Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
Challenge. Guarantee performance.

<table>
<thead>
<tr>
<th>implementation</th>
<th>worst-case cost (after N inserts)</th>
<th>average case (after N random inserts)</th>
<th>ordered iteration?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
<tr>
<td>goal</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
</tr>
</tbody>
</table>
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.
2-3 tree

Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Perfect balance. Every path from root to null link has same length.
Allow 1 or 2 keys per node.
- 2-node: one key, two children.
- 3-node: two keys, three children.

Perfect balance. Every path from root to null link has same length.
Symmetric order. Inorder traversal yields keys in ascending order.
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

H is less than M
(go left)
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

H is between E and J (go middle)
2-3 tree demo

Search.
- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

found H
(search hit)
Search.

• Compare search key against keys in node.
• Find interval containing search key.
• Follow associated link (recursively).

search for B

B is less than M
(go left)
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for B
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for B

B is between A and C (go middle)
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for B

```
2-3 tree demo

M
 /  \
E J  R
 /  \
A C  H L
 /  /  \
B link is null
     (search miss)

P
```
Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.
2-3 tree demo

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

insert K

K is greater than J
(go right)
Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.
Insert into a 2-node at bottom.
• Search for key, as usual.
• Replace 2-node with 3-node.
Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

insert K
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.

2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.

Z is greater than M
(insert Z)

M

Z

E

J

A

C

H

K

L

P

S

X

(go right)
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

search ends here
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

replace 3-node with
temporary 4-node containing Z
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

2-3 tree demo

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>J</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>X</td>
<td>Z</td>
</tr>
</tbody>
</table>
```
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.

insert Z

split 4-node into two 2-nodes
(pass middle key to parent)
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z
Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

2-3 tree demo

Insert L

```
  E R
/ \
A C H P L S X
```

convert 3-node into 4-node
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

split 4-node
(move L to parent)
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

height of tree increases by 1
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it's a 4-node, split it into three 2-nodes.
• Compare search key against keys in node.
• Find interval containing search key.
• Follow associated link (recursively).

Successful search for H

- H is less than M so look to the left
- H is between E and L so look in the middle
- found H so return value (search hit)

Unsuccessful search for B

- B is less than M so look to the left
- B is less than E so look to the left
- B is between A and C so look in the middle
- link is null so B is not in the tree (search miss)
Case 1. Insert into a 2-node at bottom.

• Search for key, as usual.
• Replace 2-node with 3-node.

Inserting K
Case 2. Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
Case 2. Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

Insertion in a 2-3 tree
Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.
Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.
Pf. Each transformation maintains symmetric order and perfect balance.
Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case:
- Best case:
2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx 0.631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>worst-case cost (after N inserts)</th>
<th>average case (after N random inserts)</th>
<th>ordered iteration?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
<tr>
<td>2-3 tree</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
</tr>
</tbody>
</table>

Constants depend upon implementation.
2-3 tree: implementation?

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2–3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3–nodes.
An equivalent definition

A BST such that:
- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
- Red links lean left.

"perfect black balance"
Left-leaning red-black BSTs: 1–1 correspondence with 2–3 trees

Key property. 1–1 correspondence between 2–3 and LLRB.
Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

But runs faster because of better balance

```java
public Val get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Remark. Most other ops (e.g., ceiling, selection, iteration) are also identical.
Red-black BST representation

Each node is pointed to by precisely one link (from its parent) \(\Rightarrow\) can encode color of links in nodes.

```java
private static final boolean RED   = true;
private static final boolean BLACK = false;

private class Node
{
    Key key;
    Value val;
    Node left, right;
    boolean color;  // color of parent link
}

private boolean isRed(Node x)
{
    if (x == null) return false;
    return x.color == RED;
}
```

null links are black

null links are black

h.left.color is RED

h.right.color is BLACK
Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left (before)

![Diagram of a binary search tree with nodes E and S, and a red link between them.]

private Node rotateLeft(Node h) {
 assert isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
}

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

```
private Node rotateLeft(Node h) {
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Invariants. Maintains symmetric order and perfect black balance.

private Node rotateRight(Node h) {
 assert isRed(h.left);
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 return x;
}
Right rotation. Orient a left-leaning red link to (temporarily) lean right.

```
private Node rotateRight(Node h) {
    assert isRed(h.left);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Color flip. Recolor to split a (temporary) 4-node.

private void flipColors(Node h) {
 assert !isRed(h);
 assert isRed(h.left);
 assert isRed(h.right);
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
}

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

```
private void flipColors(Node h) {
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Basic strategy. Maintain 1-1 correspondence with 2-3 trees by applying elementary red-black BST operations.

Insertion in a LLRB tree: overview

1. **Insert C**
2. **Add new node here**
3. **Right link red so rotate left**
4. **Insert into a 2-node at the bottom**
Warmup 1. Insert into a tree with exactly 1 node.
Case 1. Insert into a 2-node at the bottom.
• Do standard BST insert; color new link red.
• If new red link is a right link, rotate left.
Warmup 2. Insert into a tree with exactly 2 nodes.

Insertion in a LLRB tree

larger
- Search ends at this null link
- Attached new node with red link
- Colors flipped to black

smaller
- Search ends at this null link
- Attached new node with red link
- Rotated right
- Colors flipped to black

between
- Search ends at this null link
- Attached new node with red link
- Rotated left
- Rotated right
- Colors flipped to black
Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
Case 2. Insert into a 3-node at the bottom.
- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
- Repeat case 1 or case 2 up the tree (if needed).
Red-black BST insertion

insert S
insert E
Red-black BST insertion

insert A
Red-black BST insertion

- Insert A
- Two left reds in a row
 (rotate S right)
Red-black BST insertion

both children red
(flip colors)
Red-black BST insertion

both children red
(flip colors)
Red-black BST insertion

red–black BST

![Red-black BST Diagram](image-url)
Red-black BST insertion

red–black BST

\[\text{Diagram of red-black BST} \]
Red-black BST insertion

insert R
Red-black BST insertion

red-black BST

![Red-black BST Diagram]
Red-black BST insertion

red–black BST
Red-black BST insertion

insert C
Red-black BST insertion

right link red
(rotate A left)
red–black BST
Red-black BST insertion

red–black BST

```
    E
   / \
  C   S
 /    /
A    R
```
Red-black BST insertion

red–black BST
Red-black BST insertion

insert H
Red-black BST insertion

two left reds in a row
(rotate S right)
Red-black BST insertion

both children red (flip colors)
Red-black BST insertion

![Diagram of a red-black tree with a node E at the root, C as the left child, and R as the right child. Node C has a red child A, and node R has red children H and S. There is a note indicating that both children are red (flip colors).]
Red-black BST insertion

right link red
(rotate E left)
Red-black BST insertion

red-black BST

![Red-black BST insertion tree](image-url)
Red-black BST insertion

red-black BST
Red-black BST insertion

red–black BST

![Diagram of a red-black BST](image_url)
Red-black BST insertion

insert X
Red-black BST insertion

insert X

right link red
(rotate S left)
Red-black BST insertion

red–black BST
Red-black BST insertion
Red-black BST insertion

red–black BST
Red-black BST insertion

insert M
Red-black BST insertion

insert M

right link red
(rotate H left)
Red-black BST insertion

red-black BST
Red-black BST insertion

insert P
Red-black BST insertion

insert P

two red children
(flip colors)
Red-black BST insertion

insert P

```
      X
     / 
    R   M
   /   / 
  C   E   S
 /   /   / 
A   H   P
```

two red children
(flip colors)
Red-black BST insertion

right link red
(rotate E left)
Red-black BST insertion

two left reds in a row
(rotate R right)
Red-black BST insertion

two red children
(flip colors)
Red-black BST insertion

two red children
(flip colors)
Red-black BST insertion

red–black BST
Red-black BST insertion

red–black BST

```
  M
 /   \
E     R
 / \\   / \
C   H   P
|   |   |
A   |   X
|   |   |
|   |   |
|   |   |
```

103
Red-black BST insertion

red–black BST

```
  M
 /   \
E     R
|     |
C     P
 |
A
```

```
  X
 |
S
```
Red-black BST insertion

insert L
Red-black BST insertion

insert L

right link red
(rotate H left)
Red-black BST insertion
LLRB tree insertion trace

Standard indexing client.

insert S
E
A
R
C
H

red–black BST

S
E
A
R
S
H

S
E
A
E
S
R
S
E
S
A
C
H
E
R
A C

corresponding 2–3 tree

S
E
A
E
S
R
S
E
S
A
C
H
E
R
A C
LLRB tree insertion trace

Standard indexing client (continued).

red–black BST

corresponding 2–3 tree
Insertion in a LLRB tree: Java implementation

Same code for both cases.

- Right child red, left child black: rotate left.
- Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.

```java
private Node put(Node h, Key key, Value val) {
    if (h == null) return new Node(key, val, RED);
    int cmp = key.compareTo(h.key);
    if      (cmp  < 0) h.left  = put(h.left,  key, val);
    else if (cmp  > 0) h.right = put(h.right, key, val);
    else if (cmp == 0) h.val = val;
    if (isRed(h.right) && !isRed(h.left))     h = rotateLeft(h);
    if (isRed(h.left)  && isRed(h.left.left)) h = rotateRight(h);
    if (isRed(h.left)  && isRed(h.right))     flipColors(h);
    return h;
}
```

Passed a red link up a red-black tree
Insertion in a LLRB tree: visualization

N = 255
max = 8
avg = 7.0
opt = 7.0

255 insertions in ascending order
Remark. Only a few extra lines of code to standard BST insert.

255 insertions in descending order
Insertion in a LLRB tree: visualization

Remark. Only a few extra lines of code to standard BST insert.

255 random insertions
Proposition. Height of tree is $\leq 2 \lg N$ in the worst case.

Pf.

• Every path from root to null link has same number of black links.
• Never two red links in-a-row.

Property. Height of tree is $\sim 1.00 \lg N$ in typical applications.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>worst-case cost (after N inserts)</th>
<th>average case (after N random inserts)</th>
<th>ordered iteration?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
<tr>
<td>2-3 tree</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
</tr>
<tr>
<td>red-black BST</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>1.00 lg N *</td>
</tr>
</tbody>
</table>

* exact value of coefficient unknown but extremely close to 1
War story: why red-black?

Xerox PARC innovations. [1970s]

- Alto.
- GUI.
- Ethernet.
- Smalltalk.
- InterPress.
- Laser printing.
- Bitmapped display.
- WYSIWYG text editor.
- ...

A Dichromatic Framework for Balanced Trees

Leo J. Guibas
Xerox Palo Alto Research Center,
Palo Alto, California, and
Carnegie-Mellon University

Robert Sedgewick
Program in Computer Science
Brown University
Providence, R. I.

Abstract

In this paper we present a uniform framework for the implementation and study of balanced tree algorithms. We show how to imbed in this the way down towards a leaf. As we will see, this has a number of significant advantages over the older methods. We shall examine a number of variations on a common theme and exhibit full implementations which are notable for their brevity. One implementation is examined carefully, and some properties about its
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.
B-tree. Generalize 2-3 trees by allowing up to $M - 1$ key-link pairs per node.

- At least 2 key-link pairs at root.
- At least $M / 2$ key-link pairs in other nodes.
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.

choose M as large as possible so that M links fit in a page, e.g., $M = 1024$
• Start at root.
• Find interval for search key and take corresponding link.
• Search terminates in external node.

Searching in a B-tree set ($M = 6$)
Insertion in a B-tree

- Search for new key.
- Insert at bottom.
- Split nodes with M key-link pairs on the way up the tree.

Inserting a new key into a B-tree set
Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys requires between $\log_{M-1} N$ and $\log_{M/2} N$ probes.

Pf. All internal nodes (besides root) have between $M/2$ and $M - 1$ links.

In practice. Number of probes is at most 4.

$M = 1024; N = 62$ billion \[\log_{M/2} N \leq 4 \]

Optimization. Always keep root page in memory.
Building a large B tree

each line shows the result of inserting one key in some page

white: unoccupied portion of page
black: occupied portion of page
full page, about to split
full page splits into two half-full pages then a new key is added to one of them
Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
- **Java:** java.util.TreeMap, java.util.TreeSet.
- **C++ STL:** map, multimap, multiset.
- **Linux kernel:** completely fair scheduler, linux/rbtree.h.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
- **Windows:** HPFS.
- **Mac:** HFS, HFS+.
- **Linux:** ReiserFS, XFS, Ext3FS, JFS.
- **Databases:** ORACLE, DB2, INGRES, SQL, PostgreSQL.
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
Geometric applications of BSTs

- kd trees
2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.
- Insert a 2d key.
- Delete a 2d key.
- Search for a 2d key.
- Range search: find all keys that lie in a 2d range.
- Range count: number of keys that lie in a 2d range.

Geometric interpretation.
- Keys are points in the plane.
- Find/count points in a given h-v rectangle.

rectangle is axis-aligned

Applications. Networking, circuit design, databases,...
Grid implementation.

- Divide space into M-by-M grid of squares.
- Create list of points contained in each square.
- Use 2d array to directly index relevant square.
- Insert: add (x, y) to list for corresponding square.
- Range search: examine only those squares that intersect 2d range query.
2d orthogonal range search: grid implementation costs

Space-time tradeoff.
• Space: \(M^2 + N \).
• Time: \(1 + N / M^2 \) per square examined, on average.

Choose grid square size to tune performance.
• Too small: wastes space.
• Too large: too many points per square.
• Rule of thumb: \(\sqrt{N} \)-by-\(\sqrt{N} \) grid.

Running time. [if points are evenly distributed]
• Initialize data structure: \(N \).
• Insert point: 1.
• Range search: 1 per point in range.
Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

- Lists are too long, even though average length is short.
- Need data structure that *gracefully* adapts to data.
Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.

13,000 points, 1000 grid squares

- half the squares are empty
- half the points are in 10% of the squares
Space-partitioning trees

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.

2d tree. Recursively divide space into two halfplanes.

Quadtrees. Recursively divide space into four quadrants.

BSP tree. Recursively divide space into two regions.
Space-partitioning trees: applications

Applications.
• Ray tracing.
• 2d range search.
• Flight simulators.
• N-body simulation.
• Collision detection.
• Astronomical databases.
• Nearest neighbor search.
• Adaptive mesh generation.
• Accelerate rendering in Doom.
• Hidden surface removal and shadow casting.
Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

- Widely used.
- Adapts well to high-dimensional and clustered data.
- Discovered by an undergrad in an algorithms class!
Goal. Simulate the motion of N particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force. $F = \frac{G m_1 m_2}{r^2}$
Appel algorithm for N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.
- Treat cluster of particles as a single aggregate particle.
- Compute force between particle and center of mass of aggregate particle.
Appel algorithm for N-body simulation

- Build 3d-tree with N particles as nodes.
- Store center-of-mass of subtree in each node.
- To compute total force acting on a particle, traverse tree, but stop as soon as distance from particle to subdivision is sufficiently large.

Impact. Running time per step is $N \log N$ instead of $N^2 \Rightarrow$ enables new research.