BBM 202 - ALGORITHMS
HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

ERKUT ERDEM

DIRECTED GRAPHS

Mar. 31, 2015

Directed Graphs
Digraph API
Digraph search

Topological sort
Strong components

@/

Staple

N
©2008 Google - Map data ©2008 Sanbor, NAVTEQ™ - Terms of Use

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick
and K. Wayne of Princeton University.
Directed graphs Road network
Digraph. Set of vertices connected pairwise by directed edges. Vertex = intersection; edge = one-way street
, s S & N 7 NS 2
. j H %% N7 S/ p
S S N YA S N
' Vestry s\ io%’ f) /
-aight §¢ t ; T shsmaet/ /) N
vertex of H oSy - g 2 7
outdegree 4] f A Lo S TaErs— S
! 5 = v
and indegree 2 . t 57 g 7 5
= o Huber sy gy [£ g Gu"‘w X
5 &, L H p =
¢ § : g o 7 York st é’@ %0%, 7 4
. o s k] =2 | & o &
directed path G directed Beaons [T L 4 ' S A 4
from 0 to 2 ~ @ / cycle . Sty S
t 5 & = e,
{Mogrs ¢ = 7 oy 5 t s 7 %,%} / %,,%‘
= N Moore 5; g L
(4) ! 3 AN/
\C: d N e
5 Franklin sy - Ej E 5/ W
@ : St = = Franking B §@ s”’ers ¢
H 3l & N
arison gy & t 5 B ? &s‘@
Harison st = ooy % % ') &S
S/ 2N A ey N
v,

Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

DKL e [[] -

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.

T
@+ﬁ9~@~9

if x5 is true,
then x0 is true

/

Combinational circuit

Vertex = logical gate; edge = wire.

A
B ——1

WordNet graph Digraph applications

transportation street intersection one-way street
event
web web page hyperlink
happening occurrence occurrent natural_event food web species predator-prey relationship
miracle
/ act human_action human_activity WordNet synset hypernym
change alteration modification miracle
scheduling task precedence constraint
/ \ \ group_action . . .
damage harm impairment transition increase forfeitforfeiture sacrifice action financial bank transaction
resistance opposition /\\ transgression cell phone person placed call
leapj Itati jump!
esplump saltation Jumpteap infectious disease person infection
change
demoticn ariation game board position legal move
motion movement move citation journal article citation
locomotion travel descent ObjECt graph object pointer
run running jump parachuting inheritance hierarchy class inherits from
http://wordnet.princeton.edu dash sprint control flow code block jump
9 10
Some digraph problems DIRECTED GRAPHS
Path. Is there a directed path from s to ¢ ? 1 ! .
AR Be B2 00 o e » Digraph API
* o< e - o< o ~
L il » Digraph search
Shortest path. What is the shortest directed path R 11 .
IR SR AR 30 S 0 oo » Topological sort
from s to ¢? t
1. ! > Strong components
! e
L s o< o o<

Topological sort. Can you draw the digraph so that
all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?
Transitive closure. For which vertices v and w is there a path from v to w?

PageRank. What is the importance of a web page!?

Digraph API

public class

Digraph

void
Iterable<Integer>
int

int

Digraph

String

In in = new In(args[0]);

Digraph(int V) create an empty digraph with V vertices

Digraph(In in) create a digraph from input stream
addEdge (int v, int w) add a directed edge v—w
adj (int v) vertices pointing from v
V() number of vertices
E() number of edges
reverse ()

reverse of this digraph

toString () string representation

read digraph from

Digraph G = new Digraph(in); input stream
for (int v = 0; v < G.V(); v++) .
) . print out each
for (int w : G.adj(v)) D

StdOut.println(v + "->" + w);

edge (once)

Digraph API

tinyDG. txt
V\13 E % java Digraph tinyDG.txt
2= 0->5
‘21 g 0->1
 ; =
6 0 . -
0 1 @ e G e 3->5
2 0 3->2
11 12 4->3
12 (4) © 4->2
9 10
9 11 @/ \Qa 5->4
7 9 :
10 12 11->4
11 4 11->12
4 3 12-9
3 5
6 8
8 6
In in = new In(args[0]); read digraph from
- z z D S
Digraph G = new Digraph (in) ; input stream
for (int v = 0; v < G.V(); v++) i
) . print out each
for (int w : G.adj(v)) D
) edge (once)
StdOut.println(v + "->" + w);

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

adj[]
: EOEO=0=0
@ :
\g 1(9)

Adjacency-lists graph representation: Java implementation

public class Graph
{
private final int V;
private final Bag<Integer>[] adj;

public Graph(int V)

{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();
}
public void addEdge (int v, int w)
{
adj[v] .add (w) ;
adj[w] .add (v) ;
}

public Iterable<Integer> adj(int v)
{ return adj[v]; }

<«<—— adjacency lists

create empty graph

—

with V vertices

add edge v-w
—

iterator for vertices
—

adjacent to v

Adjacency-lists digraph representation: Java implementation Digraph representations

p1ie o1 In practice. Use adjacency-lists representation.
P ic class Digraph

{ ® Algorithms based on iterating over vertices pointing from v.
private final int V; ® Real-world digraphs tend to be sparse.
private final Bag<Integer>[] adj; <«<—t— adjacency lists '\
huge number of vertices,
public Digraph(int V) small average vertex degree
{ | create empty digraph
this.V = Vv; with V vertices

adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)

adj[v] = new Bag<Integer>();) insert edge edge from iterate over vertices
representation space o

} fromvtow v to w? pointing from v?
public void addEdge (int v, int w) pu L GRLICCEEIY list of edges E 1 E E
{

adj[v].add (w) ; adjacency matrix V2 1t 1 Vv
} adjacency lists E+V 1 outdegree(v) outdegree(v)
public Iterable<Integer> adj(int v) | iterator for vertices t disallows parallel edges
{ return adj[v]; } pointing from v

}
17 18

DIRECTED GRAPHS Reachability

Problem. Find all vertices reachable from s along a directed path.

» Digraph search s

I
P

20

Depth-first search in digraphs

Same method as for undirected graphs.

® Every undirected graph is a digraph (with edges in both directions).

® DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w pointing from v.

e

(6

5@~ &
o

21

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v.

a directed graph

42
253
32
60
0-1
250
1112
1259
9-10
9-11
8-9
1012
1154
4-3
355

8-6
54
0-5
64
6-9
7—6

2

Depth-first search

To visit a vertex v :

® Mark vertex v as visited.

® Recursively visit all unmarked vertices pointing from v.

a directed graph

<

marked[]

edgeTo[]

0 N OO 1 A~ W N = O

N o — o ©

mM M mM M M M M M™M M M M m M

23

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v.

visit 0

v

marked[] edgeTol]

0 N O v A W N = O

N - o @

©) :

mM M mM M M M MM mM™M M M M T

24

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v.

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v.

v marked[] edgeTo[] v marked[] edgeTo[]
(6 l—1s) o T - (6 () o T -
1 F - 1 F -
2 F - 2 F -
3 F - 3 F -
4 F = 4 @) 5
e @ 5 ©) 0 o 0 5 T 0
° 6 F = A 6 F =
7 F - 7 F -
8 F = @ 8 F =
(—— o (——2 o
10 F - 10 F -
visit 5 1 F = visit 4 11 F -
12 F -k 12 F -
Depth-first search Depth-first search
To visit a vertex v : To visit a vertex v :
® Mark vertex v as visited. ® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v. ® Recursively visit all unmarked vertices pointing from v.
v marked[] edgeTo[] v marked[] edgeTo[]
0 T - 0 T -
1 F - 1 F -
2 F 2 F
3 (D 4 3 T 4
4 T 5 4 T 5
5 T 0 5 T 0
6 F 6 F
7 F - 7 F -
8 F - 8 F -
9 F - 9 F -
10 F - 10 F -
visit 3 1 F - visit 3 1 F -
12 F - 12 F -

27

28

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v.

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v.

v marked[] edgeTo[] v marked[] edgeTo[]
(6 l—1s) o T - (6 () N
1 F - 1 F -
2 @) 3 e 2 T 3
3 T 4 3 T 4
4 T 5 4 T 5
Q e @ 5 T 0 Q e @ 5 T 0
6 F 6 F
. 7 F - . 7 F -
@ 8 F = @ 8 F =
(——() o r (——() o r
10 F - 10 F -
visit 2 1 F - visit 2 11 F -
12 F -, 12 F -
Depth-first search Depth-first search
To visit a vertex v : To visit a vertex v :
® Mark vertex v as visited. ® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v. ® Recursively visit all unmarked vertices pointing from v.
v marked[] edgeTo[] v marked[] edgeTo[]
(6 1—"s) o T 3 (6 ——0s) o T
1 F - 1 F -
: 2 T 3 2 T 3
3 T 4 3 T 4
4 T 5 4 T 5
(5]) (19 s T o (5)) (19 s T o
6 F 6 F
. 7 F - ‘ 7 F -
@ 8 F = @ 8 F =
(—(2) ok (——(2) 0ok
10 F - 10 F -
done 2 11 F = done 3 11 F =
12 F - 12 F -

31

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v.

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v.

v marked[] edgeTo[] v marked[] edgeTo[]
0=—0 T 0=—0 o
1 F - 1 F -
2 T 3 2 T 3
3 T 4 3 T 4
4 T 5 4 T 5
e @ 5 T 0 o 0 5 T 0
. 6 F) 6 F
7 F - 7 F -
@ 8 F = ° 8 F =
(—12) o r (—12) o r
10 F - 10 F -
visit 4 11 F = done 4 11 F =
12 F -, 12 F -
Depth-first search Depth-first search
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. ® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v. ® Recursively visit all unmarked vertices pointing from v.
v marked[] edgeTo[] v marked[] edgeTo[]
(6 1—"s) o T - (6 ——0s) o T
1 F - 1 F -
2 T 3 2 T 3
3 T 4 3 T 4
4 T 5 4 T 5
(9) (10) s T o () (10) s T o
6 F 6 F
7 F = 7 F =
° 8 F = 8 F =
()——{12) o ¢ ()——12) o ¢
10 F - 10 F -
done 5 11 F = visit 0 11 [F =
12 F - 12 F -

35

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v.

Q@

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v.

v marked[] edgeTo[] v marked[] edgeTo[]
0=—0 o 0=—0 ; -
1 Q) 0 1 T 0
‘ 2 T 3 ‘ 2 T 3
3 T 4 3 T 4
4 T 5 4 T 5
o @ 5 T 0 o 0 5 T 0
6 F 6 F
7 F - 7 F -
8 F - 8 F -
(—12) o r (—12) o r
10 F - 10 F -
visit 1 11 F = done 1 11 F =
12 F -, 12 F -
Depth-first search Depth-first search
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. ® Mark vertex v as visited.
® Recursively visit all unmarked vertices pointing from v. ® Recursively visit all unmarked vertices pointing from v.
a v marked[] edgeTo[] v marked[] edgeTo[]
(6 1—"s) o T - (6 ——1s) o T
1 T 0 1 T 0
2 T 3 2 T 3
3 T 4 3 T 4
4 T 5 4 T 5
(9) (10) s T o () (10) s T o
6 F 6 F
7 F = 7 F =
8 F - 8 F -
()——{12) o r ()——12) o r
10 F - 10 F -
done 0 11 F = done 11 [F =
12 F - 12 F -

39

40

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
e Recursively visit all unmarked vertices pointing from v.

v marked[] edgeTo[]
0 T -
1

a reachable

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch
{

private boolean[] marked; <«—F+— trueif pathtos

public DepthFirstSearch(Graph G, int s)

{
U © marked = new boolean[G.V()]; — cons.tructor arhs
2 > T 3 dfs (G, S) ; vertices connected to s
from vertex O 3 T 4 }
4 U 2 I{Jrivate void dfs(Graph G, int v) <——F— recursive DFS does the work
5 T 0
6 F marked[v] = true;
for (int w : G.adj(v))
v 7 F _ if ('marked[w]) dfs (G, w);
8 F - }
9 F - public boolean visited(int v) | client can ask whether any
10 F - { return marked[v]; '} vertex is connected to s
reachable from 0 11 F - }
12 F = o 2
Depth-first search (in directed graphs) Reachability application: program control-flow analysis
Code for directed graphs identical to undirected one. Every program is a digraph.
[substitute pigraph for craph] ® Vertex = basic block of instructions (straight-line program).
e Edge = jump.
public class DirectedDFS o
e _ Dead-code elimination. Pl AN
private boolean[] marked; <«—+— true if path from s wanide
Find (and remove) unreachable code. / sl |
public DirectedDFS (Digraph G, int s) / :’"“" Sowro |
{ marked = new boolean[G.V()]; | constructor marks vertices [raspEnent |
g (G, 8); ' reachable from s Infinite-loop detection. |
’ . | HeoKsB
. . . _[_ neoussno |
} Determine whether exit is unreachable. | "5 e e \‘ nedwns
N N
private void dfs(Digraph G, int v) <——F— recursive DFS does the work neagrom | Hl‘ oo ——
{ | T
marked[v] = true; N | \\[
for (int w : G.adj(v)) | [reseen PR
if ('marked[w]) dfs(G, w); Y e
} | nedsgom | wnas
public boolean visited(int v) | client can ask whether any ,.*, “ nimv
{ return marked[v]; } vertex is reachable from s e
n o3

43

Reachability application: mark-sweep garbage collector
Every data structure is a digraph.

® Vertex = object.
® Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers). 1

T+
&5
i

s{_/,/J

S10041

45

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
® Mark: mark all reachable objects.
® Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses | extra mark bit per object (plus DFS stack).

3 i b
e
I
‘@J 46

S$1004

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
¥ e Reachability.

® Path finding.

® Topological sort.

® Directed cycle detection.

Basis for solving difficult digraph problems.
® 2-satisfiability.

® Directed Euler path.

e Strongly-connected components.

SIAM J. Conrur.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANY

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
KV + ko + ky k. and ky, where V tices and E i
of edges of the graph being examined.

47

Breadth-first search in digraphs

Same method as for undirected graphs.
® Every undirected graph is a digraph (with edges in both directions).
® BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

- remove the least recently added vertex v

- for each unmarked vertex pointing from v:

add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices n a digraph in time proportional to E+V.

48

Multiple-source shortest paths Breadth-first search in digraphs application: web crawler

Multiple-source shortest paths. Given a digraph and a set of source Goal. Crawl web, starting from some root web page, say www.princeton.edu.
vertices, find shortest path from any vertex in the set to each other vertex. Solution. BFS with implicit graph.
Ex. S={1,7,10 }. BFS.
e Shortest path to 4 is 7—>6—4. e Choose root web page as source s.
. Maintain a gueue of websites to explore.
e Shortest path to 5 is 7-56—0—5. ¢
G ® Maintain a ser of discovered websites.

e Shortest path to 12 is 10—12.

@ 9 ® Dequeue the next website and enqueue
e @ websites to which it links
e (provided you haven't done so before).

Q. Why not use DFS?
Q. How to implement multi-source constructor?

A. Use BFS, but initialize by enqueuing all source vertices.

49 50

Bare-bones web crawler: Java implementation DIRECTED GRAPHS

Queue<String> queue = new Queue<String>(); <«<——+— queue of websites to crawl

SET<String> discovered = new SET<String>(); <«—F+—— set of discovered websites

String root = "http://www.princeton.edu";

queue.enqueue (root) ; <“<——]—— start crawling from root website .
discovered.add (root) ; 14 TOpOloglcal sort

while (!queue.isEmpty())
{
String v = queue.dequeue();
StdOut.println(v) ;
In in = new In(v);
String input = in.readAll();

<«———+— read in raw html from next

website in queue

String regexp = "http://(\\w+\\.)* (\\w+)";
Pattern pattern Pattern.compile (regexp) ; «——+———
Matcher matcher = pattern.matcher (input) ; in website of form nttp://xxx.yyy.zzz
while (matcher.find()) [crude pattern misses relative URLs]

{

use regular expression to find all URLs

String w = matcher.group() ;
if (!'discovered.contains(w))
{

discovered.add (w) ; if undiscovered, mark it as discovered

queue. enqueue (W) ; and put on queue

51

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,
in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

. Algorithms
. Complexity Theory

. Artificial Intelligence @4_@ ED

. Intro to CS /
. Cryptography @
. Scientific Computing

. Advanced Programming

CFO-O -G

v A W N = O

tasks precedence constraint graph

feasible schedule

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

05 0—-2

01 3-6 N

355 34 (@D)«() ED

CFO-© -G

554 64 /
6—0 352 @
1-4
directed edges DAG
®
G)

Solution. DFS.What else?

topological order

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

05
02

3-6
355
34
54

6—0
352
1-4

a directed acyclic graph

55

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

postorder

visit 0

Topological sort algorithm Topological sort algorithm

® Run depth-first search. ® Run depth-first search.
® Return vertices in reverse postorder. ® Return vertices in reverse postorder.

\ postorder postorder

6
visit 1 visit 4
Topological sort algorithm Topological sort algorithm
® Run depth-first search. ® Run depth-first search.
® Return vertices in reverse postorder. ® Return vertices in reverse postorder.

Q Q

postorder postorder

4 4

(=2}
(<2}

4 done visit 1

59 60

Topological sort algorithm Topological sort algorithm
® Run depth-first search. ® Run depth-first search.
® Return vertices in reverse postorder. ® Return vertices in reverse postorder.
postorder postorder
4 1 41
(6)C 6
1 done visit 0
Topological sort algorithm Topological sort algorithm
® Run depth-first search. ® Run depth-first search.
® Return vertices in reverse postorder. ® Return vertices in reverse postorder.
postorder postorder
4 1 4 1 2
6 6
visit 2 2 done
63 64

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

O

postorder postorder
41 2 4.1 2
% |
visit 0 visit 5
Topological sort algorithm Topological sort algorithm

® Run depth-first search. ® Run depth-first search.

® Return vertices in reverse postorder. ® Return vertices in reverse postorder.
postorder postorder
41 2 4125

k 0

visit 5

67

5 done

68

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

postorder postorder
4125 41250
6 6
visit 0 0 done
Topological sort algorithm Topological sort algorithm

® Run depth-first search. ® Run depth-first search.

® Return vertices in reverse postorder. ® Return vertices in reverse postorder.
postorder postorder
41250 41250

check 1

71

check 2

72

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

postorder postorder
41250 41250
6 6
visit 3 visit 3
73 74
Topological sort algorithm Topological sort algorithm

® Run depth-first search. ® Run depth-first search.

® Return vertices in reverse postorder. ® Return vertices in reverse postorder.
postorder postorder
41250 41250

visit 3

75

visit 3

76

Topological sort algorithm Topological sort algorithm

® Run depth-first search. ® Run depth-first search.
® Return vertices in reverse postorder. ® Return vertices in reverse postorder.
A postorder postorder
41250 41250

visit 6 visit 6
Topological sort algorithm Topological sort algorithm
® Run depth-first search. ® Run depth-first search.
® Return vertices in reverse postorder. ® Return vertices in reverse postorder.
postorder postorder
412506 412506

6 done visit 3

79 80

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

3 done

postorder

412506 3

81

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

check 4

postorder

412506 3

82

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

check 5

postorder

412506 3

83

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

check 6

postorder

412506 3

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

0
postorder
4 1 2506 3
topological order
360521 4
6

done

85

Depth-first search order

public class DepthFirstOrder
{
private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder (Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if (!'marked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked([w]) dfs(G, w);
reversePost.push(v) ;
}
public Iterable<Integer> reversePost() <+ returnsall vertices in

{ return reversePost; } “reverse DFS postorder”

86

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w.When ats (v) is called:
dfs (0)
dfs (1)
dfs (4)
® Case |: dfs(w) has already been called and returned. 4 done
1 done
dfs (2)
2 done
dfs (5)

Thus, w was done before v.

e Case 2: dfs(w) has not yet been called.
5 done

dfs (w) will get called directly or indirectly 0 done

by dfs (v) and will finish before dts (v).

Ex: ——> dfs(3)

case 1 <

Thus, w will be done before v.

® Case 3: dfs(w) has already been called,

dfs (6)
case 2
but has not yet returned. <:3 SO::“e
Can’t happen in a DAG: function call stack contains
path from w to v, so v—w would complete a cycle.
done

all vertices pointing from 3 are done before 3 is done,
so they appear after 3 in topological order

87

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

o If directed cycle, topological order impossible.

¢ If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS.What else? See textbook.

88

Directed cycle detection application: precedence scheduling Directed cycle detection application: cyclic inheritance

Scheduling. Given a set of tasks to be completed with precedence The Java compiler does cycle detection.
constraints, in what order should we schedule the tasks?

public class A extends B % javac A.java
{ A.java:1: cyclic inheritance
involving A
PAGE 3 } public class A extends B { }
DEPARTMENT COURSE DESCRIPTON PREREQS o
COMPUTER CPSC 432) INTERMEDIATE: COMPILER | CPSC 432

public class B extends C

SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

= L }

{

http://xkcd.com/754

public class C extends A
{

}

Remark. A directed cycle implies scheduling problem is infeasible.

89

Directed cycle detection application: spreadsheet recalculation Directed cycle detection applications
Microsoft Excel does cycle detection (and has a circular reference toolbar!) * Causalities.
® Email loops.

Workbookl e Compilation units.
= A - - B _ _ C - D ® Class inheritance.
1 "=B1+1 =C1+1 =Al+1 -
2 e Course prerequisites.
3 e Deadlocking detection.
4 n
5 ® Precedence scheduling.
6 ® Temporal dependencies.
7 Microsoft Excel cannot calculate a formula. P I f . . b
8 M Cell references in the fermu(\n refer to the forr;\uln‘s ° IPe Ine o comPUtIng lo S.

result, creating a circular reference. Try one of the . .
9 § " S ; e Check for symbolic link loop.
10 O Tt wi ety the Crclar Reference toatba and. e Evaluate formula in spreadsheet.
11 help for using it to correct your formula.
+ To continue leaving the formula as it is, click Cancel.
12 _ Cancel -l
13
14
15
16
17
18
| Sheetl Sheet2 | Sheet3 J

91

DIRECTED GRAPHS Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path

from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:
® vy is strongly connected to v.

» Strong components

e If v is strongly connected to w, then w is strongly connected to v.
e [f v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected

vertices.
94
Examples of strongly-connected digraphs Connected components vs. strongly-connected components
v and w are connected if there is -v and w are strongly connected if there is a directed

: a path between v and w path from v to w and a directed path from w to v
-3 connected components -5 strongly-connected components
connected component id (easy to compute with DFS) strongly-connected component id (how to compute?)
O/' 0 1 2 3 4 5 6 7 8 910 11 12 0 1 2 3 4 5 6 7 8 910 11 12
cc[] O 0 0 0 0 0 1 1 1 2 2 2 2 sce[]'1 0 1 1 1 1 3 4 3 2 2 2 2
O/ public int connected(int v, int w) public int stronglyConnected(int v, int w)
{ } { }

return cc[v] == cc[w]; return scc[v] == scc[w];

I I
constant-time client connectivity query constant-time client strong-connectivity query
95 96

Strong component application: ecological food webs

Food web graph.Vertex = species; edge = from producer to consumer.

,.'

M o vole k gneategvef

fox & /Y
ot HA: q:‘lh;l
| < \
«

shrew

- / \
earthworm

mosquub &
\ 5;”9 m
s
i .z'qae(l naghified)
cattails
http:/ /www.twingre istrict96.k12.il.us Sal /SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

97

Strong component application: software modules

Software module dependency graph.
® Vertex = software module.
e Edge: from module to dependency.

Firefox Internet Explorer

Strong component. Subset of mutually interacting modules.
Approach |. Package strong components together.
Approach 2. Use to improve design!

98

Strong components algorithms: brief history

1960s: Core OR problem.
® Widely studied; some practical algorithms.
e Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

® Classic algorithm.

o |evel of difficulty: Algs4++.

e Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
® Forgot notes for lecture; developed algorithm in order to teach it!
® Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

® Gabow: fixed old OR algorithm.
® Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

99

Kosaraju's algorithm: intuition

Reverse graph. Strong components in G are same as in GX.

Kernel DAG. Contract each strong component into a single vertex.

how to compute?

Idea. —

e Compute topological order (reverse postorder) in kernel DAG.
® Run DFS, considering vertices in reverse topological order.

first vertex is a sink
(has no edges pointing from it)

R TS0

digraph G and its strong components kernel DAG of G (in reverse topological order)

KOSARAJU'S ALGORITHM

» DFS in reverse graph

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.

digraph G

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

reverse digraph GR

© N O U A W N = O |<

~ = o ©

marked[v]

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

v marked[v]
0 T
1 F
2 F
3 F
4 F
5 F
6 F
7 F
8 F
9 F
10 F
visit 0 11 F
12 F

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.

v marked[v] \ marked[v]
0 T 0 T
1 F 1 F
2 F 2 F
3 F 3 F
4 F 4 F
5 F 5 F
6 T 6 T
7 F 7 F
5 8 F 8 T
9 F 9 F
10 F 10 F
visit 6 n F visit 8 1 F
12 F s 12 F e
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GX. Phase |. Compute reverse postorder in GX.
8
v marked[v] /\ v marked|[v]
0 T 0 T
1 F 1 F
2 F 2 F
3 F 3 F
4 F 4 F
5 F 0 5 F
6 T 6 T
7 F 7 F
8 T 5 8 T
9 F @ 9 F
10 F 10 F
8 done 11 F visit 6 11 F
12 F 12 F

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.
8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.

(7)8

v marked[v] \ marked[v]
0 T 0 T
1 F 1 F
2 F 2 F
3 F 3 F
4 F 4 F
. (s fe—m .
6 T 6 T
7 T 7 T
8 T 5 8 T
9 F 0 @ 9 F
10 F 10 F

visit 7 11 F 7 done 11 F
12 F . 12 F o

Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GX. Phase |. Compute reverse postorder in GX.
(6)7 8 6 7 8

v marked[v] v marked[v]
0 T 0 T
1 F 1 F
2 F 2 F
3 F 3 F
4 F 4 F
s F (o) (10) sk
6 T 6 T
7 T 7 T
8 T 8 T
5 O s
10 F 10 F

6 done 11 F visit 0 11 [
12 F 12 F

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.
6 7 8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.
6 7 8

v marked[v] \ marked[v]
0 T 0 T
1 F 1 F
2 2 T 2 T
3 F 3 F
4 F 4 T
(3) (e—0) s (e—0) s
° 6 T A 6 T
7 T 7 T
5 8 T 5 8 T
(——) - (——) -
10 F 10 F
visit 2 1 F visit 4 1 F
12 F " 12 F e
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GX. Phase |. Compute reverse postorder in GX.
6 7 8 6 7 8
\Y marked[v] v marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 F 3 F
4 T 4 T
@ 5 F 5 F
: 6 T — 6 T
7 T 7 T
5 8 T 5 8 T
@ 9 F 9 T
10 F 10 F
visit 11 11 T visit 9 11 T
12 F 12 F

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.
6 7 8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.
6 7 8

v marked[v] \ marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 F 3 F
4 T 4 T
@ 5 F @ 5 F
6 T 6 T
7 T 7 T
5 - - 8 T 5 - - 8 T
9 T 9 T
10 F 10 F
visit 12 1 T visit 12 1 T
12 T - 12 T e
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GX. Phase |. Compute reverse postorder in GX.
6 7 8 (1006 7 8
v marked[v] v marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 F 3 F
4 T 4 T
<_® 5 F @ 5 F
6 T : 6 T
7 T 7 T
5 8 T 5 8 T
9 T Q 9 T
10 T 10 T
visit 10 11 T 10 done 11 T
12 T 12 T

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.

@10678

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.
12 10 6 7 8

v marked[v] \ marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 F 3 F
4 T 4 T
5 F 5 F
6 T 6 T
7 T 7 T
5 - 8 T 5 - 8 T
9 T 9 T
10 T 10 T
12 done 11 T visit 9 11 T
12 T o 12 T .
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GX. Phase |. Compute reverse postorder in GX.
12 10 6 7 8 @1210678
\Y marked[v] v marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 F 3 F
4 T 4 T
e 5 F e 5 F
6 T ' 6 T
7 T 7 T
5 8 T 5 8 T
9 T ° 9 T
10 T 10 T
visit 9 1 T 9 done 1 T
12 T 12 T

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.

@91210678

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.

11 9 12 10 6 7 8

v marked[v] \ marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 F 3 F
4 T 4 T
5 F 5 F
6 T 6 T
7 T 7 T
5 8 T 5 8 T
° 9 T 9 T
10 T 10 T
11 done 11 T visit 4 11 T
12 T s 12 T e
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GX. Phase |. Compute reverse postorder in GX.
11 9 12 10 6 7 8 11 9 12 10 6 7 8
\Y marked[v] v marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 F 3 F
4 T 4 T
5 F 5 T
6 T 6 T
a 7 T 7 T
5 8 T 8 T
9 T 9 T
10 T 10 T
visit 4 11 T visit 5 11 T
12 T 12 T

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.
11 9 12 10 6 7 8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.

11 9 12 10 6 7 8

v marked[v] \ marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 T 3 T
4 T 4 T
5 T 5 T
6 T 6 T
7 T 7 T
8 T 8 T
9 T 9 T
10 T 10 T
visit 3 n T visit 3 1 T
12 T s 12 T o
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GX. Phase |. Compute reverse postorder in GX.
@1191210678 311 9 12 10 6 7 8
\Y marked[v] A v marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 T 3 T
4 T 4 T
5 T 5 T
6 T 6 T
7 T 7 T
o 8 T e 8 T
9 T 9 T
10 T 10 T
3 done 11 T visit 5 11 T
12 T 12 T

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.

@31191210678

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.

@531191210678

v marked[v] \ marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 T 3 T
4 T 4 T
5 T 5 T
6 T 6 T
a 7 T 0 7 T
a 8 T 8 T
9 T 9 T
10 T 10 T
5 done 11 T 4 done 11 T
12 T s 12 T e
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GX. Phase |. Compute reverse postorder in GX.
453119 12 10 6 7 8 @4531191210678
v marked[v] v marked[v]
0 T 0 T
1 F 1 F
2 T a 2 T
3 T 3 T
4 T 4 T
5 T 5 T
6 T 6 T
7 T 7 T
8 T 8 T
9 T 9 T
10 T 10 T
visit 2 11 T 2 done 11 T
12 T 12 T

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.
(0)2 4531191210678

Kosaraju-Sharir

Phase |. Compute reverse postorder in G~.

0 245 3 11 9 12 10 6 7 8

v marked[v] \ marked[v]
0 T 0 T
1 F 1 T
2 T 2 T
3 T 3 T
4 T 4 T
5 T 5 T
6 T 6 T
7 T 7 T
8 T 8 T
9 T 9 T
10 T 10 T
0 done 11 T visit 1 11 T
12 T . 12 T e
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GX. Phase |. Compute reverse postorder in GX.
@024531191210678 102453119 12 10 6 7 8
v marked[v] v marked[v]
0 T 0 T
1 T 1 T
‘ 2 T 2 T
3 T 3 T
4 T 4 T
5 T 5 T
6 T 6 T
7 T 7 T
8 T 8 T
9 T 9 T
10 T 10 T
1 done 11 T check23456789101112 11 T
12 T 12 T

Kosaraju-Sharir Kosaraju's algorithm

Phase |. Compute reverse postorder in G~. Simple (but mysterious) algorithm for computing strong components.
102 453 11 9 12 10 6 7 8 e Run DFS on G* to compute reverse postorder.
e Run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G*

check unmarked vertices in the order reverse postorder for use in second dfs)
0123456789101112 102453119121067 8
dfs(0)
dfs(6)
dfs(8)
check 6
8 done
dfs(7)
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11
dfs(10)
check 9
10 done
12 done
. check 7
reverse digraph GR check 6
141 142
. .
Kosaraju-Sharir

KOSARAJU'S ALGORITHM

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

. . . of GR. 1 2 45 11 12 10 7 8
» DFS in original graph 0 3 ° 6

scclv]

<

©® N O 1 A W N — O
1

w
©o
1

- O
1

original digraph G

N
1

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

ofGR.®024531191210678

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. 1 0 2 4 53 11 9 12 10 6 7 8

v scclv] \ scclv]

(o i) o (o ;=) o -

1 @ 1 0

2 = 2 -

3 = 3 -

4 - 4 -

Oan® s - Oan® s -

6 = 6 =

7 = 7 -

(——() . (——() .

10 = 10 =

visit 1 11 - 1 done 11 -
12 = 3 12 = .

Kosaraju-Sharir Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. 10 2 453 11 9 12 10 6 7 8

strong component: 1

©® N O U1 A W N — O|<

S 2 S ©

scclv]

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

visit 0

©® N O U A W N — O|<

N = o @

scclv]

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

visit 5

® N O U1 A W N — O]|<

~ = o ©

scclv]

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

visit 4

®© N O v A W N — O <

N = o @

scclv]

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

visit 3

©® N O U1 A W N — O|<

S 2 S ©

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

visit 3

©® N O U A W N — O|<

N = o @

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

Q@
A

visit 2

® N O U1 A W N — O]|<

~ = o ©

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

YaN

visit 2

®© N O v A W N — O <

N = o @

scclv]

P e

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

&
©
&

2 done

©® N O U1 A W N — O|<

S 2 S ©

scclv]

Y =

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

3 done

©® N O U A W N — O|<

©

scclv]

T

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

O (D——12)

visit 4

<

0 N O U1 A W N —= O

scclv]

- = = = @ =

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

4 done

<

0 N O U1 A W N = O

scclv]

P e

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

5 done

©® N O U1 A W N — O|<

S 2 S ©

scclv]

_ - - O =

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

visit 0

©® N O U A W N — O|<

N = o @

scclv]

_ - - o =

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

0 done

® N O U1 A W N — O]|<

~ = o ©

scclv]

- = = = @ =

3

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

|

strong component: 02 34 5

®© N O v A W N — O <

N = o @

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @4531191210678

check 2

©® N O U1 A W N — O|<

S 2 S ©

scclv]

[T

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @531191210678

check 4

©® N O U A W N — O|<

N = o @

scclv]

[e

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-.

check 5

@31191210678

® N O U1 A W N — O]|<

N = o ©

scclv]

T

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-.

check 3

@1191210678

®© N O v A W N — O <

N = o ©

scclv]

T

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-,

visit 11

@91210678

©® N O U1 A W N — O|<

S 2 S ©

scclv]

_ - m - o =

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-,

visit 11

@91210678

©® N O U A W N — O|<

N — o ©

scclv]

[e

Kosaraju-Sharir Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. @91210678 of GR. @91210678

v scclv] v scclv]

0=—0 o 0=—0 o

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

(O—(9) s 0 (0) s

6 = 6 =

7 - 7 -

8 = 8 =

12

9 = . 9 @

10 - 10 -

visit 12 11 2 visit 9 11 2

12 @ o 12 2

Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. @91210678 of GR. @91210678

v scclv] v scclv]

(o F—(8) o =0 o

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

2 @ 5 1 5 1

6 - 6 -

7 - 7 -

O—0 . @ .o

9 2 9 2

10 - L))

visit 9 11 2 visit 10 11 2

12 2 12 2

Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. @91210678 of GR. @91210678

v scclv] v scclv]

0=—0 o 0=—0 o

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

5 1 5 1

6 = 6 =

7 - 7 -

8 = 8 =

Q Q 9 2 Q Q 9 2

10 2 10 2

10 done 11 2 9 done 11 2

12 2 . 12 2

Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. @91210678 of GR. @91210678

v scclv] v scclv]

(o F—(8) o =0 o

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

5 1 5 1

6 - 6 -

7 - 7 -

8 - 8 -

o 0 o o o

10 2 10 2

12 done 1 2 11 done 1 2

12 2 e 12 2

Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (119 12 10 6 7 8 of GR. (9)12 10 6 7 8

v scclv] v scclv]

0=—0 o 0=—0 o

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

— 5 1 5 1

6 - 6 -

7 - 7 -

8 - 8 -

9 @ 9 2

10 ©) 10 2

strong component: 9 10 11 12 11 @ check 9 11 2

12 @ . 12 2

Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (1210 6 7 8 of GR. (1006 7 8

v scclv] v scclv]

0=—0 o 0=—0 o

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

5 1 5 1

6 - 6 -

7 = 7 =

8 - 8 -

9 2 9 2

10 2 10 2

check 12 11 2 check 10 11 2

12 2 e 12 2

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

—)

visit 6

® N O U1 A W N — O]|<

N = o ©

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

—)

visit 6

®© N O v A W N — O <

N = o ©

scclv]

W = = m a O =

N ONONN

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

visit 6

©® N O U1 A W N — O|<

S 2 S ©

scclv]

W = = = m O =

NONONN

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

TTT—g—e

visit 8

©® N O U A W N — O|<

N — o ©

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

TT—o0

8 done

® N O U1 A W N — O]|<

~ = o ©

scclv]

W - = O =

NN NN W

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

\G

visit 6

®© N O v A W N — O <

N = o @

scclv]

W = = m a O =

NN NN W

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

6 done

©® N O U1 A W N — O|<

S 2 S ©

scclv]

W = = = m O =

NN NN W

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

0—0

strong component: 6 8

©® N O U A W N — O|<

N = o @

scclv]

v v® (W - =~ o =

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-.

visit 7

(7)8

® N O U1 A W N — O]|<

~ = o ©

scclv]

NNNNW@U}—'—‘—'—'O—'

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-.

visit 7

(7)8

®© N O v A W N — O <

N = o @

scclv]

N N NN W A W = = = = O —

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-,

7 done

(7)8

©® N O U1 A W N — O|<

S 2 S ©

scclv]

NN NN WD W = = =2 - o —

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-,

strong component: 7

(7)8

©® N O U A W N — O|<

N = o @

scclv]

NNNNW@W—‘—‘—‘—‘O—‘

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR.

v scclv]
0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 4
8 3
9 2
10 2
check 8 11 2
12 2

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-.

\ scclv]
0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 4
8 3
9 2
10 2
done 11 2
12 2

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
e Run DFS on G® to compute reverse postorder.

® Run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

@
(67=(®)
XD
T e
O T
check unmarked vertices in the order
102453119121067 8

dfs(1) dfs(0) dfs(11) dfs(6) dfs(7)
1 done dfs(5) check 4 check 9 check 6
dfs(4) dfs(12) check 4 check 9
dfs(3) dfs(9) dfs(8) 7 done
check 5 check 11 check 6
dfs(2) dfs(10) 8 done
check 0 check 12 check 0
check 3 10 done 6 done
2 done 9 done
3 done 12 done
check 2 11 done
4 done
5 done
check 1
0 done

Proposition. Second DFS gives strong components. (!!)

Connected components in an undirected graph (with DFS)

public class CC
{

private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)
{

marked = new boolean[G.V()];
id = new int[G.V()];

for (int v = 0; v < G.V(); v++)
{
if (!'marked[v])
{
dfs (G, v);
count++;
}
}
}

private void dfs(Graph G, int v)
{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if (!'marked[w])
dfs (G, w);

}

public boolean connected(int v, int w)
{ return id[v] == id[w]; }

}

Strong components in a digraph (with two DFSs)

public class KosarajuSCC
{

private boolean marked[];
private int[] id;
private int count;

public KosarajuSCC(Digraph G)
{

marked = new boolean[G.V()];
id = new int[G.V()];
DepthFirstOrder dfs = new DepthFirstOrder (G.reverse());
for (int v : dfs.reversePost())
{
if (!'marked([v])

dfs (G, v);
count++;

}

private void dfs(Digraph G, int v)
{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if (!marked[w])
dfs (G, w);

}

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }

Digraph-processing summary: algorithms of the day

single-source

reachability DFS
topological sort
(DAG) DFS
=
(@-0)
strong @ L Kosaraju
components ON DFS (twice)

