
Mar. 31, 2015

BBM 202 - ALGORITHMS

DIRECTED GRAPHS 

 
DEPT. OF COMPUTER ENGINEERING

 
ERKUT ERDEM

Acknowledgement:.The$course$slidesareadapted$from$the$slides$preparedbyR.$Sedgewick$ 
and$K.$WayneofPrinceton$University.

TODAY 
‣ Directed Graphs
‣ Digraph API
‣ Digraph search
‣ Topological sort
‣ Strong components 

Digraph. Set of vertices connected pairwise by directed edges.

3

Directed graphs

directed
cycle

directed path
from 0 to 2

vertex of
outdegree 4

and indegree 2

4

Road network

Vertex = intersection; edge = one-way street.
Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all the details that are visible on the screen,use the
"Print" link next to the map.

Vertex = political blog; edge = link.

5

Political blogosphere graph

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Figure 1: Community structure of political blogs (expanded set), shown using utilizing a GEM
layout [11] in the GUESS[3] visualization and analysis tool. The colors reflect political orientation,
red for conservative, and blue for liberal. Orange links go from liberal to conservative, and purple
ones from conservative to liberal. The size of each blog reflects the number of other blogs that link
to it.

longer existed, or had moved to a different location. When looking at the front page of a blog we did
not make a distinction between blog references made in blogrolls (blogroll links) from those made
in posts (post citations). This had the disadvantage of not differentiating between blogs that were
actively mentioned in a post on that day, from blogroll links that remain static over many weeks [10].
Since posts usually contain sparse references to other blogs, and blogrolls usually contain dozens of
blogs, we assumed that the network obtained by crawling the front page of each blog would strongly
reflect blogroll links. 479 blogs had blogrolls through blogrolling.com, while many others simply
maintained a list of links to their favorite blogs. We did not include blogrolls placed on a secondary
page.

We constructed a citation network by identifying whether a URL present on the page of one blog
references another political blog. We called a link found anywhere on a blog’s page, a “page link” to
distinguish it from a “post citation”, a link to another blog that occurs strictly within a post. Figure 1
shows the unmistakable division between the liberal and conservative political (blogo)spheres. In
fact, 91% of the links originating within either the conservative or liberal communities stay within
that community. An effect that may not be as apparent from the visualization is that even though
we started with a balanced set of blogs, conservative blogs show a greater tendency to link. 84%
of conservative blogs link to at least one other blog, and 82% receive a link. In contrast, 74% of
liberal blogs link to another blog, while only 67% are linked to by another blog. So overall, we see a
slightly higher tendency for conservative blogs to link. Liberal blogs linked to 13.6 blogs on average,
while conservative blogs linked to an average of 15.1, and this difference is almost entirely due to
the higher proportion of liberal blogs with no links at all.

Although liberal blogs may not link as generously on average, the most popular liberal blogs,
Daily Kos and Eschaton (atrios.blogspot.com), had 338 and 264 links from our single-day snapshot

4

Vertex = bank; edge = overnight loan.

6

Overnight interbank loan graph

The Topology of the Federal Funds Market, Bech and Atalay, 2008

GSCC

GWCC

Tendril

DC

GOUT
GIN

!"#$%& '(!&)&%*+ ,$-). -&/01%2 ,1% 3&4/&56&% 7'8 799:; <=>> ? #"*-/ 0&*2+@ A1--&A/&) A1541-&-/8
B> ?)".A1--&A/&) A1541-&-/8 <3>> ? #"*-/ ./%1-#+@ A1--&A/&) A1541-&-/8 <CD ? #"*-/ "-EA1541-&-/8
<FGH ? #"*-/ 1$/E A1541-&-/; F- /I".)*@ /I&%& 0&%& JK -1)&. "- /I& <3>>8 L9L -1)&. "- /I& <CD8 :K
-1)&. "- <FGH8 J9 -1)&. "- /I& /&-)%"+. *-) 7 -1)&. "- *)".A1--&A/&) A1541-&-/;

!"#$%&%'$(HI& -1)&. 1, * -&/01%2 A*- 6& 4*%/"/"1-&) "-/1 * A1++&A/"1- 1,)".M1"-/ .&/. A*++&))".A1--&A/&)
A1541-&-/.8 !!!" # "!!!!!"; HI& -1)&. 0"/I"- &*AI)".A1--&A/&) A1541-&-/)1 -1/ I*N& +"-2. /1 1% ,%15
-1)&. "- *-@ 1/I&% A1541-&-/8 ";&;8 #!"# $"# !$# "" $ " $!!!!" % $ $!!!!!"& # ' ", % (# %!; HI& A1541-&-/
0"/I /I& +*%#&./ -$56&% 1, -1)&. ". %&,&%%&) /1 *. /I&)%*$& +"*,-. /'$$"/&"0 /'12'$"$& O<=>>P; C- 1/I&%
01%).8 /I& <=>> ". /I& +*%#&./ A1541-&-/ 1, /I& -&/01%2 "- 0I"AI *++ -1)&. A1--&A/ /1 &*AI 1/I&% N"*
$-)"%&A/&) 4*/I.; HI& %&5*"-"-#)".A1--&A/&) A1541-&-/. OB>.P *%& .5*++&% A1541-&-/. ,1% 0I"AI /I&
.*5& ". /%$&; C- &54"%"A*+ ./$)"&. /I& <=>> ". 1,/&- ,1$-) /1 6& .&N&%*+ 1%)&%. 1, 5*#-"/$)& +*%#&% /I*-
*-@ 1, /I& B>. O.&& Q%1)&% "& *-3 O7999PP;

HI& <=>> A1-."./. 1, *)%*$& 4&5'$)-. /'$$"/&"0 /'12'$"$& O<3>>P8 *)%*$& '6&7/'12'$"$& O<FGHP8
*)%*$& %$7/'12'$"$& O<CDP *-) &"$05%-4 O.&& !"#$%& 'P; HI& <3>> A154%".&. *++ -1)&. /I*/ A*- %&*AI &N&%@
1/I&% -1)& "- /I& <3>> /I%1$#I *)"%&A/&) 4*/I; R -1)& ". "- /I& <FGH ", "/ I*. * 4*/I ,%15 /I& <3>>
6$/ -1/ /1 /I& <3>>; C- A1-/%*./8 * -1)& ". "- /I& <CD ", "/ I*. * 4*/I /1 /I& <3>> 6$/ -1/ ,%15 "/; R
-1)& ". "- * /&-)%"+ ", "/)1&. -1/ %&.")& 1- *)"%&A/&) 4*/I /1 1% ,%15 /I& <3>>;S9

!%4/644%'$(C- /I& -&/01%2 1, 4*@5&-/. .&-/ 1N&% !&)0"%& *-*+@T&) 6@ 31%*5U2" "& *-3 O799:P8 /I& <3>>
". /I& +*%#&./ A1541-&-/; F- *N&%*#&8 *+51./ %&' 1, /I& -1)&. "- /I*/ -&/01%2 6&+1-# /1 /I& <3>>; C-
A1-/%*./8 /I& <3>> ". 5$AI .5*++&% ,1% /I& ,&)&%*+ ,$-). -&/01%2; C- 799:8 1-+@ (&') (' 1, /I& -1)&.
6&+1-# /1 /I". A1541-&-/; Q@ ,*% /I& +*%#&./ A1541-&-/ ". /I& <CD; C- 799:8)%'))' 1, /I& -1)&. 0&%&
"- /I". A1541-&-/; HI& <FGH A1-/*"-&) (*') +' 1, *++ -1)&. 4&%)*@8 0I"+& /I&%& 0&%& (+') ,' 1,
/I& -1)&. +1A*/&) "- /I& /&-)%"+.;SS V&.. /I*- -') (' 1, /I& -1)&. 0&%& "- /I& %&5*"-"-#)".A1--&A/&)
A1541-&-/. O.&& H*6+& JP;

S9HI& /&-)%"+. 5*@ *+.1 6&)"W&%&-/"*/&) "-/1 /I%&& .$6A1541-&-/.(* .&/ 1, -1)&. /I*/ *%& 1- * 4*/I &5*-*/"-# ,%15 <CD8 *
.&/ 1, -1)&. /I*/ *%& 1- * 4*/I +&*)"-# /1 <FGH8 *-) * .&/ 1, -1)&. /I*/ *%& 1- * 4*/I /I*/ 6&#"-. "- <CD *-) &-). "- <FGH;

SS!!"# 1, -1)&. 0&%& "- X,%15E<CDY /&-)%"+.8 $!%# 1, -1)&. 0&%& "- /I& X/1E<FGHY /&-)%"+. *-) "!&# 1, -1)&. 0&%& "-
X/$6&.Y ,%15 <CD /1 <FGH;

S7

Vertex = variable; edge = logical implication.

7

Implication graph

~x0

~x3

~x1~x5

x6

x5

~x6

~x4

~x2

x2

x4

x1

x3

x0

if x5 is true,

then x0 is true

Vertex = logical gate; edge = wire.

8

Combinational circuit

Vertex = synset; edge = hypernym relationship.

9

WordNet graph

http://wordnet.princeton.edu

event

happening occurrence occurrent natural_event

change alteration modification

damage harm ..impairment transition

leap jump saltation jump leap

act human_action human_activity

group_action

forfeit forfeiture sacrifice action

change

resistance opposition transgression

demotion variation

motion movement move

locomotion travel

run running

dash sprint

descent

jump parachuting

increase

miracle

miracle

10

Digraph applications

digraph vertex directed edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

11

Some digraph problems

Path. Is there a directed path from s to t ?
 
Shortest path. What is the shortest directed path  
from s to t ?
 
Topological sort. Can you draw the digraph so that  
all edges point upwards?
 
Strong connectivity. Is there a directed path between all pairs of vertices?
 
Transitive closure. For which vertices v and w is there a path from v to w ?
 
PageRank. What is the importance of a web page?

s

t

DIRECTED GRAPHS

‣ Digraph API
‣ Digraph search
‣ Topological sort
‣ Strong components

13

Digraph API

 public class Digraph

Digraph(int V) create an empty digraph with V vertices

Digraph(In in) create a digraph from input stream

void addEdge(int v, int w) add a directed edge v→w

Iterable<Integer> adj(int v) vertices pointing from v

int V() number of vertices

int E() number of edges

Digraph reverse() reverse of this digraph

String toString() string representation

In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 StdOut.println(v + "->" + w);

read digraph from

input stream

print out each

edge (once)

14

Digraph API

In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 StdOut.println(v + "->" + w);

% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
⋮
11->4
11->12
12-9

read digraph from

input stream

print out each

edge (once)

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

⋮

Maintain vertex-indexed array of lists.

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

15

Adjacency-lists digraph representation

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

16

Adjacency-lists graph representation: Java implementation

public class Graph
{
 private final int V;
 private final Bag<Integer>[] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 adj[w].add(v);
 }

 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency lists

create empty graph 
with V vertices

iterator for vertices

adjacent to v

add edge v–w 

17

Adjacency-lists digraph representation: Java implementation

public class Digraph
{
 private final int V;
 private final Bag<Integer>[] adj;

 public Digraph(int V)
 {
 this.V = V;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);

 }

 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency lists

create empty digraph 
with V vertices

add edge v→w 

iterator for vertices

pointing from v

In practice. Use adjacency-lists representation.
• Algorithms based on iterating over vertices pointing from v.

• Real-world digraphs tend to be sparse.

18

Digraph representations

representation space
insert edge  
from v to w

edge from

v to w?

iterate over vertices

pointing from v?

list of edges E 1 E E

adjacency matrix V 2 1 † 1 V

adjacency lists E + V 1 outdegree(v) outdegree(v)

huge number of vertices, 
small average vertex degree

† disallows parallel edges

DIRECTED GRAPHS

‣ Digraph API
‣ Digraph search
‣ Topological sort
‣ Strong components

20

Reachability

Problem. Find all vertices reachable from s along a directed path.

s

Same method as for undirected graphs.
• Every undirected graph is a digraph (with edges in both directions).

• DFS is a digraph algorithm.

21

Depth-first search in digraphs

Mark v as visited.
Recursively visit all unmarked
 vertices w pointing from v.

DFS (to visit a vertex v)

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

22

a directed graph

4→2

2→3

3→2

6→0

0→1

2→0

11→12

12→9

9→10

9→11

8→9

10→12

11→4

4→3

3→5

6→8

8→6

5→4

0→5

6→4

6→9

7→6

1

4

9

2

5

3

0

1211

10

8 76

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

23

a directed graph

1

4

9

2

5

3

0

1211

10

8 76 0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

F

F

F

F

F

F

F

F

F

F

F

F

F

–

–

–

–

–

–

–

–

–

–

–

–

–

edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

24

visit 0

1

4

9

2

5

3

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

F

F

F

F

F

F

F

F

F

8 76 –

–

–

–

–

–

–

–

–

–

–

–

–

edgeTo[]

T

F

F

F

F

T

F

F

F

F

F

F

F

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

25

visit 5

1

4

9

2

5

3

0

1211

10

8 76 0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

–

–

–

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

T

F

F

F

T

T

F

F

F

F

F

F

F

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

26

visit 4

1

4

9

2

5

3

0

1211

10

8 76 0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

–

–

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

27

visit 3

1

4

9

2

5

3

0

1211

10

8 76 T

F

F

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

–

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

28

visit 3

1

4

9

2

5

3

0

1211

10

8 76 T

F

F

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

–

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

29

visit 2

1

4

9

2

5

3

0

1211

10

8 76 T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

30

visit 2

1

4

9

2

5

3

0

1211

10

8 76 T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

21

4

9

5

3

0

1211

10

Depth-first search

31

done 2

1

4

9

5

3

0

1211

10

8 76

3

2

T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

3

1

4

9

2

5

0

1211

10

Depth-first search

32

done 3

1

4

9

5

0

1211

10

8 76

4

3

T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

33

visit 4

1

4

9

5

0

1211

10

8 76 T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

4

1

9

2

5

3

0

1211

10

Depth-first search

34

done 4

1

9

5

0

1211

10

8 76

5

4

T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

5

1

4

9

2

3

0

1211

10

Depth-first search

35

done 5

1

9

0

1211

10

8 76

5

0

T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

36

visit 0

1

9

0

1211

10

8 76 T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

37

visit 1

1

9

0

1211

10

8 76 T

T

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search

38

done 1

9

0

1211

10

8 76

1

0

T

T

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

8 76

Depth-first search

39

done 0

9

0

1211

10

T

T

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

T

T

T

T

T

T

F

F

F

F

F

F

F

marked[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

8 76

Depth-first search

40

done

9

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

3

4

5

0

–

–

–

–

–

–

–

v edgeTo[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

T

T

T

T

T

T

F

F

F

F

F

F

F

marked[]

1

9

2

5

3

0

1211

10

8 76

Depth-first search

41

reachable from 0

reachable

from vertex 0

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

3

4

5

0

–

–

–

–

–

–

–

v edgeTo[]

4

Recall code for undirected graphs.

public class DepthFirstSearch
{
 private boolean[] marked;

 public DepthFirstSearch(Graph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean visited(int v)
 { return marked[v]; }
}

42

Depth-first search (in undirected graphs)

true if path to s

constructor marks

vertices connected to s

recursive DFS does the work

client can ask whether any

vertex is connected to s

Code for directed graphs identical to undirected one.  
[substitute Digraph for Graph]

public class DirectedDFS
{
 private boolean[] marked;

 public DirectedDFS(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean visited(int v)
 { return marked[v]; }
}

43

Depth-first search (in directed graphs)

true if path from s

constructor marks vertices

reachable from s

recursive DFS does the work

client can ask whether any

vertex is reachable from s

44

Reachability application: program control-flow analysis

Every program is a digraph.
• Vertex = basic block of instructions (straight-line program).

• Edge = jump.

 
Dead-code elimination.  
Find (and remove) unreachable code.
 
Infinite-loop detection.  
Determine whether exit is unreachable.

Every data structure is a digraph.
• Vertex = object.

• Edge = reference.

 
Roots. Objects known to be directly accessible by program (e.g., stack).
 
Reachable objects. Objects indirectly accessible by program 
(starting at a root and following a chain of pointers).

45

Reachability application: mark-sweep garbage collector

ro
o

ts

46

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
• Mark: mark all reachable objects.

• Sweep: if object is unmarked, it is garbage (so add to free list).

 
Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

ro
o

ts

DFS enables direct solution of simple digraph problems.
• Reachability.

• Path finding.

• Topological sort.

• Directed cycle detection.

 
Basis for solving difficult digraph problems.
• 2-satisfiability.

• Directed Euler path.

• Strongly-connected components.

47

Depth-first search in digraphs summary

✓

SIAM J. COMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN"

Abstract. The value of depth-first search or "bacltracking" as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and ar algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k1V + k2E d- k for some constants kl, k2, and ka, where Vis the number of vertices and E is the number
of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search,
spanning tree, strong-connectivity.

1. Introduction. Consider a graph G, consisting of a set of vertices U and a
set of edges g. The graph may either be directed (the edges are ordered pairs (v, w)
of vertices; v is the tail and w is the head of the edge) or undirected (the edges are
unordered pairs of vertices, also represented as (v, w)). Graphs form a suitable
abstraction for problems in many areas; chemistry, electrical engineering, and
sociology, for example. Thus it is important to have the most economical algo-
rithms for answering graph-theoretical questions.

In studying graph algorithms we cannot avoid at least a few definitions.
These definitions are more-or-less standard in the literature. (See Harary [3],
for instance.) If G (, g) is a graph, a path p’v w in G is a sequence of vertices
and edges leading from v to w. A path is simple if all its vertices are distinct. A path
p’v v is called a closed path. A closed path p’v v is a cycle if all its edges are
distinct and the only vertex to occur twice in p is v, which occurs exactly twice.
Two cycles which are cyclic permutations of each other are considered to be the
same cycle. The undirected version of a directed graph is the graph formed by
converting each edge of the directed graph into an undirected edge and removing
duplicate edges. An undirected graph is connected if there is a path between every
pair of vertices.

A (directed rooted) tree T is a directed graph whose undirected version is
connected, having one vertex which is the head of no edges (called the root),
and such that all vertices except the root are the head of exactly one edge. The
relation "(v, w) is an edge of T" is denoted by v- w. The relation "There is a
path from v to w in T" is denoted by v w. If v - w, v is the father ofw and w is a
son of v. If v w, v is an ancestor ofw and w is a descendant of v. Every vertex is an
ancestor and a descendant of itself. If v is a vertex in a tree T, T is the subtree of T
having as vertices all the descendants of v in T. If G is a directed graph, a tree T
is a spanning tree of G if T is a subgraph of G and T contains all the vertices of G.

If R and S are binary relations, R* is the transitive closure of R, R-1 is the
inverse of R, and

RS {(u, w)lZlv((u, v) R & (v, w) e S)}.

* Received by the editors August 30, 1971, and in revised form March 9, 1972.

" Department of Computer Science, Cornell University, Ithaca, New York 14850. This research
was supported by the Hertz Foundation and the National Science Foundation under Grant GJ-992.

146

Same method as for undirected graphs.
• Every undirected graph is a digraph (with edges in both directions).

• BFS is a digraph algorithm.

 
 
 
 
 
 
 
 
 
Proposition. BFS computes shortest paths (fewest number of edges)  
from s to all other vertices n a digraph in time proportional to E+V.

48

Breadth-first search in digraphs

Is w reachable from v in this digraph?

v

w

s

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
 - remove the least recently added vertex v

 - for each unmarked vertex pointing from v:  
 add to queue and mark as visited.

BFS (from source vertex s)

Multiple-source shortest paths. Given a digraph and a set of source
vertices, find shortest path from any vertex in the set to each other vertex.
 
Ex. S={ 1, 7, 10 }.
• Shortest path to 4 is 7→6→4.

• Shortest path to 5 is 7→6→0→5.

• Shortest path to 12 is 10→12.

 
 
 
 
 
 
Q. How to implement multi-source constructor?
A. Use BFS, but initialize by enqueuing all source vertices.

49

Multiple-source shortest paths

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

50

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.
Solution. BFS with implicit graph.
 
BFS.
• Choose root web page as source s.

• Maintain a Queue of websites to explore.

• Maintain a SET of discovered websites.

• Dequeue the next website and enqueue  
websites to which it links  
(provided you haven't done so before).

 
 
 
Q. Why not use DFS?

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

How many strong components are there in this digraph?

51

Bare-bones web crawler: Java implementation

 Queue<String> queue = new Queue<String>();
 SET<String> discovered = new SET<String>();

 String root = "http://www.princeton.edu";
 queue.enqueue(root);
 discovered.add(root);

 while (!queue.isEmpty())
 {
 String v = queue.dequeue();
 StdOut.println(v);
 In in = new In(v);
 String input = in.readAll();

 String regexp = "http://(\\w+\\.)*(\\w+)";
 Pattern pattern = Pattern.compile(regexp);
 Matcher matcher = pattern.matcher(input);
 while (matcher.find())
 {
 String w = matcher.group();
 if (!discovered.contains(w))
 {
 discovered.add(w);
 queue.enqueue(w);
 }
 }
 }

read in raw html from next

website in queue

use regular expression to find all URLs 
in website of form http://xxx.yyy.zzz

[crude pattern misses relative URLs]

if undiscovered, mark it as discovered  
and put on queue

start crawling from root website

queue of websites to crawl
set of discovered websites

DIRECTED GRAPHS

‣ Digraph API
‣ Digraph search
‣ Topological sort
‣ Strong components

Goal. Given a set of tasks to be completed with precedence constraints,  
in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

53

Precedence scheduling

tasks precedence constraint graph

0

1

4

52

6

3

feasible schedule

0. Algorithms

1. Complexity Theory

2. Artificial Intelligence

3. Intro to CS

4. Cryptography

5. Scientific Computing

6. Advanced Programming

54

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

Solution. DFS. What else?
topological order

directed edges DAG

 0→5 0→2

 0→1 3→6

 3→5 3→4

 5→4 6→4

 6→0 3→2

 1→4

0

1

4

52

6

3

• Run depth-first search.

• Return vertices in reverse postorder.

0

1

4

52

6

3

Topological sort algorithm

55

a directed acyclic graph

0→5

0→2

0→1

3→6

3→5

3→4

5→4

6→4

6→0

3→2

1→4

1

4

52

6

3

0

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

56

0

1

4

52

6

3

0

4

52

6

3

visit 0

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

57

0

1

4

52

6

3

0

1

4

52

6

3

visit 1

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

58

0

1

4

52

6

3

0

1

4

52

6

3

visit 4

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

59

4

0

1

4

52

6

3

0

152

6

3

4 done

4

postorder

1

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

60

4

0

1

4

52

6

3

0

152

6

3

visit 1

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

61

4 1

0

1

4

52

6

3

0

52

6

3

1 done

1

postorder

0

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

62

4 1

0

1

4

52

6

3

0

52

6

3

visit 0

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

63

4 1

0

1

4

52

6

3

0

52

6

3

visit 2

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

64

4 1 2

0

1

4

52

6

3

0

5

6

3

2 done

2

postorder

0

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

65

4 1 2

0

1

4

52

6

3

0

5

6

3

visit 0

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

66

4 1 2

0

1

4

52

6

3

0

5

6

3

visit 5

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

67

4 1 2

0

1

4

52

6

3

0

5

6

3

visit 5

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

68

4 1 2 5

0

1

4

52

6

3

0

6

3

5 done

5

postorder

0

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

69

4 1 2 5

0

1

4

52

6

3

0

6

3

visit 0

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

70

4 1 2 5 0

0

1

4

52

6

3

6

3

0 done

0

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

71

4 1 2 5 0

0

1

4

52

6

3

6

3

check 1

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

72

4 1 2 5 0

0

1

4

52

6

3

6

3

check 2

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

73

4 1 2 5 0

0

1

4

52

6

3

6

3

visit 3

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

74

4 1 2 5 0

0

1

4

52

6

3

6

3

visit 3

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

75

4 1 2 5 0

0

1

4

52

6

3

6

3

visit 3

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

76

4 1 2 5 0

0

1

4

52

6

3

6

3

visit 3

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

77

4 1 2 5 0

0

1

4

52

6

3

6

3

visit 6

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

78

4 1 2 5 0

0

1

4

52

6

3

6

3

visit 6

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

6

Topological sort algorithm

79

4 1 2 5 0 6

0

1

4

52

33

6 done

postorder

3

6

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

80

4 1 2 5 0 6

0

1

4

52

6

33

visit 3

postorder

33

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

81

4 1 2 5 0 6 3

0

1

4

52

6

3 done

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

82

4 1 2 5 0 6 3

0

1

4

52

6

3

check 4

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

83

4 1 2 5 0 6 3

0

1

4

52

6

3

check 5

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

84

4 1 2 5 0 6 3

0

1

4

52

6

3

check 6

postorder

• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

85

4 1 2 5 0 6 3

postorder

done

0

1

4

52

6

3

0

1

4

52

6

3

3 6 0 5 2 1 4

topological order

86

Depth-first search order

public class DepthFirstOrder
{
 private boolean[] marked;
 private Stack<Integer> reversePost;

 public DepthFirstOrder(Digraph G)
 {
 reversePost = new Stack<Integer>();
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) dfs(G, v);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 reversePost.push(v);
 }

 public Iterable<Integer> reversePost()
 { return reversePost; }
}

returns all vertices in

“reverse DFS postorder”

Proposition. Reverse DFS postorder of a DAG is a topological order.
Pf. Consider any edge v→w. When dfs(v) is called:  

• Case 1: dfs(w) has already been called and returned.  
Thus, w was done before v.  

• Case 2: dfs(w) has not yet been called.  
dfs(w) will get called directly or indirectly  
by dfs(v) and will finish before dfs(v).  
Thus, w will be done before v.  

• Case 3: dfs(w) has already been called,  
but has not yet returned.  
Can’t happen in a DAG: function call stack contains 
path from w to v, so v→w would complete a cycle.

dfs(0)
 dfs(1)
 dfs(4)
 4 done
 1 done
 dfs(2)
 2 done
 dfs(5)
 check 2
 5 done
0 done
check 1
check 2
dfs(3)
 check 2
 check 4
 check 5
 dfs(6)
 6 done
3 done
check 4
check 5
check 6
done

87

Topological sort in a DAG: correctness proof

all vertices pointing from 3 are done before 3 is done,

so they appear after 3 in topological order

Ex:

case 1

case 2

Proposition. A digraph has a topological order iff no directed cycle.
Pf.
• If directed cycle, topological order impossible.

• If no directed cycle, DFS-based algorithm finds a topological order.

 
 
 
 
 
 
 
 
 
Goal. Given a digraph, find a directed cycle.
Solution. DFS. What else? See textbook.

88

Directed cycle detection

Finding a directed cycle in a digraph

dfs(0)
 dfs(5)
 dfs(4)
 dfs(3)
 check 5

 marked[] edgeTo[] onStack[]
0 1 2 3 4 5 ... 0 1 2 3 4 5 ... 0 1 2 3 4 5 ...

1 0 0 0 0 0 - - - - - 0 1 0 0 0 0 0
1 0 0 0 0 1 - - - - 5 0 1 0 0 0 0 1
1 0 0 0 1 1 - - - 4 5 0 1 0 0 0 1 1
1 0 0 1 1 1 - - - 4 5 0 1 0 0 1 1 1

a digraph with a directed cycle

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

Remark. A directed cycle implies scheduling problem is infeasible.

89

Directed cycle detection application: precedence scheduling

http://xkcd.com/754

90

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B
{
 ...
}

public class B extends C
{
 ...
}

public class C extends A
{
 ...
}

% javac A.java
A.java:1: cyclic inheritance
involving A
public class A extends B { }
 ^
1 error

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

91

Directed cycle detection application: spreadsheet recalculation

92

Directed cycle detection applications

• Causalities.

• Email loops.

• Compilation units.

• Class inheritance.

• Course prerequisites.

• Deadlocking detection.

• Precedence scheduling.

• Temporal dependencies.

• Pipeline of computing jobs.

• Check for symbolic link loop.

• Evaluate formula in spreadsheet.

DIRECTED GRAPHS

‣ Digraph API
‣ Digraph search
‣ Topological sort
‣ Strong components

Def. Vertices v and w are strongly connected if there is a directed path  
from v to w and a directed path from w to v.
 
Key property. Strong connectivity is an equivalence relation:
• v is strongly connected to v.

• If v is strongly connected to w, then w is strongly connected to v.

• If v is strongly connected to w and w to x, then v is strongly connected to x.

 
Def. A strong component is a maximal subset of strongly-connected
vertices.

Strongly-connected components

94

A digraph and its strong components

Examples of strongly-connected digraphs

95

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

Connected components vs. strongly-connected components

96

 0 1 2 3 4 5 6 7 8 9 10 11 12
cc[] 0 0 0 0 0 0 1 1 1 2 2 2 2

• v and w are connected if there is 
a path between v and w

•v and w are strongly connected if there is a directed

path from v to w and a directed path from w to v

 0 1 2 3 4 5 6 7 8 9 10 11 12
scc[] 1 0 1 1 1 1 3 4 3 2 2 2 2

constant-time client connectivity query constant-time client strong-connectivity query

•3 connected components •5 strongly-connected components

connected component id (easy to compute with DFS) strongly-connected component id (how to compute?)

A digraph and its strong componentsA graph and its connected components

public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }

A digraph and its strong components

97

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

Strong component. Subset of species with common energy flow.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

98

Strong component application: software modules

Software module dependency graph.
• Vertex = software module.

• Edge: from module to dependency.

 

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

Internet ExplorerFirefox

Strong components algorithms: brief history

1960s: Core OR problem.
• Widely studied; some practical algorithms.

• Complexity not understood.

 
1972: linear-time DFS algorithm (Tarjan).
• Classic algorithm.

• Level of difficulty: Algs4++.

• Demonstrated broad applicability and importance of DFS.

 
1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
• Forgot notes for lecture; developed algorithm in order to teach it!

• Later found in Russian scientific literature (1972).

 
1990s: more easy linear-time algorithms.
• Gabow: fixed old OR algorithm.

• Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

99

A digraph and its strong components

Reverse graph. Strong components in G are same as in GR.
 
Kernel DAG. Contract each strong component into a single vertex.
 
Idea.
• Compute topological order (reverse postorder) in kernel DAG.

• Run DFS, considering vertices in reverse topological order.

100

Kosaraju's algorithm: intuition

digraph G and its strong components kernel DAG of G (in reverse topological order)

how to compute?

Kernel DAG in reverse topological order

first vertex is a sink
(has no edges pointing from it)

KOSARAJU'S ALGORITHM

‣ DFS in reverse graph
‣ DFS in original graph

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

102

digraph G

1

4

9

2

5

3

0

1211

10

8 76 8 76

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

0

1211

10

1

8 76

Kosaraju-Sharir

103

reverse digraph GR

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[v]v

–

–

–

–

–

–

–

–

–

–

–

–

–

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

0

1211

10

1

8 76

Kosaraju-Sharir

104

visit 0

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

F

F

F

F

F

F

F

F

F

F

F

marked[v]v

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

0

1211

10

1

8 76

Kosaraju-Sharir

105

visit 6

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

F

F

F

F

T

F

F

F

F

F

F

marked[v]v

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

0

1211

10

1

8 76

Kosaraju-Sharir

106

visit 8

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

F

F

F

F

T

F

T

F

F

F

F

marked[v]v

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

0

1211

10

1

8 76

Kosaraju-Sharir

107

8 done

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

F

F

F

F

T

F

T

F

F

F

F

marked[v]v

 8

6

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

0

1211

10

1

7

Kosaraju-Sharir

108

visit 6

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

F

F

F

F

T

F

T

F

F

F

F

6

marked[v]v

 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

0

1211

10

1

7

Kosaraju-Sharir

109

visit 7

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

F

F

F

F

T

T

T

F

F

F

F

6

marked[v]v

 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

0

1211

10

1

7

Kosaraju-Sharir

110

7 done

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

F

F

F

F

T

T

T

F

F

F

F

6

marked[v]v

7 8

6

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

0

1211

10

1

Kosaraju-Sharir

111

6 done

0

1

2

3

4

5

6

7

8

9

10

11

12

6

marked[v]v

6 7 8

T

F

F

F

F

F

T

T

T

F

F

F

F

0

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

1211

10

1

Kosaraju-Sharir

112

visit 0

0

1

2

3

4

5

6

7

8

9

10

11

12

0
marked[v]v

6 7 8

T

F

F

F

F

F

T

T

T

F

F

F

F

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

1211

10

1

Kosaraju-Sharir

113

visit 2

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

F

F

T

T

T

F

F

F

F

0
marked[v]v

6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

1211

10

1

Kosaraju-Sharir

114

visit 4

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

F

F

F

F

0

6 7 8

marked[v]v

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

1211

10

1

Kosaraju-Sharir

115

visit 11

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

F

F

T

F

0
marked[v]v

6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

1211

10

1

Kosaraju-Sharir

116

visit 9

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

F

T

F

0
marked[v]v

6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

1211

10

1

Kosaraju-Sharir

117

visit 12

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

F

T

T

0
marked[v]v

6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

1211

10

1

Kosaraju-Sharir

118

visit 12

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

F

T

T

0
marked[v]v

6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

1211

10

1

Kosaraju-Sharir

119

visit 10

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

T

T

T

0
marked[v]v

6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

1211

10

1

Kosaraju-Sharir

120

10 done

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

T

T

T

0
marked[v]v

10 6 7 8

12

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

9

2

5

3

11

1

Kosaraju-Sharir

121

12 done

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

T

T

T

0

12

marked[v]v

12 10 6 7 8

9

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

2

5

3

11

1

Kosaraju-Sharir

122

visit 9

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

T

T

T

0

9

marked[v]v

12 10 6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

2

5

3

11

1

Kosaraju-Sharir

123

visit 9

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

T

T

T

0

9

marked[v]v

12 10 6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

2

5

3

11

1

Kosaraju-Sharir

124

9 done

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

T

T

T

0

9

marked[v]v

9 12 10 6 7 8

11

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1

4

2

5

3

1

Kosaraju-Sharir

125

11 done

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

T

T

T

0

11

marked[v]v

11 9 12 10 6 7 8

4

Phase 1. Compute reverse postorder in GR.

11 9 12 10 6 7 8

1

4

9

2

5

3

0

1211

10

1

8 76

1 2

5

3

1

Kosaraju-Sharir

126

visit 4

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

T

T

T

0

4

marked[v]v

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1 2

5

3

1

Kosaraju-Sharir

127

visit 4

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

F

T

T

T

T

T

T

T

0

4

marked[v]v

11 9 12 10 6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1 2

5

3

1

Kosaraju-Sharir

128

visit 5

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

F

T

T

T

T

T

T

T

T

T

0

4

marked[v]v

11 9 12 10 6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1 2

5

3

1

Kosaraju-Sharir

129

visit 3

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

T

T

T

T

T

T

T

T

T

T

0

4

marked[v]v

11 9 12 10 6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1 2

5

3

1

Kosaraju-Sharir

130

visit 3

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

T

T

T

T

T

T

T

T

T

T

0

4

marked[v]v

11 9 12 10 6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1 2

5

3

1

Kosaraju-Sharir

131

3 done

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

T

T

T

T

T

T

T

T

T

T

0

4

marked[v]v

3 11 9 12 10 6 7 8

5

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1 21

Kosaraju-Sharir

132

visit 5

0

1

2

3

4

5

6

7

8

9

10

11

12

T

F

T

T

T

T

T

T

T

T

T

T

T

0

4

5

marked[v]v

3 11 9 12 10 6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1 21

Kosaraju-Sharir

133

5 done

0

1

2

3

4

5

6

7

8

9

10

11

12

0

4

5

marked[v]v

5 3 11 9 12 10 6 7 8

T

F

T

T

T

T

T

T

T

T

T

T

T

4

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

1 21

Kosaraju-Sharir

134

4 done

0

1

2

3

4

5

6

7

8

9

10

11

12

0

4

marked[v]v

4 5 3 11 9 12 10 6 7 8

T

F

T

T

T

T

T

T

T

T

T

T

T

2

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

11

Kosaraju-Sharir

135

visit 2

0

1

2

3

4

5

6

7

8

9

10

11

12

0

2

marked[v]v

 4 5 3 11 9 12 10 6 7 8

T

F

T

T

T

T

T

T

T

T

T

T

T

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

11

Kosaraju-Sharir

136

2 done

0

1

2

3

4

5

6

7

8

9

10

11

12

0

2

marked[v]v

2 4 5 3 11 9 12 10 6 7 8

T

F

T

T

T

T

T

T

T

T

T

T

T

0

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

11

Kosaraju-Sharir

137

0 done

0

1

2

3

4

5

6

7

8

9

10

11

12

0
marked[v]v

0 2 4 5 3 11 9 12 10 6 7 8

T

F

T

T

T

T

T

T

T

T

T

T

T

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

11

Kosaraju-Sharir

138

visit 1

0

1

2

3

4

5

6

7

8

9

10

11

12

T

T

T

T

T

T

T

T

T

T

T

T

T

marked[v]v

0 2 4 5 3 11 9 12 10 6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

Kosaraju-Sharir

139

1 done

0

1

2

3

4

5

6

7

8

9

10

11

12

T

T

T

T

T

T

T

T

T

T

T

T

T

marked[v]v

1 0 2 4 5 3 11 9 12 10 6 7 8

1

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

Kosaraju-Sharir

140

check 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

T

T

T

T

T

T

T

T

T

T

T

T

T

marked[v]v

1 0 2 4 5 3 11 9 12 10 6 7 8

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

Kosaraju-Sharir

141

1 0 2 4 5 3 11 9 12 10 6 7 8

reverse digraph GR

Simple (but mysterious) algorithm for computing strong components.
• Run DFS on GR to compute reverse postorder.

• Run DFS on G, considering vertices in order given by first DFS.

142

Kosaraju's algorithm

...

check unmarked vertices in the order
0 1 2 3 4 5 6 7 8 9 10 11 12

dfs(0)
 dfs(6)
 dfs(8)
 check 6
 8 done
 dfs(7)
 7 done
 6 done
 dfs(2)
 dfs(4)
 dfs(11)
 dfs(9)
 dfs(12)
 check 11
 dfs(10)
 check 9
 10 done
 12 done
 check 7
 check 6
 9 done
 11 done
 check 6
 dfs(5)
 dfs(3)
 check 4
 check 2
 3 done
 check 0
 5 done
 4 done
 check 3
 2 done
0 done
dfs(1)
 check 0
1 done
check 2
check 3
check 4
check 5
check 6
check 7
check 8
check 9
check 10
check 11
check 12

 DFS in reverse digraph GR

reverse postorder for use in second dfs()
1 0 2 4 5 3 11 9 12 10 6 7 8

KOSARAJU'S ALGORITHM

‣ DFS in reverse graph
‣ DFS in original graph

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

144

1

4

9

2

5

3

0

1211

10

8 76 8 76 0

1

2

3

4

5

6

7

8

9

10

11

12

scc[v]v

–

–

–

–

–

–

–

–

–

–

–

–

–

original digraph G

1 0 2 4 5 3 11 9 12 10 6 7 8

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

145

1

4

9

2

5

3

0

1211

10

8 76 8 76

visit 1

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

–

–

–

–

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

11

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

146

4

9

2

5

3

0

1211

10

8 76 8 76

1 done

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

–

–

–

–

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

147

1

4

9

2

5

3

0

1211

10

8 76 8 76

strong component: 1

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

–

–

–

–

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

1

0

–

–

–

–

–

–

–

–

–

–

–

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

148

visit 0

4

9

2

5

3

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

1

0

–

–

–

1

–

–

–

–

–

–

–

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

149

visit 5

4

9

2

5

3

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

1

0

–

–

1

1

–

–

–

–

–

–

–

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

150

visit 4

4

9

2

5

3

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

1

0

–

1

1

1

–

–

–

–

–

–

–

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

151

visit 3

4

9

2

5

3

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

152

visit 3

4

9

2

5

3

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1

0

–

1

1

1

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

1

0

1

1

1

1

–

–

–

–

–

–

–

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

153

visit 2

4

9

2

5

3

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

154

visit 2

4

9

2

5

3

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1

0

1

1

1

1

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

22

4

9

5

3

0

1211

10

Kosaraju-Sharir

155

2 done

4

9

5

3

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1

0

1

1

1

1

–

–

–

–

–

–

–

3

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

3

4

9

2

5

0

1211

10

Kosaraju-Sharir

156

3 done

4

9

5

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1

0

1

1

1

1

–

–

–

–

–

–

–

3

4

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

157

visit 4

4

9

5

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1

0

1

1

1

1

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

9

2

5

3

0

1211

10

Kosaraju-Sharir

158

4 done

9

5

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1

0

1

1

1

1

–

–

–

–

–

–

–

44

5

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

5

4

9

2

3

0

1211

10

Kosaraju-Sharir

159

5 done

9

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1

0

1

1

1

1

–

–

–

–

–

–

–

5

0

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

4

9

2

5

3

0

1211

10

Kosaraju-Sharir

160

visit 0

9

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

8 76

1

1

0

1

1

1

1

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

00

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

1211

10

8 76

Kosaraju-Sharir

161

0 done

9

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

3

0

1211

10

8 76

Kosaraju-Sharir

162

strong component: 0 2 3 4 5

9

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

–

–

–

–

5

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

8 76

Kosaraju-Sharir

163

check 2

9

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

8 76

Kosaraju-Sharir

164

check 4

9

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

8 76

Kosaraju-Sharir

165

check 5

9

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

8 76

Kosaraju-Sharir

166

check 3

9

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

–

–

–

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

8 76

Kosaraju-Sharir

167

visit 11

9

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

–

–

2

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

8 76

Kosaraju-Sharir

168

visit 11

9

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

–

–

2

–

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

8 76

Kosaraju-Sharir

169

visit 12

9

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

–

–

2

2

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

8 76

Kosaraju-Sharir

170

visit 9

9

12

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

2

–

2

2

11

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

8 76

Kosaraju-Sharir

171

visit 9

9

12

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

2

–

2

2

11

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

8 76

Kosaraju-Sharir

172

visit 10

9

12

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

2

2

2

2

11

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

10

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

173

10 done

9

12

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

2

2

2

2

11

9 10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

9

1

4

2

5

3

0

1211

8 76

Kosaraju-Sharir

174

9 done

12

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

2

2

2

2

11

109

12

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

12

1

4

9

2

5

3

0

11

8 76

Kosaraju-Sharir

175

12 done

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

2

2

2

2

11

10

11 12

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

1111

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

12

8 76

Kosaraju-Sharir

176

11 done

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

2

2

2

2

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

177

strong component: 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

2

2

2

2

11

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

178

check 9

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

2

2

2

2

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

179

check 12

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

2

2

2

2

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

180

check 10

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

–

–

–

2

2

2

2

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

181

visit 6

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

–

–

2

2

2

2

86 7

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

182

visit 6

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

–

–

2

2

2

2

8 76

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

183

visit 6

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

–

–

2

2

2

2

8 76

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

184

visit 8

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

–

3

2

2

2

2

8 76

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

8

1

4

9

2

5

3

0

1211

7

Kosaraju-Sharir

185

8 done

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

–

3

2

2

2

2

7

10

6 866

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

186

visit 6

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

–

3

2

2

2

2

76

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

187

6 done

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

–

3

2

2

2

2

7

10

6

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 7

Kosaraju-Sharir

188

strong component: 6 8

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

–

3

2

2

2

2

7

10

6

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

189

visit 7

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

4

3

2

2

2

2

7

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

190

visit 7

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

4

3

2

2

2

2

7

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

191

7 done

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

4

3

2

2

2

2

7

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

192

strong component: 7

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

4

3

2

2

2

2

7

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

86 7

Kosaraju-Sharir

193

check 8

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

4

3

2

2

2

2

10

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

1

4

9

2

5

3

0

1211

10

86 7

Kosaraju-Sharir

194

done

0

1

2

3

4

5

6

7

8

9

10

11

12

1

0

1

1

1

1

3

4

3

2

2

2

2

1 0 2 4 5 3 11 9 12 10 6 7 8

scc[v]v

Simple (but mysterious) algorithm for computing strong components.
• Run DFS on GR to compute reverse postorder.

• Run DFS on G, considering vertices in order given by first DFS.

Proposition. Second DFS gives strong components. (!!)

195

Kosaraju's algorithm

dfs(7)
 check 6
 check 9
7 done
check 8

check unmarked vertices in the order
1 0 2 4 5 3 11 9 12 10 6 7 8

 DFS in original digraph G

dfs(1)
1 done

dfs(0)
 dfs(5)
 dfs(4)
 dfs(3)
 check 5
 dfs(2)
 check 0
 check 3
 2 done
 3 done
 check 2
 4 done
 5 done
 check 1
0 done
check 2
check 4
check 5
check 3

dfs(11)
 check 4
 dfs(12)
 dfs(9)
 check 11
 dfs(10)
 check 12
 10 done
 9 done
 12 done
11 done
check 9
check 12
check 10

dfs(6)
 check 9
 check 4
 dfs(8)
 check 6
 8 done
 check 0
6 done

196

Connected components in an undirected graph (with DFS)

public class CC
{
 private boolean marked[];
 private int[] id;
 private int count;

 public CC(Graph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];

 for (int v = 0; v < G.V(); v++)
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean connected(int v, int w)
 { return id[v] == id[w]; }
}

197

Strong components in a digraph (with two DFSs)

public class KosarajuSCC
{
 private boolean marked[];
 private int[] id;
 private int count;

 public KosarajuSCC(Digraph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
 for (int v : dfs.reversePost())
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean stronglyConnected(int v, int w)
 { return id[v] == id[w]; }
}

Digraph-processing summary: algorithms of the day

198

single-source
reachability

DFS

topological sort
(DAG)

DFS

strong
components

Kosaraju
DFS (twice)

0
6

4

21

5

3

7

12

109

11

8

