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BALANCED SEARCH TREES

‣ 2-3 search trees 
‣ Red-black BSTs 
‣ B-trees 
‣ Geometric applications of BSTs

Text

3

‣ Challenge.  Guarantee performance.

implementation

worst-case cost 

(after N inserts) 

average case 

(after N random inserts) ordered 

iteration?

key 

interface
search insert delete search hit insert delete

sequential search 
(unordered list)

N N N N/2 N N/2 no equals()

binary search 
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

goal log N log N log N log N log N log N yes compareTo()

BALANCED SEARCH TREES

‣ 2-3 search trees 
‣ Red-black BSTs 
‣ B-trees 
‣ Geometric applications of BSTs 



Allow 1 or 2 keys per node.
• 2-node:  one key, two children.

• 3-node:  two keys, three children.

2-3 tree
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S XA C PH

R

M

L

3-node

E J

2-node

null link

Allow 1 or 2 keys per node.
• 2-node:  one key, two children.

• 3-node:  two keys, three children.

Perfect balance.  Every path from root to null link has same length. 

2-3 tree

6

S XA C PH

R

M

L

3-node

E J

2-node

null link

Allow 1 or 2 keys per node.
• 2-node:  one key, two children.

• 3-node:  two keys, three children.

Perfect balance.  Every path from root to null link has same length. 
Symmetric order.  Inorder traversal yields keys in ascending order.

2-3 tree
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between E and J

larger than J
smaller than E

S XA C PH

R

M

L

E J

Search.
• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

2-3 tree demo

search for H

H

H is less than M 

(go left)

S XA C PH

R

M

L

E J



Search.
• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

2-3 tree demo

S XA C PH

R

M

L

E J

search for H

H is between E and J 

(go middle)

H

Search.
• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

2-3 tree demo

S XA C PH

R

M

L

E J

search for H

found H 

(search hit)

H

Search.
• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

2-3 tree demo

S XA C PH

R

M

L

E J

search for B

B

B is less than M 

(go left)

Search.
• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

2-3 tree demo

S XA C PH

R

M

L

E J

search for B

B is less than E 

(go left)

B



Search.
• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

2-3 tree demo

S XA C PH

R

M

L

E J

search for B

B

B is between A and C 

(go middle)

Search.
• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

2-3 tree demo

S XA C PH

R

M

L

E J

search for B

B
link is null 

(search miss)

Insert into a 2-node at bottom.
• Search for key, as usual.

• Replace 2-node with 3-node.

2-3 tree demo

S XA C PH

R

M

L

E J

insert K

K

K is less than M 

(go left)

Insert into a 2-node at bottom.
• Search for key, as usual.

• Replace 2-node with 3-node.

2-3 tree demo

S XA C PH

R

M

L

E J

K is greater than J 

(go right)

K

insert K



Insert into a 2-node at bottom.
• Search for key, as usual.

• Replace 2-node with 3-node.

2-3 tree demo

S XA C PH

R

M

L

E J

search ends here

K

insert K

Insert into a 2-node at bottom.
• Search for key, as usual.

• Replace 2-node with 3-node.

S XA C PH

R

M

E J

replace 2-node with 

3-node containing K

2-3 tree demo

LLK

insert K

Insert into a 2-node at bottom.
• Search for key, as usual.

• Replace 2-node with 3-node.

S XA C PH

R

M

E J

2-3 tree demo

S XA C PH

R

M

E J

LLK

insert K

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

S XP

R

2-3 tree demo

A C H K L

E J

M Z

Z is greater than M 

(go right)
insert Z



Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

S XP

R

2-3 tree demo

A C H K L

E J

M

Z

Z is greater than R 

(go right)

insert Z

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

S XP

R

2-3 tree demo

A C H K L

E J

M

Z

search ends here

insert Z

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

S X

2-3 tree demo

A C H K L

E J

M

Z

replace 3-node with 

temporary 4-node containing Z

P

R

insert Z

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

P

2-3 tree demo

A C H K L

E J

S X Z

M

R

insert Z



Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

P

2-3 tree demo

A C H K L

E J

split 4-node into two 2-nodes 

(pass middle key to parent)

S Z

M

R

X

insert Z

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

P

2-3 tree demo

A C H K L

E J

M

ZS

R X

insert Z

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

P

2-3 tree demo

A C H K L

E J

M

ZS

R X

insert Z

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary. 

• If you reach the root and it's a 4-node, split it into three 2-nodes.

2-3 tree demo

S XA C

E R

H P

convert 3-node into 4-node

L

insert L



Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary. 

• If you reach the root and it's a 4-node, split it into three 2-nodes.

2-3 tree demo

S XA C

E R

H PL

insert L

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary. 

• If you reach the root and it's a 4-node, split it into three 2-nodes.

2-3 tree demo

S XA C

split 4-node 

(move L to parent)

H P

E R

L

insert L

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary. 

• If you reach the root and it's a 4-node, split it into three 2-nodes.

2-3 tree demo

S XA C PH

E RL

insert L

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary. 

• If you reach the root and it's a 4-node, split it into three 2-nodes.

2-3 tree demo

S XA C PH

split 4-node 

(move L to parent)

E RL

insert L



Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary. 

• If you reach the root and it's a 4-node, split it into three 2-nodes.

2-3 tree demo

insert L

S XA C PH

E R

L

height of tree increases by 1

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary. 

• If you reach the root and it's a 4-node, split it into three 2-nodes.

2-3 tree demo

S XA C PH

E R

Linsert L

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

Search in a 2-3 tree
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found H so return value (search hit)

H is less than M so
look to the left

H is between E and L so
look in the middle

B is between A and C so look in the middle

B is less than M so
look to the left

B is less than E
so look to the left

link is null so B is not in the tree (search miss)

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

successful search for H unsuccessful search for B

Successful (left) and unsuccessful (right) search in a 2-3 tree

Case 1.  Insert into a 2-node at bottom.
• Search for key, as usual.

• Replace 2-node with 3-node.

Insertion in a 2-3 tree
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search for K ends here

replace 2-node with
new 3-node containing K

E J

H L

M

R

P S XA C

E J

H

M

R

P S XK LA C

inserting K

Insert into a 2-node
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Insertion in a 2-3 tree

Case 2.  Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary.

split 4-node into two 2-nodes
pass middle key to parent

replace 3-node with
temporary 4-node

containing Z

replace 2-node
with new 3-node

containing
middle key

S X Z

S Z

E J

H L

L

M

R

PA C

search for Z ends
at this 3-nodeE J

H L

M

R

P S XA C

E J

H

M

P

R X

A C

inserting Z

Insert into a 3-node whose parent is a 2-node

Case 2.  Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary. 

• If you reach the root and it's a 4-node, split it into three 2-nodes.
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Insertion in a 2-3 tree

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root

increases height by 1
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Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation:  constant number of 
operations.

b c d

a e

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

b d

a c e

Splitting a  4-node is a local transformation that preserves balance 

Invariants.   Maintains symmetric order and perfect balance.
Pf.   Each transformation maintains symmetric order and perfect balance.
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Global properties in a 2-3 tree

b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary) 

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e
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2-3 tree:  performance

Perfect balance.  Every path from root to null link has same length.

Tree height.
• Worst case:

• Best case:

Typical 2-3 tree built from random keys
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2-3 tree:  performance

Perfect balance.  Every path from root to null link has same length.

Tree height.
• Worst case: lg N. [all 2-nodes]

• Best case: log3 N  ≈ .631 lg N. [all 3-nodes]

• Between 12 and 20 for a million nodes.

• Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

Typical 2-3 tree built from random keys

ST implementations:  summary
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constants depend upon implementation

implementation

worst-case cost

(after N inserts) 
average case

(after N random inserts) ordered
iteration?

key
interface

search insert delete search hit insert delete

sequential search 
(unordered list)

N N N N/2 N N/2 no equals()

binary search 
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()
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2-3 tree:  implementation?

Direct implementation is complicated, because:
• Maintaining multiple node types is cumbersome.

• Need multiple compares to move down tree.

• Need to move back up the tree to split 4-nodes.

• Large number of cases for splitting.

Bottom line.  Could do it, but there's a better way.



BALANCED SEARCH TREES

‣ 2-3 search trees 
‣ Red-black BSTs 
‣ B-trees 
‣ Geometric applications of BSTs

1.  Represent 2–3 tree as a BST.
2.  Use "internal" left-leaning links as "glue" for 3–nodes.
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Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 
2007)

larger key is root

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

black links connect 
2-nodes and 3-nodes

red links "glue"  
nodes within a 3-node

2-3 tree corresponding red-black BST

A BST such that:
• No node has two red links connected to it.

• Every path from root to null link has the same number of black links.

• Red links lean left.
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An equivalent definition

"perfect black balance"

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Key property.  1–1 correspondence between 2–3 and LLRB.
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Left-leaning red-black BSTs:  1-1 correspondence with 2-3 trees

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C



Search implementation for red-black BSTs

Observation.  Search is the same as for elementary BST (ignore color).  

Remark.  Most other ops (e.g., ceiling, selection, iteration) are also 
identical.
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public Val get(Key key) 
{ 
   Node x = root; 
   while (x != null) 
   { 
      int cmp = key.compareTo(x.key); 
      if      (cmp  < 0) x = x.left; 
      else if (cmp  > 0) x = x.right; 
      else if (cmp == 0) return x.val; 
   } 
   return null; 
}

but runs faster because of better balance

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Red-black BST representation

Each node is pointed to by precisely one link (from its parent)  ⇒ 
can encode color of links in nodes.

50

 private static final boolean RED   = true; 
 private static final boolean BLACK = false; 

 private class Node 
 { 
    Key key; 
    Value val; 
    Node left, right; 
    boolean color;   // color of parent link 
 } 

 private boolean isRed(Node x) 
 { 
    if (x == null) return false; 
    return x.color == RED; 
 } 

null links are black

private static final boolean RED   = true;
private static final boolean BLACK = false;

private class Node
{
   Key key;          // key
   Value val;        // associated data
   Node left, right; // subtrees
   int N;            // # nodes in this subtree
   boolean color;    // color of link from
                     //   parent to this node

   Node(Key key, Value val)
   {
      this.key   = key;
      this.val   = val;
      this.N     = 1;
      this.color = RED;
   }
}

private boolean isRed(Node x)
{
   if (x == null) return false;
   return x.color == RED;
}

J
G

E

A D
C

Node representation for red−black trees

h
h.left.color

is RED
h.right.color

is BLACK

Elementary red-black BST operations

Left rotation.   Orient a (temporarily) right-leaning red link to lean left.

Invariants.  Maintains symmetric order and perfect black balance.
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greater 

than S

x

h

S

between 

E and S

less 

than E

E

rotate E left
(before)

 private Node rotateLeft(Node h) 
 { 
    assert isRed(h.right); 
    Node x = h.right; 
    h.right = x.left; 
    x.left = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }

Elementary red-black BST operations

Left rotation.   Orient a (temporarily) right-leaning red link to lean left.

Invariants.  Maintains symmetric order and perfect black balance.
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greater 

than S

less 

than E

x

h E

between 

E and S

S

rotate E left
(after)

 private Node rotateLeft(Node h) 
 { 
    assert isRed(h.right); 
    Node x = h.right; 
    h.right = x.left; 
    x.left = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }



Elementary red-black BST operations

Right rotation.   Orient a left-leaning red link to (temporarily) lean right.

Invariants.  Maintains symmetric order and perfect black balance.
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rotate S right
(before)

greater 

than S

less 

than E

h

x E

between 

E and S

S

 private Node rotateRight(Node h) 
 { 
    assert isRed(h.left); 
    Node x = h.left; 
    h.left = x.right; 
    x.right = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }

Elementary red-black BST operations

Right rotation.   Orient a left-leaning red link to (temporarily) lean right.

Invariants.  Maintains symmetric order and perfect black balance.
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 private Node rotateRight(Node h) 
 { 
    assert isRed(h.left); 
    Node x = h.left; 
    h.left = x.right; 
    x.right = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }

rotate S right
(after)

greater 

than S

h

x

S

between 

E and S

less 

than E

E

Color flip.  Recolor to split a (temporary) 4-node.

Invariants.  Maintains symmetric order and perfect black balance.

Elementary red-black BST operations
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greater 

than S

between 

E and S

between 

A and E

less 

than A

E
h

SA

 private void flipColors(Node h) 
 { 
    assert !isRed(h); 
    assert isRed(h.left); 
    asset isRed(h.right); 
    h.color = RED; 
    h.left.color = BLACK; 
    h.right.color = BLACK; 
 } 

flip colors
(before)

Color flip.  Recolor to split a (temporary) 4-node.

Invariants.  Maintains symmetric order and perfect black balance.

Elementary red-black BST operations
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E
h

SA

 private void flipColors(Node h) 
 { 
    assert !isRed(h); 
    assert isRed(h.left); 
    asset isRed(h.right); 
    h.color = RED; 
    h.left.color = BLACK; 
    h.right.color = BLACK; 
 } 

flip colors
(after)

greater 

than S

between 

E and S

between 

A and E

less 

than A



Basic strategy.  Maintain 1-1 correspondence with 2-3 trees by  
applying elementary red-black BST operations.

Insertion in a LLRB tree:  overview
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E

A

LLRB tree

 insert C

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

rotate left

E

A R S

E

R SA C

2-3 tree

E

A

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

right link red
so rotate left

insert C

Insert into a 2-node
at the bottom

Warmup 1.  Insert into a tree with exactly 1 node.

Insertion in a LLRB tree
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search ends
at this null link

red link to
 new node

containing a
converts 2-node

to 3-node 

search ends
at this null link

attached new node
with red link

rotated left
to make a 

legal 3-node 

a

b

a

a

b

b

a

b

root

root

root

root

left

right

Insert into a single
2-node (two cases)

search ends
at this null link

red link to
 new node

containing a
converts 2-node

to 3-node 

search ends
at this null link

attached new node
with red link

rotated left
to make a 

legal 3-node 

a

b

a

a

b

b

a

b

root

root

root

root

left

right

Insert into a single
2-node (two cases)

Case 1.  Insert into a 2-node at the bottom.
• Do standard BST insert; color new link red.

• If new red link is a right link, rotate left.

Insertion in a LLRB tree
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E

A

LLRB tree

 insert C

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

rotate left

E

A R S

E

R SA C

2-3 tree

E

A

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

right link red
so rotate left

insert C

Insert into a 2-node
at the bottom

Warmup 2.  Insert into a tree with exactly 2 nodes.

Insertion in a LLRB tree
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search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left 

rotated
right 

rotated
right 

colors flipped
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Insert into a single 3-node (three cases)



Case 2.  Insert into a 3-node at the bottom.
• Do standard BST insert; color new link red.

• Rotate to balance the 4-node (if needed).

• Flip colors to pass red link up one level.

• Rotate to make lean left (if needed).

Insertion in a LLRB tree
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right link red
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inserting H

Insert into a 3-node
at the bottom

Case 2.  Insert into a 3-node at the bottom.
• Do standard BST insert; color new link red.

• Rotate to balance the 4-node (if needed).

• Flip colors to pass red link up one level.

• Rotate to make lean left (if needed).

• Repeat case 1 or case 2 up the tree (if needed).

Insertion in a LLRB tree:  passing red links up the tree
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Red-black BST insertion
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S

insert S

E

Red-black BST insertion
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S

insert E



A

Red-black BST insertion
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S

E

insert A

Red-black BST insertion
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S

E

A

two left reds in a row 

(rotate S right)insert A

Red-black BST insertion
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S

E

A

both children red 

(flip colors)

Red-black BST insertion
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both children red 

(flip colors)



Red-black BST insertion
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S

E

A

red-black BST

Red-black BST insertion

70

S

E

A

red-black BST

R

Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion

75

E

S

RC

right link red 

(rotate A left)

A

Red-black BST insertion

76

E

S

R

C

A

red-black BST



Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Red-black BST insertion
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Standard indexing client.
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LLRB tree insertion trace
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Red-black tree construction traces

 standard indexing client  same keys in increasing order

insert S insert A
S

S

E

A

E S

R S

E

A S

E

R SA C

H

E R

A C

red-black BST corresponding 2-3 tree



Standard indexing client (continued).
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LLRB tree insertion trace
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Red-black tree construction traces

 standard indexing client  same keys in increasing order

insert S insert A

M

E R

H P

H S X

E R

A C

S X

E R

A C H M

S XA C

M

E R

P S XA C H L

red-black BST corresponding 2-3 tree

Insertion in a LLRB tree:  Java implementation

Same code for both cases.
• Right child red, left child black: rotate left.

• Left child, left-left grandchild red: rotate right.

• Both children red: flip colors.
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 private Node put(Node h, Key key, Value val) 
 { 
    if (h == null) return new Node(key, val, RED); 
    int cmp = key.compareTo(h.key); 
    if      (cmp  < 0) h.left  = put(h.left,  key, val); 
    else if (cmp  > 0) h.right = put(h.right, key, val); 
    else if (cmp == 0) h.val = val; 

    if (isRed(h.right) && !isRed(h.left))     h = rotateLeft(h); 
    if (isRed(h.left)  && isRed(h.left.left)) h = rotateRight(h); 
    if (isRed(h.left)  && isRed(h.right))     flipColors(h); 
    
    return h; 
 }

insert at bottom 

(and color red)

split 4-node

balance 4-node

lean left

only a few extra lines of code  
provides near-perfect balance

flip
colors

right
rotate

left
rotate

Passing a red link up a red-black tree

h

h

h

Insertion in a LLRB tree:  visualization
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255 insertions in ascending order

112

Insertion in a LLRB tree:  visualization

255 insertions in descending order

Remark.  Only a few extra lines of code to standard BST insert.
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Insertion in a LLRB tree:  visualization

255 random insertions

Remark.  Only a few extra lines of code to standard BST insert.
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Balance in LLRB trees

Proposition.  Height of tree is ≤ 2 lg N in the worst case. 

Pf.
• Every path from root to null link has same number of black links.

• Never two red links in-a-row.

 
 
 
 
 
 
 
 
 

Property.  Height of tree is ~ 1.00 lg N in typical applications.

ST implementations:  summary
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implementation

worst-case cost

(after N inserts) 
average case

(after N random inserts)
ordered
iteration?

key
interface

search insert delete search hit insert delete

sequential search 
(unordered list)

N N N N/2 N N/2 no equals()

binary search 
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

red-black BST 2 lg N 2 lg N 2 lg N 1.00 lg N * 1.00 lg N * 1.00 lg N * yes compareTo()

* exact value of coefficient unknown but extremely close to 1

Xerox PARC innovations.  [ 1970s ]
• Alto.

• GUI.

• Ethernet.

• Smalltalk.

• InterPress.

• Laser printing.

• Bitmapped display.

• WYSIWYG text editor.

• ...

War story:  why red-black?
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ABSTUACT

I() this paper we present a uniform framework for the implementation
and study of halanced tree algorithms. \Ve show how to imhcd in this
framework the best known halanced tree tecilIliques and thell usc the
framework to deVl'lop new which perform the update and
rebalancing in one pass, Oil the way down towards a leaf. \Ve
conclude with a study of performance issues and concurrent updating.

O. Introduction

I1alanced trees arc arnong the oldest and tnost widely used data
stnlctures for searching. These trees allow a wide variety of
operations, such as search, insertion, deletion, tnerging, and splitting
to be performed in tinK GOgN), where N denotes the size of the tree
[AHU], [KtJ]. (Throughout the paper 19 will denote log to the base 2.)
A number of different types of balanced trees have been proposed,
and while the related algorithms are oftcn conceptually sin1ple, they
have proven cumbersome to irnp1cn1ent in practice. Also, the variety
of such trees and the lack of good analytic results describing their
performance has made it difficult to decide which is best in a given
situation.

In this paper we present a uniform fratnework for the
imp1crnentation and study of balanced tree algorithrns. 'Inc
fratTIework deals exclusively with binary trecs which contain two
kinds of nodes: internal and external. Each internal node contains a
key (chosen frorn a linear order) and has two links to other nodes
(internal or external). External nodes contain no keys and haye null
links. If such a tree is traversed in sYlnn1etlic order [Knl then the
internal nodes will be visited in increasing order of their keys. A
second defining feature of the frarncwork is U1at it allows one bit per
node, called the color of the node, to store balance infonnation. We
will use red and black as the two colors. In section 1 we further
elaborate upon this dichrornatic framework and show how to imbed
in it the best known balanced tree algorithms. In doing so, we will
discover suprising new and efficient implementations of these
techniques.

In section 2 we use the frarnework to develop new balanced tree
algorithms which perform the update and rebalancing in one pass, on

This work was done in part while this author was a Visiting
Scientist at the Xerox Palo Alto Research Center and in part under
support from thc NatiGfna1 Sciencc Foundation, grant no. MCS75-
23738.

CH1397-9/78/0000-QOOS$JO.75 © 1973 IEEE
8

the way down towards a leaf. As we will see, this has a number of
significant advantages ovcr the older methods. We shall cxamine a
numhcr of variations on a common theme and exhibit full
implementations which are notable for their brcvity. One
imp1cn1entation is exatnined carefully, and some properties about its
behavior are proved.

]n both sections 1 and 2 particular attention is paid to practical
implementation issues, and cOlnplcte impletnentations are given for
all of the itnportant algorithms. '1l1is is significant because one
measure under which balanced tree algorithtns can differ greatly is
the amount of code required to actually implement them.

Section 3 deals with the analysis of the algorithlns. New results are
givcn for the worst case perfonnance, and a technique for studying
the average case is described. While no balanced tree algorithm has
yet satisfactorily subtnitted to an average case analysis, empirical
results arc given which show U1at the valious algorithms differ only
slightly in perfonnance. One irllplication of this is Ulat the top-down
algorithms of section 2 can be recommended for most applications
because of their simplicity.

Finally, in section 4, we discuss some other properties of the trees. In
particular, a one-pass top down deletion algorithm is presented. In
addition, we consider how to decouple the balancing from the
updating operations and we explore parallel updating.

1. The lJnifoml Franlcwork

In this section we present a unifonn frarnework for describing
balanced trees. We show how to ernbed in this framework the nlost
widely used balanced tree schemes, narnely B-trecs [UaMe], and AVL
trees [AVL]. In fact this ernbedding will give us interesting and novel
irnplclnentations of these two schemes.

We consider rebalancing transfonnations which maintain the
symrnetric order of the keys and which arc local to a s1na11 portion of
the tree f()r obvious efficiency reasons. These transformations will
changc the structure of thc tree in the salnc way as the single and
double rotations used by AVL trees [Kn]. '111c differencc between the
various algorithms we discuss arises in the decision of when to rotate,
and in the tnanipulation of the node colors.

For our first cxample, let us consider the itnp1cmentation of
trees, the simplest type of B-tree. Recall that a 2-3 tree consists of 2-
nodes, which have one key and t\\'o sons, 3-nodes, which have two

Xerox Alto
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‣ 2-3 search trees 
‣ Red-black BSTs 
‣ B-trees 
‣ Geometric applications of BSTs
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File system model

Page.  Contiguous block of data (e.g., a file or 4,096-byte chunk).
Probe.  First access to a page (e.g., from disk to memory).

Property.  Time required for a probe is much larger than time to access 
data within a page.

Cost model.  Number of probes.

Goal.  Access data using minimum number of probes.

slow fast

B-tree.  Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.

• At least 2 key-link pairs at root.

• At least M / 2 key-link pairs in other nodes.

• External nodes contain client keys.

• Internal nodes contain copies of keys to guide search.

119

B-trees (Bayer-McCreight, 1972)

choose M as large as possible so 
that M links fit in a page, e.g., M = 1024

Anatomy of a B-tree set (M = 6)

2-node

external
3-node external 5-node (full)

 internal 3-node

 external 4-node

all nodes except the root are 3-, 4- or 5-nodes

* B C

 sentinel key

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X Y

each red key is a copy
of min key in subtree

client keys (black)
are in external nodes

• Start at root.

• Find interval for search key and take corresponding link.

• Search terminates in external node.

* B C

searching for E

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X

search for E in
this external node

follow this link because
E is between * and K

follow this link because
E is between D and H

Searching in a B-tree set (M = 6)
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Searching in a B-tree



• Search for new key.

• Insert at bottom.

• Split nodes with M key-link pairs on the way up the tree.

121

Insertion in a B-tree

* A B C E F H I J K M N O P Q R T

* C H

* K

K Q U

U W X

* A B C E F H I J K M N O P Q R T U W X

* C H K Q U

* A B C E F H I J K M N O P Q R T U W X

* H K Q U

* B C E F H I J K M N O P Q R T U W X

* H K Q U

new key (A) causes
overflow and split

root split causes
a new root to be created

new key (C) causes
overflow and split

Inserting a new key into a B-tree set

inserting A

Proposition.  A search or an insertion in a B-tree of order M with N keys 

requires between log M-1 N and log M/2 N probes.

Pf.  All internal nodes (besides root) have between M / 2 and M - 1 links.

 

In practice.  Number of probes is at most 4.

Optimization.  Always keep root page in memory.
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Balance in B-tree

M = 1024; N = 62 billion 

log M/2 N  ≤  4
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Building a large B tree

full page splits into
two half -full pages

then a new key is added
to one of them

full page, about to split

white: unoccupied portion of page

black: occupied portion of page

each line shows the result 
of inserting one key

in some page

Building a large B-tree
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Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
• Java:  java.util.TreeMap, java.util.TreeSet.

• C++ STL:  map, multimap, multiset.

• Linux kernel:  completely fair scheduler, linux/rbtree.h.

B-tree variants.  B+ tree, B*tree, B# tree, …

B-trees (and variants) are widely used for file systems and databases.
• Windows:  HPFS.

• Mac:  HFS, HFS+. 

• Linux:  ReiserFS, XFS, Ext3FS, JFS.

• Databases:  ORACLE, DB2, INGRES, SQL, PostgreSQL.



BALANCED SEARCH TREES

‣ 2-3 search trees 
‣ Red-black BSTs 
‣ B-trees 
‣ Geometric applications of BSTs 

GEOMETRIC APPLICATIONS OF BSTS

‣ kd trees
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2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.
• Insert a 2d key.

• Delete a 2d key.

• Search for a 2d key.

• Range search:  find all keys that lie in a 2d range.

• Range count:  number of keys that lie in a 2d range.

 
 
Geometric interpretation.
• Keys are point in the plane.

• Find/count points in a given h-v rectangle.

 
 
 
 
Applications.  Networking, circuit design, databases,...

rectangle is axis-aligned
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2d orthogonal range search:  grid implementation

Grid implementation.
• Divide space into M-by-M grid of squares.

• Create list of points contained in each square.

• Use 2d array to directly index relevant square. 

• Insert:  add (x, y) to list for corresponding square.

• Range search:  examine only those squares that intersect 2d range query.

LB

RT
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2d orthogonal range search:  grid implementation costs

Space-time tradeoff.
• Space:  M 2 + N.

• Time:  1  +  N / M 2 per square examined, on average.

Choose grid square size to tune performance.
• Too small:  wastes space.

• Too large:  too many points per square.

• Rule of thumb:  √N-by-√N grid.

 
Running time.  [if points are evenly distributed]
• Initialize data structure:  N.

• Insert point:  1.

• Range search:  1 per point in range.

choose M ~ √N 

LB

RT

Grid implementation.  Fast and simple solution for evenly-distributed points.

Problem.  Clustering a well-known phenomenon in geometric data.
• Lists are too long, even though average length is short.

• Need data structure that gracefully adapts to data.
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Clustering

Grid implementation.  Fast and simple solution for evenly-distributed points.

Problem.  Clustering a well-known phenomenon in geometric data.
Ex.  USA map data.
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Clustering

half the squares are empty half the points are  
in 10% of the squares

13,000 points, 1000 grid squares

Use a tree to represent a recursive subdivision of 2d space.

Grid.  Divide space uniformly into squares.
2d tree.   Recursively divide space into two halfplanes. 
Quadtree.  Recursively divide space into four quadrants.
BSP tree.  Recursively divide space into two regions.
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Space-partitioning trees

Grid 2d tree BSP treeQuadtree



Applications.
• Ray tracing.

• 2d range search.

• Flight simulators.

• N-body simulation.

• Collision detection.

• Astronomical databases. 

• Nearest neighbor search. 

• Adaptive mesh generation.

• Accelerate rendering in Doom.

• Hidden surface removal and shadow casting. 
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Space-partitioning trees:  applications

Grid 2d tree BSP treeQuadtree
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Kd tree

Kd tree.  Recursively partition k-dimensional space into 2 halfspaces. 

Implementation.  BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

• Widely used.

• Adapts well to high-dimensional and clustered data. 

• Discovered by an undergrad in an algorithms class!

level ≡ i (mod k)
points 

whose ith 
coordinate  

is less than p’s

points 

whose ith 
coordinate  

is greater than p’s

p

Jon Bentley

Goal.  Simulate the motion of N particles, mutually affected by gravity. 

Brute force.  For each pair of particles, compute force.
135

N-body simulation

F =
G m1 m2

r2

http://www.youtube.com/watch?v=ua7YlN4eL_w
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Appel algorithm for N-body simulation

Key idea.  Suppose particle is far, far away from cluster of particles.
• Treat cluster of particles as a single aggregate particle.

• Compute force between particle and center of mass of aggregate particle.
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Appel algorithm for N-body simulation

• Build 3d-tree with N particles as nodes.

• Store center-of-mass of subtree in each node.

• To compute total force acting on a particle, traverse tree, but stop as soon as 
distance from particle to subdivision is sufficiently large.

Impact.  Running time per step is N log N instead of N 2 ⇒ enables new 

research.
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AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*
ANDREW W. APPEL

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N’) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (N 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

1. Introduction. Isaac Newton calculated the behavior of two particles interacting
through the force of gravity, but he was unable to solve the equations for three particles.
In this he was not alone [7, p. 634], and systems of three or more particles can be
solved only numerically. Iterative methods are usually used, computing at each discrete
time interval the force on each particle, and then computing the new velocities and
positions for each particle.

A naive implementation of an iterative many-body simulator is computationally
very expensive for large numbers of particles, where "expensive" means days of Cray-1
time or a year of VAX time. This paper describes the development of an efficient
program in which several aspects of the computation were made faster. The initial
step was the use of a new algorithm with lower asymptotic time complexity; the use
of a better algorithm is often the way to achieve the greatest gains in speed [2].

Since every particle attracts each of the others by the force of gravity, there are
O(N2) interactions to compute for every iteration. Furthermore, for the same reasons
that the closed form integral diverges for small distances (since the force is proportional
to the inverse square of the distance between two bodies), the discrete time interval
must be made extremely small in the case that two particles pass very close to each
other. These are the two problems on which the algorithmic attack concentrated. By
the use of an appropriate data structure, each iteration can be done in time believed
to be O(N log N), and the time intervals may be made much larger, thus reducing
the number of iterations required. The algorithm is applicable to N-body problems in
any force field with no dipole moments; it is particularly useful when there is a severe
nonuniformity in the particle distribution or when a large dynamic range is required
(that is, when several distance scales in the simulation are of interest).

The use of an algorithm with a better asymptotic time complexity yielded a
significant improvement in running time. Four additional attacks on the problem were
also undertaken, each of which yielded at least a factor of two improvement in speed.
These attacks ranged from insights into the physics down to hand-coding a routine in
assembly language. By finding savings at many design levels, the execution time of a
large simulation was reduced from (an estimated) 8,000 hours to 20 (actual) hours.
The program was used to investigate open problems in cosmology, giving evidence to
support a model of the universe with random initial mass distribution and high mass
density.

* Received by the editors March 24, 1983, and in revised form October 1, 1983.r Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. This
research was supported by a National Science Foundation Graduate Student Fellowship and by the office
of Naval Research under grant N00014-76-C-0370.
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