-way quick x N 2 / 2 2 N ln N N improves quicksort in presence 
of duplicate keys

merge x N lg N N lg N N lg N N log N guarantee, stable

heap x 2 N lg N 2 N lg N N lg N N log N guarantee, in-place

??? x x N lg N N lg N N lg N holy sorting grail

