BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

ERKUT ERDEM

BALANCED TREES

Mar. 19, 2015

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick
and K. Wayne of Princeton University.

BALANCED SEARCH TREES

» 2-3 search trees

» Red-black BSTs

» B-trees

» Geometric applications of BSTs

Text

worst-case cost average case
)) (after N inserts) (after N random inserts) ordered key
implementation _))
_) _ iteration? interface
search | insert | delete | search hit insert delete
N N N N/2 N N/2

no equals ()

sequential search

(unordered list)

binary search

Ig N N N Ig N N/2 N/2 yes compareTo ()

(ordered array)
BST N N N 1.391gN 1.391gN ? yes compareTo ()
goal log N log N log N log N log N log N yes compareTo ()

» Challenge. Guarantee performance.

BALANCED SEARCH TREES

» 2-3 search trees

» Red-black BSTs

» B-trees

» Geometric applications of BSTs

2-3 tree

Allow | or 2 keys per node.
® 2-node: one key, two children.
® 3-node: two keys, three children.

null link

2-3 tree
Allow | or 2 keys per node.
® 2-node: one key, two children.

® 3-node: two keys, three children.

Perfect balance. Every path from root to null link has same length.

null link

2-3 tree

Allow | or 2 keys per node.
® 2-node: one key, two children.
® 3-node: two keys, three children.

Perfect balance. Every path from root to null link has same length.

Symmetric order. Inorder traversal yields keys in ascending order.

smaller than E

between E and J

2-3 tree demo

Search.

e Compare search key against keys in node.
¢ Find interval containing search key.

® Follow associated link (recursively).

search for H)
H is less than M

(go left)
H

2-3 tree demo

Search.

® Compare search key against keys in node.
® Find interval containing search key.

® Follow associated link (recursively).

search for H

H is between E and J
(go middle)

2-3 tree demo
Search.
o Compare search key against keys in node.

¢ Find interval containing search key.
® Follow associated link (recursively).

search for H

(ac) @ () () Csx)

found H
(search hit)

2-3 tree demo

Search.

e Compare search key against keys in node.
¢ Find interval containing search key.

® Follow associated link (recursively).

search for B)
B is less than M

(go left)

PO

2-3 tree demo

Search.

e Compare search key against keys in node.
¢ Find interval containing search key.
® Follow associated link (recursively).

search for B

Bis less than E
(go left)

2-3 tree demo

Search.

® Compare search key against keys in node.
® Find interval containing search key.

® Follow associated link (recursively).

search for B

B is between A and C
(go middle)

2-3 tree demo

Search.

o Compare search key against keys in node.
¢ Find interval containing search key.
® Follow associated link (recursively).

search for B

B

link is null

(search miss)

2-3 tree demo

Insert into a 2-node at bottom.
® Search for key, as usual.
® Replace 2-node with 3-node.

insert K K is less than M
(go left)

<)

2-3 tree demo

Insert into a 2-node at bottom.
e Search for key, as usual.
® Replace 2-node with 3-node.

insert K

K is greater thanJ
(go right)

2-3 tree demo

Insert into a 2-node at bottom.
® Search for key, as usual.
® Replace 2-node with 3-node.

insert K

D (R
fac) (w) () (p) Csx)

search ends here

2-3 tree demo

Insert into a 2-node at bottom.
® Search for key, as usual.
® Replace 2-node with 3-node.

insert K

D 0
fac) (w) () (e Csx)

replace 2-node with
3-node containing K

2-3 tree demo

Insert into a 2-node at bottom.
® Search for key, as usual.
® Replace 2-node with 3-node.

insert K

2-3 tree demo

Insert into a 3-node at bottom.
® Add new key to 3-node to create temporary 4-node.
® Move middle key in 4-node into parent.

insert Z Z is greater than M

(go right)
Z

2-3 tree demo

Insert into a 3-node at bottom.
® Add new key to 3-node to create temporary 4-node.
® Move middle key in 4-node into parent.

insert Z

Z is greater than R
(go right)

2-3 tree demo

Insert into a 3-node at bottom.
® Add new key to 3-node to create temporary 4-node.
® Move middle key in 4-node into parent.

insert Z

D 0
(ac) (W ki) (p) C5X) 2

search ends here

2-3 tree demo

Insert into a 3-node at bottom.
® Add new key to 3-node to create temporary 4-node.
® Move middle key in 4-node into parent.

insert Z

D 0
fac) (W ki) (p) Csx) 2

replace 3-node with
temporary 4-node containing Z

2-3 tree demo

Insert into a 3-node at bottom.
® Add new key to 3-node to create temporary 4-node.
® Move middle key in 4-node into parent.

insert Z

2-3 tree demo

Insert into a 3-node at bottom.
® Add new key to 3-node to create temporary 4-node.
® Move middle key in 4-node into parent.

insert Z

split 4-node into two 2-nodes
(pass middle key to parent)

2-3 tree demo

Insert into a 3-node at bottom.
® Add new key to 3-node to create temporary 4-node.
® Move middle key in 4-node into parent.

insert Z

2-3 tree demo

Insert into a 3-node at bottom.
® Add new key to 3-node to create temporary 4-node.
® Move middle key in 4-node into parent.

insert Z

2-3 tree demo

Insert into a 3-node at bottom.

® Add new key to 3-node to create temporary 4-node.

® Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e |f you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

(ERY
(ac) GHRY L (sx)

convert 3-node into 4-node

2-3 tree demo

Insert into a 3-node at bottom.

® Add new key to 3-node to create temporary 4-node.
® Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo

Insert into a 3-node at bottom.

® Add new key to 3-node to create temporary 4-node.

® Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e [f you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

split 4-node
(move L to parent)

2-3 tree demo

Insert into a 3-node at bottom.

® Add new key to 3-node to create temporary 4-node.

® Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo

Insert into a 3-node at bottom.

® Add new key to 3-node to create temporary 4-node.

® Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e |f you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

split 4-node
(move L to parent)

2-3 tree demo

Insert into a 3-node at bottom.

® Add new key to 3-node to create temporary 4-node.

® Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e If you reach the root and it's a 4-node, split it into three 2-nodes.

height of tree increases by 1

insert L

2-3 tree demo

Insert into a 3-node at bottom.

® Add new key to 3-node to create temporary 4-node.

® Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e [f you reach the root and it's a 4-node, split it into three 2-nodes.

insert L o

Search in a 2-3 tree

® Compare search key against keys in node.

® Find interval containing search key.
® Follow associated link (recursively).

successful search for H

H is less than M so

look to the left m

H is between E and L so
look in the middle

found H so return value (search hit)

unsuccessful search for B

B is less than M so

look to the left \ m

B is less than E
s0 look to the left

NGB,
CXYORO

t

B is between A and C so look in the middle

link is null so B is not in the tree (search miss)

35

Insertion in a 2-3 tree

Case |. Insert into a 2-node at bottom.
e Search for key, as usual.
® Replace 2-node with 3-node.

inserting K
Q
(L)
™

search for K ends here

N replace 2-node with
new 3-node containing K

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

® Add new key to 3-node to create temporary 4-node.
® Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

inserting Z

()

search for Z ends

m / at this 3-node

replace 3-node with
temporary 4-node
/mnmining iz

replace 2-node
with new 3-node

/ mummlrlg

dle key
® @

split 4-node into two 2-nodes
pass middle key to parent

37

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.
® Add new key to 3-node to create temporary 4-node.

® Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

increases height by 1

e [f you reach the root and it's a 4-node, split it into three 2-nodes.

inserting D

search for D ends

at this 3-node \

add new key D to 3-node
to make temporary 4-node

ACD

add middle key C to 3-node
to make temporary 4-node

@ ©
N/

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes .
increasing tree,
height by 1

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of

operations.

bcd
less between\ /between\ /between\ /between greater
than a aandb band c candd dande than e
ace

() (d)

less between between\ /between\ /between greater
than a aandb b and c candd dande than e

39

Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

root
abc — (B
@ Q
parentis a 2-node
left - 4
@ ()
right (@ GO
—
(by ()

parent is a 3-node

left @ . [odol
.a b c 9 G
middle (a e) .
b c @ 9
right (3 b) . G
(c de) (@ Te)

[=8

40

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
® Worst case:
® Best case:

41

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
® Worst case: Ig N. [all 2-nodes]
® Best case: logs N = .631 Ig N.[all 3-nodes]

e Between 12 and 20 for a million nodes.
e Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

42

ST implementations: summary

worst-case cost average case
(after N inserts) (after N random inserts) et key

implementation 5 . A
iteration? interface
insert elete search hit insert delete

sequential search N

(unordered list) N N N/2 N N/2 no equals ()
(c':ir’;:"rﬁ;e:::;) N N N N N2 N2 yes compareTo ()
BST N N N 1.391gN 1.391g N ! yes compareTo ()
2-3 tree clgN clgN clgN clgN clgN clgN yes compareTo ()

I\

constants depend upon implementation

43

2-3 tree: implementation?

Direct implementation is complicated, because:
® Maintaining multiple node types is cumbersome.

® Need multiple compares to move down tree.

® Need to move back up the tree to split 4-nodes.

® Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick
BALANCED SEARCH TREES 2007)

|. Represent 2-3 tree as a BST.

» 2-3 search trees

2. Use "internal" left-leaning links as "glue" for 3—nodes.
» Red-black BSTs 5 5
» B-trees 3-node (b) larger key is root
» Geometric applications of BSTs (@)
less between greater greater
than a aandb than b &

than b
less between

than a aandb

. N . black links connect
red links "glue
. 2-nodes and 3-nodes
nodes within a 3-node

2-3 tree corresponding red-black BST

46

An equivalent definition Left-leaning red-black BSTs: |-l correspondence with 2-3 trees

A BST such that: Key property. I—-I correspondence between 2-3 and LLRB.

® No node has two red links connected to it.

® Every path from root to null link has the same number of black links. bkt
red—-black tree

o Red links lean left. N

"perfect black balance"

2-3 tree m

47 48

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

f

but runs faster because of better balance

public Val get (Key key)
{
Node x = root;
while (x '= null)
{
int cmp = key.compareTo (x.key) ;

if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else if (cmp == 0) return x.val;

}

return null;

Remark. Most other ops (e.g., ceiling, selection, iteration) are also

identical.

49

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

true;
false;

private static final boolean RED
private static final boolean BLACK

private class Node
{ h.left.color ~
Key key; is RED G

Value val; G
OEONNOG,

h

Node left, right;
boolean color; // color of parent link

}

private boolean isRed(Node x)

{
if (x == null) return false;
return x.color == RED;

null links are black

h.right.color
.~ is BLACK

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(before) q
private Node rotateLeft(Node h)

{
h assert isRed(h.right);

Node x = h.right;

X h.right = x.left;
x.left = h;
x.color = h.color;
h.color = RED;
return x;

less
than E

between greater
Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

51

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(after) a
private Node rotateLeft(Node h)
{
X assert isRed(h.right);
Node x = h.right;
h h.right = x.left;
greater x.left = h;
than S x.color = h.color;
h.color = RED;
return x;
less between }
than E Eand S

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(before) . .
private Node rotateRight(Node h)

{
assert isRed(h.left);
Node x = h.left;
X h.left = x.right;
x.right = h;

greater
than S x.color = h.color;
h.color = RED;
return x;
less between }
than E EandS

Invariants. Maintains symmetric order and perfect black balance.

53

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(after) i .
private Node rotateRight (Node h)
{
X assert isRed(h.left);
Node x = h.left;
h h.left = x.right;
less x.right = h;
than E x.color = h.color;
h.color = RED;
between greater SO £
Eand S than S b

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before)

private void flipColors (Node h)
{
assert 'isRed(h) ;
assert isRed (h.left);
asset isRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater
than A Aand E Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

55

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors

(after) . . .
private void flipColors (Node h)

{
assert 'isRed(h) ;
assert isRed (h.left);
asset isRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater
than A Aand E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

Insertion in a LLRB tree: overview

Basic strategy. Maintain |-| correspondence with 2-3 trees by

applying elementary red-black BST operations.

insert C
(E)
OO,
add new

node here

right link red
so rotate left

©)

(A
Q (RY

(E)
Q38
OO

@S
X

S
RS
71T\

57

Insertion in a LLRB tree

Warmup |. Insert into a tree with exactly | node.

left root
/

R

. search ends
at this null link

root
@ red link to
new node
e ™ containing a
converts 2-node
to 3-node

right _ root
search ends
“at this null link

e attached new node
with red link

root
y

@ rotated left
to make a
legal 3-node

Insertion in a LLRB tree

Case |. Insert into a 2-node at the bottom.
e Do standard BST insert; color new link red.
e |f new red link is a right link, rotate left.

insert C

(E)
w38

add new
node here

right link red
so rotate left

59

Insertion in a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

larger
@ search ends
. at thAis
e null link

attached new

node with
OAR0

8°

search ends
at this null link

=
/ Q)

< right

O
Q)

between

5

““at this

search ends

null link

attached new

@ node with
T

ed link
attached new
node with
red link
rotated e “rotated left
rotated
lors flipped

red link
colors flipped
’ «— to black

«— to black

OSRO

7

colors flipped
@ « to black

.

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.
e Do standard BST insert; color new link red.

® Rotate to balance the 4-node (if needed).

® Flip colors to pass red link up one level.

® Rotate to make lean left (if needed).

inserting H two lefts in a row
G so rotate right
(A " R ®
/
add new G 9
node here , G m
right link red e
so rotate left
both children red l /
so flip colors
(E) | (E)
Q #

6l

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.
¢ Do standard BST insert; color new link red.

¢ Rotate to balance the 4-node (if needed).

® Flip colors to pass red link up one level.

® Rotate to make lean left (if needed).

® Repeat case | or case 2 up the tree (if needed).

inserting P

both children red
so flip colors

red so

Jlip colors

‘ two lefts in a row

right link red so rotate right \(
so rotate left
N

add new
node here

both children red
so flip colors

62

Red-black BST insertion

insert S

63

Red-black BST insertion

insert E

Red-black BST insertion

insert A

65

Red-black BST insertion

two left reds in a row
insert A (rotate S right)

66

Red-black BST insertion

both children red
(flip colors)

67

Red-black BST insertion

both children red
(flip colors)

68

Red-black BST insertion

red-black BST

69

Red-black BST insertion

red-black BST

70

Red-black BST insertion

insert R

71

Red-black BST insertion

red-black BST

72

Red-black BST insertion

red-black BST

73

Red-black BST insertion

insert C

74

Red-black BST insertion

right link red
(rotate A left)

75

Red-black BST insertion

red-black BST

76

Red-black BST insertion

red-black BST

77

Red-black BST insertion

red-black BST

78

Red-black BST insertion

insert H

79

Red-black BST insertion

two left reds in a row
(rotate S right)

80

Red-black BST insertion

both children red

(flip colors)

81

Red-black BST insertion

both children red
(flip colors)

82

Red-black BST insertion

right link red
(rotate E left)

83

Red-black BST insertion

red-black BST

Red-black BST insertion

red-black BST

85

Red-black BST insertion

red-black BST

86

Red-black BST insertion

insert X

87

Red-black BST insertion

insert X

right link red
(rotate S left)

88

Red-black BST insertion

red-black BST

89

Red-black BST insertion

red-black BST

90

Red-black BST insertion

red-black BST

91

Red-black BST insertion

insert M

92

Red-black BST insertion

insert M

right link red
(rotate H left)

93

Red-black BST insertion

red-black BST

9%

Red-black BST insertion

insert P

95

Red-black BST insertion

insert P

two red children
(flip colors)

96

Red-black BST insertion

insert P

two red children
(flip colors)

97

Red-black BST insertion

right link red
(rotate E left)

98

Red-black BST insertion

two left reds in a row

(rotate R right)

99

Red-black BST insertion

two red children

(flip colors)

Red-black BST insertion

two red children

(flip colors)

Red-black BST insertion

red-black BST

Red-black BST insertion

red-black BST

Red-black BST insertion

red-black BST

Red-black BST insertion

insert L

Red-black BST insertion

insert L

right link red
(rotate H left)

Red-black BST insertion

red-black BST

LLRB tree insertion trace

Standard indexing client.

insert S

2
o
|

()
© AR
®
(®)
c 4
(A)
(R)
NG @i ©
(H

red-black BST corresponding 2-3 tree

LLRB tree insertion trace

Standard indexing client (continued).

®
x 90
®
y ®
("]
®
p & ®
OO

red-black BST corresponding 2-3 tree

Insertion in a LLRB tree: Java implementation

Same code for both cases. ;{Q
® Right child red, left child black: rotate left. ;gw

o Left child, left-left grandchild red: rotate right.

left "
h otate
® Both children red: flip colors.
\right
rotate ﬂlp
qb\g colors

private Node put(Node h, Key key, Value val)
{

if (h == null) return new Node (key, val, RED); N

R _ (and color red)
int cmp = key.compareTo (h.key) ;

if (cmp < 0) h.left = put(h.left, key, val);

else if (cmp > 0) h.right = put(h.right, key, val);
else if (cmp == 0) h.val = val;

if (isRed(h.right) && !'isRed(h.left)) h = rotateLeft(h); <«—+— lean left
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); «—F— balance 4-node
if (isRed(h.left) && isRed(h.right)) flipColors(h) ; <«—+— split 4-node

return h; "
! only a few extra lines of code

provides near-perfect balance

insert at bottom

Insertion in a LLRB tree: visualization

N =255
max = 8
avg = 7.0
opt=7.0

AOAMOAARARARARAD

255 insertions in ascending order

Insertion in a LLRB tree: visualization

Remark. Only a few extra lines of code to standard BST insert.

N = 255
max = 8
avg = 7.0
opt=7.0

AOGAONAAARARARAN

255 insertions in descending order

Insertion in a LLRB tree: visualization Balance in LLRB trees

Remark. Only a few extra lines of code to standard BST insert. Proposition. Height of tree is <2 Ig N in the worst case.
N =255 Pf.
max = 10

avg =73 e Every path from root to null link has same number of black links.

opt=7.0

® Never two red links in-a-row.

255 random insertions

Property. Height of tree is ~ 1.00 Ig NV in typical applications.

ST implementations: summary War story: why red-black?

XEROX.

worst-case cost average case Xerox PARC innovations. [1970s]
(after N inserts) (after N random inserts) ordered ke e Alto
iteration? interface
se: sert delete e GUI
e Ethernet.

sequential search
(unordered isc) N N N N/2 N N2 no equals () o Smalltalk. ——

implementation

binary search

e InterPress.
o o
(ordered array) lgN N N igN NP2 N72 yes compareTo () Laser printing.

ﬁ
WYSIWYG text editor.

Bitmapped display.

(]
BST N N N 1.391gN 1.391gN ! es compareTo ()
€ € 7 Xerox Alto
(]
2-3 tree clgN clgN clgN clgN clgN clgN yes compareTo ()
A DICHROMATIC FRAMEWORK FOR BALANCED TREES
* * * Leo J. Guibas Robert Sedgewick®
-| compareTo co i
red-black BST 2igN 2lgN 2igN 1.001g N 1.00IgN 1.001g N yes mp 0 Xerox Palo Alo Rescarch Center, Prograrm in Computer Sclence
Palo Alto, California, and and Brown University
Camegie-Mellon University Providence, R. .
* exact value of coefficient unknown but extremely close to 1 the way down towards a leaf. As we wil sc, this has & number of
ABSTRACT significant advantages over the older methods. We shall cxamine a
number of variations on a common theme and cxhibit full
I this paper we present a uniform framework for the implementation implementations which —are notable for their brevity. One
and study of halanced tree algorithms. We show how to imbed in this implementation is examined carcfully, and some propertics about its

BALANCED SEARCH TREES

» B-trees

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

fast

Property. Time required for a probe is much larger than time to access
data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.
® At least 2 key-link pairs at root.
® At least M/ 2 key-link pairs in other nodes.

choose M as large as possible so
that M links fit in a page, e.g., M = 1024
® External nodes contain client keys.

¢ Internal nodes contain copies of keys to guide search.

2-node
. —2-node

sentinel key internal 3-node

each red key is a copy
of min key in subtree >

* D|H

external
»"”idf external 5-node (full) external 4-node
[*IB'C][DTETF J[HI73][KIMIN 0[P][QRT] [UTwIXTY]
client keys (black) all nodes except the root are 3-, 4- or 5-nodes
are in external nodes

Anatomy of a B-tree set (M =6)

Searching in a B-tree

e Start at root.
® Find interval for search key and take corresponding link.
® Search terminates in external node.

searching for E
* 1K

follow this link because
E is between * and K ~__

Jollow this link because

—Es between D and H

search for E in v

this external node

Searching in a B-tree set (M = 6)

Insertion in a B-tree
® Search for new key.

® Insert at bottom.
e Split nodes with M key-link pairs on the way up the tree.

inserting A “TRIKIQ[U

FIBCEF I J[KIMNoPJ[QRT J[UTw X]
* ABCEF
ew key (A) causes new key (C) causes
“overflow and spli CIHIKIQUI o0 and spli
[*[ATB J[CEF]

root split causes
a new root to be created

Inserting a new key into a B-tree set

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys

requires between logu.-1 N and logu N probes.

Pf. All internal nodes (besides root) have between M /2 and M - 1 links.

In practice. Number of probes is at most 4.« M=1024;N =62 billion
logmz N < 4

Optimization. Always keep root page in memory.

Building a large B tree

/ white: unoccupied portion of page

each line shows the result
of inserting one key ——
in some page

L black: occupied portion of page

|~ full page, about to split

two half - ges
then a new key is added
to one of them

full page splits into
Il pages

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
L4 Java: java.util.TreeMap, java.util.TreeSet.

e C++ STL: map, multimap, multiset.

® Linux kernel: completely fair scheduler, 1inux/rbtree.h.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
® Windows: HPFS.

o Mac: HFS, HFS+.

e Linux: ReiserFS, XFS, Ext3FS, JFS.

e Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

BALANCED SEARCH TREES GEOMETRIC APPLICATIONS OF BSTS

» 2-3 search trees » kd trees
» Red-black BSTs

» B-trees

» Geometric applications of BSTs

2-d orthogonal range search 2d orthogonal range search: grid implementation
Extension of ordered symbol-table to 2d keys. Grid implementation.
® Insert a 2d key. ® Divide space into M-by-M grid of squares.
e Delete a 2d key. ® Create list of points contained in each square.
® Search for a 2d key. ® Use 2d array to directly index relevant square.
® Range search: find all keys that lie in a 2d range. ¢ Insert: add (x, y) to list for corresponding square.
® Range count: number of keys that lie in a 2d range. ® Range search: examine only those squares that intersect 2d range query.

Geometric interpretation. 1.
® Keys are point in the plane. . b
® Find/count points in a given /i—v rectangle. :) *. : ’ ‘RfT ‘.
i S HE
rectangle is axis-aligned O . O .
.. . O 3
L 4

Applications. Networking, circuit design, databases,...

2d orthogonal range search: grid implementation costs Clustering
Space-time tradeoff. Grid implementation. Fast and simple solution for evenly-distributed points.
® Space: M2+ N.

® Time: 1 + N/M? per square examined, on average. Problem. Clustering a well-known phenomenon in geometric data.

® Lists are too long, even though average length is short.

Choose grid square size to tune performance. e Need data structure that gracefully adapts to data.
® Too small: wastes space.

e Too large: too many points per square.
e Rule of thumb: VN-by-VN grid.

Running time. [if points are evenly distributed] :

e Initialize data structure: N. .
e Insert point: 1. 4% AT 8= i

e Range search: 1 per point in range. .

X

Clustering Space-partitioning trees

Grid implementation. Fast and simple solution for evenly-distributed points. Use a tree to represent a recursive subdivision of 2d space.

Problem. Clustering a well-known phenomenon in geometric data. Grid. Divide space uniformly into squares.
Ex. USA map data. 2d tree. Recursively divide space into two halfplanes.
Quadtree. Recursively divide space into four quadrants.

BSP tree. Recursively divide space into two regions.

13,000 points, 1000 grid squares

......... .---llllllllllllll
half the squares are empty half the points are |
in 10% of the squares Grid 2d tree Quadtree BSP tree

Space-partitioning trees: applications

Applications.

® Ray tracing.

® 2d range search.

® Flight simulators.

® N-body simulation.

® Collision detection.

® Astronomical databases.

® Nearest neighbor search.

® Adaptive mesh generation.

® Accelerate rendering in Doom.
e Hidden surface removal and shadow casting.

Grid 2d tree Quadtree BSP tree

Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

level =i (mod k)
points points

whose ith whose ith

coordinate coordinate

is less than p’s is greater than p’s

Efficient, simple data structure for processing k-dimensional data. | £
3
® Widely used. rm
¢ Adapts well to high-dimensional and clustered data. :
Jon Bentley

® Discovered by an undergrad in an algorithms class!

N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.

http://www.youtube.com/watch?v=ua7YIN4elL_w

G my1msa

Brute force. For each pair of particles, compute force. r L
(e

Appel algorithm for N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.
® Treat cluster of particles as a single aggregate particle.
e Compute force between particle and center of mass of aggregate particle.

Appel algorithm for N-body simulation

® Build 3d-tree with N particles as nodes.

® Store center-of-mass of subtree in each node.

® To compute total force acting on a particle, traverse tree, but stop as soon as
distance from particle to subdivision is sufficiently large.

SIAM J. SCI. STAT. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 1, January 1985 008

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*

ANDREW W. APPELf

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N?) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modificati de-tuning, and hardware ions. The changes
reduced the running time of a large problem (N = 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

Impact. Running time per step is N log N instead of N2 = enables new

research.

