
May. 12, 2015

BBM 202 - ALGORITHMS

REDUCTIONS

 
DEPT. OF COMPUTER ENGINEERING

 
ERKUT ERDEM

Acknowledgement:	
 The	
 course	
 slides	
 are	
 adapted	
 from	
 the	
 slides	
 prepared	
 by	
 R.	
 Sedgewick	
  
and	
 K.	
 Wayne	
 of	
 Princeton	
 University.

2

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.

Frustrating news. Huge number of problems have defied classification.

complexity order of growth examples

linear N
min, max, median,  

Burrows-Wheeler transform, ...

linearithmic N log N
sorting, convex hull,  

closest pair, farthest pair, ...

quadratic N2 ?

⋮ ⋮ ⋮

exponential cN ?

3

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata'.
Suppose we could (could not) solve problem X efficiently.  
What else could (could not) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to
 place it, and I shall move the world. ” — Archimedes

4

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that  
solves Y to help solve X.

Cost of solving X = total cost of solving Y + cost of reduction.

perhaps many calls to Y  
on problems of different sizes

preprocessing and postprocessing

 
instance I  

(of X)

solution to I
Algorithm 

for Y

Algorithm for X

5

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that  
solves Y to help solve X.

Ex 1. [element distinctness reduces to sorting]
To solve element distinctness on N items:

• Sort N items.

• Check adjacent pairs for equality.

Cost of solving element distinctness. N log N + N .

cost of sorting
cost of reduction

 
instance I  

(of X)

solution to I
Algorithm 

for Y

Algorithm for X

6

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that  
solves Y to help solve X.

Ex 2. [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:

• For each point, sort other points by polar angle or slope.
- check adjacent triples for collinearity

Cost of solving 3-collinear. N 2 log N + N 2.

cost of sorting cost of reduction

 
instance I  

(of X)

solution to I
Algorithm 

for Y

Algorithm for X

REDUCTIONS

‣ Designing algorithms
‣ Establishing lower bounds
‣ Classifying problems

8

Reduction: design algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that  
solves Y to help solve X.

Design algorithm. Given algorithm for Y, can also solve X.
 
Ex.
• Element distinctness reduces to sorting.

• 3-collinear reduces to sorting.

• CPM reduces to topological sort. [shortest paths lecture]

• h-v line intersection reduces to 1d range searching. [geometric BST lecture]

• Baseball elimination reduces to maxflow.

• Burrows-Wheeler transform reduces to suffix sort.

• …

 
Mentality. Since I know how to solve Y, can I use that algorithm to solve X ?

programmer’s version: I have code for Y. Can I use it for X?

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points  
of the convex hull (in counterclockwise order).

Proposition. Convex hull reduces to sorting.
Pf. Graham scan algorithm.

Cost of convex hull. N log N + N.

9

Convex hull reduces to sorting

convex hull sorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213
34435312

cost of reductioncost of sorting

Graham scan algorithm

Graham scan.

•Choose point p with smallest (or largest) y-coordinate.

•Sort points by polar angle with p to get simple polygon.

•Consider points in order, and discard those that would  
create a clockwise turn.

10

Graham scan.

・Choose point p with smallest (or largest) y-coordinate.

・Sort points by polar angle with p to get simple polygon.

・Consider points in order, and discard those that

would create a clockwise turn.

13

Graham scan algorithm

p

Graham scan.

・Choose point p with smallest (or largest) y-coordinate.

・Sort points by polar angle with p to get simple polygon.

・Consider points in order, and discard those that

would create a clockwise turn.

13

Graham scan algorithm

p

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights)
reduces to directed shortest path.

11

5

10

12

15

9

12

10154

s

2

3

5

6 t

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights)
reduces to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

5

 10

12

15

9

12

 10

9

10

4

15 10

15

154

12

12125

5

10

12

15

9

12

10154

s

2

3

5

6 t

2

3 5 t

5

s

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights)
reduces to directed shortest path.

Cost of undirected shortest paths. E log V + E.

5

10

12

15

9

12

10154

13

cost of shortest

paths in digraph cost of reduction

s

2

3

5

6 t

Caveat. Reduction is invalid for edge-weighted graphs with negative weights 
(even if no negative cycles).

Remark. Can still solve shortest-paths problem in undirected graphs 
(if no negative cycles), but need more sophisticated techniques.

14

Shortest paths with negative weights

ts 7 –4

ts 7 –4

reduction creates

negative cycles

reduces to weighted  
non-bipartite matching (!)

7 –4

Some reductions involving familiar problems

15

element
distinctness sorting

convex hull
median

Delaunay
triangulation

2d closest
pair

2d Euclidean
MST

2d farthest
pair

computational geometry

linear  
programming

directed shortest paths  
(nonnegative)

bipartite
matching

 maximum flow

arbitrage

shortest paths
(no neg cycles)

undirected shortest paths  
(nonnegative)

baseball
elimination

combinatorial optimization

REDUCTIONS

‣ Designing algorithms
‣ Establishing lower bounds
‣ Classifying problems

17

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. In decision tree model, any compare-based sorting algorithm requires

Ω(N log N) compares in the worst case.

 
 
 
 
 
 
 
 
 
Bad news. Very difficult to establish lower bounds from scratch.

Good news. Spread Ω(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction is not too high

argument must apply to all

conceivable algorithms

b < c

yes no

a < c

yes

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

a < b

yes no

no

18

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:

• Linear number of standard computational steps.

• Constant number of calls to Y.

 
Ex. Almost all of the reductions we've seen so far.
 
 
Establish lower bound:

• If X takes Ω(N log N) steps, then so does Y.

• If X takes Ω(N 2) steps, then so does Y.

 
Mentality.
• If I could easily solve Y, then I could easily solve X.

• I can’t easily solve X.

• Therefore, I can’t easily solve Y.

19

Element distinctness linear-time reduces to closest pair

Closest pair. Given N points in the plane, find the closest pair.
Element distinctness. Given N elements, are any two equal?
 
Proposition. Element distinctness linear-time reduces to closest pair.  
Pf.
• Element distinctness instance: x1, x2, ... , xN .

• Closest pair instance: (x1 , x1), (x2, x2), ... , (xN , xN).
• Two elements are distinct if and only if closest pair = 0.

 
 
Element distinctness lower bound. In quadratic decision tree model,  
any algorithm that solves element distinctness takes Ω(N log N) steps.

 
Implication. In quadratic decision tree model, any algorithm for closest

pair takes Ω(N log N) steps.

allows quadratic tests of the form:

 xi < xj or (xi – xk)2 – (xj – xk)2 < 0

More linear-time reductions and lower bounds

20

Delaunay
triangulation

2d convex hull

sorting

element distinctness  
(N log N lower bound)

2d Euclidean MST

2d closest pair

sorting

 3-sum  
(conjectured N 2 lower bound)

3-collinear

3-concurrent

dihedral 
rotation

min area triangle

3-sum

Establishing lower bounds through reduction is an important tool  
in guiding algorithm design efforts.

Q. How to convince yourself no linear-time convex hull algorithm exists?
A1. [hard way] Long futile search for a linear-time algorithm.
A2. [easy way] Linear-time reduction from sorting.

Establishing lower bounds: summary

21

REDUCTIONS

‣ Designing algorithms
‣ Establishing lower bounds
‣ Classifying problems

Desiderata. Problem with algorithm that matches lower bound.
Ex. Sorting, convex hull, and closest pair have complexity N log N.
 
 
Desiderata'. Prove that two problems X and Y have the same complexity.

• First, show that problem X linear-time reduces to Y.

• Second, show that Y linear-time reduces to X.

• Conclude that X and Y have the same complexity.  

Classifying problems: summary

23

even if we don't know what it is!

Desiderata. Problem with algorithm that matches lower bound.

Ex. Sorting and convex hull have complexity N log N.

Desiderata'. Prove that two problems X and Y have the same complexity.

・First, show that problem X linear-time reduces to Y.

・Second, show that Y linear-time reduces to X.

・Conclude that X and Y have the same complexity.

Classifying problems: summary

27

even if we don't know what it is!

sorting

convex hull

Caveat

SORT. Given N distinct integers, rearrange them in ascending order.  
 
CONVEX HULL. Given N points in the plane, identify the extreme points of
the convex hull (in counterclockwise order).
 
Proposition. SORT linear-time reduces to CONVEX HULL.  
Proposition. CONVEX HULL linear-time reduces to SORT.  
Conclusion. SORT and CONVEX HULL have the same complexity.
 
A possible real-world scenario.
• System designer specs the APIs for project.

• Alice implements sort() using convexHull().

• Bob implements convexHull() using sort().

• Infinite reduction loop!

• Who's fault?

24

well, maybe not so realistic

25

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.
Brute force. N 2 bit operations.

1 1 0 1 0 1 0 1

× 0 1 1 1 1 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1

26

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.
Brute force. N 2 bit operations.

Q. Is brute-force algorithm optimal?

problem arithmetic order of growth

integer multiplication a × b M(N)

integer division a / b, a mod b M(N)

integer square a 2 M(N)

integer square root ⎣√a ⎦ M(N)

integer arithmetic problems with the same complexity as integer multiplication

27

History of complexity of integer multiplication

Remark. GNU Multiple Precision Library uses one of five
different algorithm depending on size of operands.

year algorithm order of growth

? brute force N 2

1962 Karatsuba-Ofman N 1.585

1963 Toom-3, Toom-4 N 1.465 , N 1.404

1966 Toom-Cook N 1 + ε

1971 Schönhage–Strassen N log N log log N

2007 Fürer N log N 2 log*N

? ? N

number of bit operations to multiply two N-bit integers

used in Maple, Mathematica, gcc, cryptography, ...

28

Linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.
Brute force. N 3 flops.

0,1 0,2 0,8 0,1

0,5 0,3 0,9 0,6

0,1 0 0,7 0,4

0 0,3 0,3 0,1

×

0,4 0,3 0,1 0,1

0,2 0,2 0 0,6

0 0 0,4 0,5

0,8 0,4 0,1 0,9

=

0,16 0,11 0,34 0,62

0,74 0,45 0,47 1,22

0,36 0,19 0,33 0,72

0,14 0,1 0,13 0,42

row i

column j j

i

0.5 · 0.1 + 0.3 · 0.0 + 0.9 · 0.4 + 0.6 · 0.1 = 0.47

29

Linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.
Brute force. N 3 flops.

Q. Is brute-force algorithm optimal?

problem linear algebra order of growth

matrix multiplication A × B MM(N)

matrix inversion A–1 MM(N)

determinant | A | MM(N)

system of linear equations Ax = b MM(N)

LU decomposition A = L U MM(N)

least squares min ||Ax – b||2 MM(N)

numerical linear algebra problems with the same complexity as matrix multiplication

30

History of complexity of matrix multiplication

year algorithm order of growth

? brute force N 3

1969 Strassen N 2.808

1978 Pan N 2.796

1979 Bini N 2.780

1981 Schönhage N 2.522

1982 Romani N 2.517

1982 Coppersmith-Winograd N 2.496

1986 Strassen N 2.479

1989 Coppersmith-Winograd N 2.376

2010 Strother N 2.3737

2011 Williams N 2.3727

? ? N 2 + ε

number of floating-point operations to multiply two N-by-N matrices

31

Birds-eye view: revised

Desiderata. Classify problems according to computational requirements.

Good news. Can put many problems into equivalence classes.

complexity order of growth examples

linear N min, max, median, ...

linearithmic N log N
sorting, convex hull,  

closest pair, farthest pair, ...

M(N) ?
integer multiplication,  
division, square root, ...

MM(N) ?
matrix multiplication, Ax = b,  
least square, determinant, ...

⋮ ⋮ ⋮

NP-complete probably not Nb 3-SAT, IND-SET, ILP, ...

32

Summary

Reductions are important in theory to:
• Establish tractability.

• Establish intractability.

• Classify problems according to their computational requirements.

Reductions are important in practice to:
• Design algorithms.

• Design reusable software modules.
- stacks, queues, priority queues, symbol tables, sets, graphs
- sorting, regular expressions, Delaunay triangulation
- MST, shortest path, maxflow, linear programming

• Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems
- use heuristics for intractable problems

