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Q.  What is a general-purpose computer?
Q.  Are there limits on the power of digital computers?
Q.  Are there limits on the power of machines we can build?

Questions about computation

David Hilbert Kurt Gödel Alan Turing Alonzo Church John von Neumann

Tape.
• Stores input.

• One arbitrarily long strip, divided into cells.

• Finite alphabet of symbols.

Tape head.
• Points to one cell of tape.

• Reads a symbol from active cell.

• Moves one cell at a time.  
 
 
 
 

Q. Is there a more powerful model of computation?
A. Yes.
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A simple model of computation:  DFAs

1 1 1 1 0 1 1 1 0 0 1… 0tape

tape head

tape

tape
head

…



5

A universal model of computation:  Turing machines

Tape.
• Stores input, output, and intermediate results.

• One arbitrarily long strip, divided into cells.

• Finite alphabet of symbols.

 
Tape head.
• Points to one cell of tape.

• Reads a symbol from active cell.

• Writes a symbol to active cell.

• Moves one cell at a time.

 
 
 
 
Q. Is there a more powerful model of computation?
A. No!

tape # 1 1 0 0 + 1 0 1 1 # ……

most important scientific result of 20th century?

tape head

tape
head

tape
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Church-Turing thesis (1936)

 
 
 
 
Remark.  "Thesis" and not a mathematical theorem because it's a statement 
about the physical world and not subject to proof. 
 
Use simulation to prove models equivalent.
• Android simulator on iPhone.

• iPhone simulator on Android.
 
Implications.
• No need to seek more powerful machines or languages.

• Enables rigorous study of computation (in this universe).
 
Bottom line.  Turing machine is a simple and universal model of computation.

Turing machines can compute any function that can be computed by a 
physically harnessable process of the natural world.
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Church-Turing thesis:  evidence

• 8 decades without a counterexample.

• Many, many models of computation that turned out to be equivalent.
"universal"

model of computation description

enhanced Turing machines multiple heads, multiple tapes, 2D tape, nondeterminism

untyped lambda calculus method to define and manipulate functions

recursive functions functions dealing with computation on integers

unrestricted grammars iterative string replacement rules used by linguists

extended L-systems parallel string replacement rules that model plant growth

programming languages Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel

random access machines registers plus main memory, e.g., TOY, Pentium

cellular automata cells which change state based on local interactions

quantum computer compute using superposition of quantum states

DNA computer compute using biological operations on DNA
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Q.  Which algorithms are useful in practice?
• Measure running time as a function of input size N.

• Useful in practice ("efficient") = polynomial time for all inputs.  
 
 
 
 
 
 

 
Ex 1. Sorting N items takes N log N compares using mergesort.
Ex 2. Finding best TSP tour on N points takes N ! steps using brute search.
 
Theory.  Definition is broad and robust.
Practice.  Poly-time algorithms scale to huge problems.

A question about algorithms

a N b

constants a and b tend to be small, e.g., 3 N 2

von Neumann
(1953)

Gödel
(1956)

Edmonds
(1965)

Rabin
(1966)

Cobham
(1964)

Nash
(1955)
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Exponential growth

Exponential growth dwarfs technological change.
• Suppose you have a giant parallel computing device…

• With as many processors as electrons in the universe…

• And each processor has power of today's supercomputers…

• And each processor works for the life of the universe…  
 
 
 
 
 
 
 
 
 

• Will not help solve 1,000 city TSP problem via brute force.  

1000!  >>  101000  >>  1079 × 1013 × 1017

†  estimated

quantity value

electrons in universe † 1079

supercomputer instructions per second † 1013

age of universe in seconds † 1017
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Q.  Which problems can we solve in practice?
A.  Those with poly-time algorithms.
 
Q.  Which problems have poly-time algorithms?
A.  Not so easy to know.  Focus of today's lecture.

Questions about problems

no known poly-time algorithm for TSPmany known poly-time algorithms for sorting
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Bird's-eye view

Def.  A problem is intractable if it can't be solved in polynomial time.
Desiderata.  Prove that a problem is intractable.
 
 
Two problems that provably require exponential time.
• Given a constant-size program, does it halt in at most K steps?

• Given N-by-N checkers board position, can the first player force a win? 

 
 
 
 
 
 
 
Frustrating news.  Very few successes.

input size = c + lg K

using forced capture rule

INTRACTABILITY
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‣ NP-completeness
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Four fundamental problems

� 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

� 

x0 = −1
x1 = 2
x2 = 2

variables are 

real numbers

•LSOLVE.  Given a system of linear equations, find a solution. 

� 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

� 

x0 = 1
x1 = 1
x2 = 1

5

variables are 

real numbers

•LP.   Given a system of linear inequalities, find a solution.

� 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

� 

x0 = 0
x1 = 1
x2 = 1

variables are 

0 or 1

•ILP.  Given a system of linear inequalities, find a 0-1 solution.

variables are 

true or false

•SAT.  Given a system of boolean equations, find a binary solution.

(x'1 or x'2)  and  (x0  or x2)   = true

(x0  or x1)   and  (x1  or x'2)   = false

  (x0 or x2)   and      (x'0)        = true

x0   = false
x1   = false
x2  = true
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LSOLVE.  Given a system of linear equations, find a solution.  
LP.   Given a system of linear inequalities, find a solution.  
ILP.  Given a system of linear inequalities, find a 0-1 solution.  
SAT.  Given a system of boolean equations, find a binary solution.
 
 
 
Q.  Which of these problems have poly-time algorithms?
• LSOLVE.  Yes. Gaussian elimination solves N-by-N system in N 3 time.

• LP.  Yes. Ellipsoid algorithm is poly-time.

• ILP, SAT.  No poly-time algorithm known or believed to exist!

Four fundamental problems

but was open problem for decades

but we still don't know for sure
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

or report 

none exists
poly-time in size of instance I
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.
 
 
 
 
LSOLVE.  Given a system of linear equations, find a solution.  
 
 
 
 
 
 
 
To check solution S, plug in values and verify each equation. 

� 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

� 

x0 = −1
x1 = 2
x2 = 2

instance I solution S
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� 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

� 

x0 = 1
x1 = 1
x2 = 1

5

Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.
 
 
 
 
LP.  Given a system of linear inequalities, find a solution.  
 
 
 
 
 
 
 
To check solution S, plug in values and verify each inequality. 

instance I solution S
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

ILP.  Given a system of linear inequalities, find a binary solution.  
 
 
 
 
 
 
 
To check solution S, plug in values and verify each inequality.

� 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

� 

x0 = 0
x1 = 1
x2 = 1

instance I solution S
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

SAT.  Given a system of boolean equations, find a boolean solution.  
 
 
 
 
 
 
 
To check solution S, plug in values and verify each equation.

instance I solution S

(x'1 or x'2)  and  (x0  or x2)      = true

(x0  or x1)   and  (x1  or x'2)     = false

  (x0 or x2)   and      (x'0)           = true

x0   = false
x1   = false
x2  = true
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

FACTOR.  Given an n-bit integer x, find a nontrivial factor.  
 
 
 
 
 
 
 
To check solution S, long divide 193707721 into 147573952589676412927. 

147573952589676412927 193707721

input size = number of bits

instance I solution S
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Def.  NP is the class of all search problems.
 
 
 
 
 
 
 
 
 
 
 
 
 
Significance.  What scientists and engineers aspire to compute feasibly.

22

NP
Note: classic definition limits 

NP to yes-no problems

problem description
poly-time 

algorithm
instance I solution S

LSOLVE 
( A, b )

Find a vector x that 

satisfies Ax = b
Gaussian elimination

LP 

( A, b )
Find a vector x that 

satisfies Ax ≤ b
ellipsoid

ILP 
( A, b )

Find a binary vector x 
that satisfies Ax ≤ b

???

SAT  
( Φ, b )

Find a boolean vector x 
that satisfies Φ(x) = b

???

FACTOR 

( x )
Find a nontrivial factor 

of the integer x
??? 147573952589676412927 193707721

� 

x0 = 0
x1 = 1
x2 = 1

� 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

� 

x0 = −1
x1 = 2
x2 = 2

� 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

� 

x0 = 1
x1 = 1
x2 = 1

5

� 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

(x'1 or x'2)  and  (x0  or x2)     =  true

(x0  or x1)   and  (x1  or x'2)   = false

  (x0 or x2)   and      (x'0)           =  true

x0   = false
x1   = false
x2  = true

Def.  P is the class of search problems solvable in poly-time.  
 
 
 
 
 
 
 
 
 
 
 
 

Significance.  What scientists and engineers do compute feasibly.
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P

problem description
poly-time 

algorithm
instance I solution S

LSOLVE 
( A, b )

Find a vector x that 

satisfies Ax = b
Gaussian elimination 

(Edmonds 1967)

LP 

( A, b )
Find a vector x that 

satisfies Ax ≤ b
ellipsoid  

(Khachiyan 1979)

SORT  
( a )

Find a permutation that 

puts array a in order
mergesort 

(von Neumann 1945)

2.3 8.5 1.2 
9.1 2.2 0.3

5 2 4 0 1 3

STCONN 

( G, s, t )
Find a path in a  

graph G from s to t
depth-first search 

(Theseus) 

� 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

� 

x0 = −1
x1 = 2
x2 = 2

� 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

� 

x0 = 1
x1 = 1
x2 = 1

5

Note: classic definition limits 
P to yes-no problems

Nondeterminism

Nondeterministic machine can guess the desired solution.

Ex. int[] a = new int[N];

• Java: initializes entries to 0.

• Nondeterministic machine: initializes entries to the solution!

 
ILP.  Given a system of linear inequalities, guess a 0-1 solution.
 
 
 
 
Ex. Turing machine.
• Deterministic:  state, input determines next state.

• Nondeterministic:  more than one possible next state.

 
NP.  Search problems solvable in poly time on a nondeterministic TM.

24

� 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

� 

x0 = 0
x1 = 1
x2 = 1

B

C

A

0:x

0:y

recall NFA implementation
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Extended Church-Turing thesis

 
 
 
Evidence supporting thesis.  True for all physical computers.
 
Natural computers? No successful attempts (yet).
 
 
 
 
 
 
 
Implication.  To make future computers more efficient,  
suffices to focus on improving implementation of existing designs.

P = search problems solvable in poly-time in the natural world.

•Ex. Computing Steiner trees with soap bubbles

•STEINER: Find set of lines of minimal length 
•              connecting N given points

doesn't work 

for large N

26
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P vs. NP

Does P = NP ?

27

Automating creativity

Q.  Being creative vs. appreciating creativity?

Ex.  Mozart composes a piece of music; our neurons appreciate it.
Ex.  Wiles proves a deep theorem; a colleague referees it.
Ex.  Boeing designs an efficient airfoil; a simulator verifies it.
Ex.  Einstein proposes a theory; an experimentalist validates it.
 
 
 
 
 
 
 
 
Computational analog.  Does P = NP?

creative ordinary

28

P.  Class of search problems solvable in poly-time.
NP.  Class of all search problems.
 
 
 
 
Two worlds.
 
 
 
 
If P = NP…  Poly-time algorithms for SAT, ILP, TSP, FACTOR, …
If P ≠ NP…  Would learn something fundamental about our universe.
 
Overwhelming consensus.  P ≠ NP.

The central question

Does P = NP ?   [Can you always avoid brute-force searching and do better]

NP

P

P ≠ NP

P = NP

P = NP
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P.  Class of search problems solvable in poly-time.
NP.  Class of all search problems.
 
 
 
 
Millennium prize.  $1 million for resolution of P = NP problem.

The central question

Does P = NP ?   [Can you always avoid brute-force searching and do better]

INTRACTABILITY

‣ Search problems 
‣ P vs. NP 
‣ Classifying problems 
‣ NP-completeness
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A key problem: satisfiability

SAT.  Given a system of boolean equations, find a solution.  
 
 
 
 
 
 
 
 
Key applications.  
• Automatic verification systems for software.

• Electronic design automation (EDA) for hardware.

• Mean field diluted spin glass model in physics.

• ...  

x'1  or x2  or x3   = true
x1 or x'2  or x3    = true
x'1 or x'2  or x'3  = true 
x'1 or x'2  or x4   = true
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Q.  How to solve an instance of SAT with n variables?
A.  Exhaustive search:  try all 2n truth assignments.
 
Q.  Can we do anything substantially more clever?
Conjecture.  No poly-time algorithm for SAT. 

Exhaustive search

"intractable"



33

Classifying problems

Q.  Which search problems are in P?
A.  No easy answers (we don't even know whether P = NP).
 
 
Problem X poly-time reduces to problem Y if X can be solved with:

• Polynomial number of standard computational steps.

• Polynomial number of calls to Y.  
 
 
 
 
 
 

Consequence.  If SAT poly-time reduces to Y, then we conclude that Y  
is (probably) intractable.

 
instance I  

(of X)

solution S to I
Algorithm 

for Y

Algorithm for X

Cook reduction

SAT.  Given a system of boolean equations, find a solution.
 
 
 
 
 
 
ILP.  Given a system of linear inequalities, find a 0-1 solution.

  1   ≤   (1 − x1 )  +  x2  +  x3

   1   ≤   x1  +  (1 − x2 )  +  x3

   1   ≤   (1 − x1 )  +  (1 − x2 )  +  (1 − x3 )

   1   ≤   (1 − x1 )  +  (1 − x2 )  +  x4

34

SAT poly-time reduces to ILP

solution to this ILP instance gives solution to original SAT instance

can to reduce any SAT problem to this form

x'1  or x2  or x3   = true

x1 or x'2  or x3    = true

x'1 or x'2  or x'3  = true 

x'1 or x'2  or x4   = true
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More poly-time reductions from boolean satisfiability

SAT

VERTEX COVER

HAM-CYCLECLIQUE

IND-SET3-COLOR

EXACT COVER

SUBSET-SUM

PARTITION

ILP

KNAPSACK

Dick Karp 
'85 Turing award

SA
T

 red
u
ces to

 ILP

TSP

BIN-PACKING

Conjecture.  SAT is intractable. 

Implication.  All of these problems are intractable.

HAM-PATH
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Still more reductions from SAT

Aerospace engineering.  Optimal mesh partitioning for finite elements.

Biology.  Phylogeny reconstruction.

Chemical engineering.  Heat exchanger network synthesis.

Chemistry.  Protein folding.

Civil engineering.  Equilibrium of urban traffic flow.

Economics.  Computation of arbitrage in financial markets with friction.

Electrical engineering.  VLSI layout. 

Environmental engineering.  Optimal placement of contaminant sensors.

Financial engineering.  Minimum risk portfolio of given return.

Game theory.  Nash equilibrium that maximizes social welfare.

Mathematics.  Given integer a1, …, an, compute

Mechanical engineering.  Structure of turbulence in sheared flows.

Medicine.  Reconstructing 3d shape from biplane angiocardiogram.

Operations research.  Traveling salesperson problem.

Physics.  Partition function of 3d Ising model.

Politics.  Shapley-Shubik voting power.

Recreation.  Versions of Sudoko, Checkers, Minesweeper, Tetris.

Statistics.  Optimal experimental design.

plus over 6,000 scientific papers per year



INTRACTABILITY

‣ Search problems 
‣ P vs. NP 
‣ Classifying problems 
‣ NP-completeness

38

NP-completeness

Def. An NP problem is NP-complete if every problem in NP poly-time  
reduce to it.
 
Proposition.  [Cook 1971, Levin 1973]  SAT is NP-complete.
 
Extremely brief proof sketch: 
• Convert non-deterministic TM notation to SAT notation.

• If you can solve SAT, you can solve any problem in NP.

 
 
 
 
 
 
Corollary.   Poly-time algorithm for SAT  iff  P = NP.

every NP problem is a 

SAT problem in disguise

SAT instancenondeterministic TM

39

You NP-complete me

40

Implications of Cook-Levin theorem

SAT

IND-SET VERTEX COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT COVER

SUBSET-SUM

PARTITION

ILP

KNAPSACK

TSP

BIN-PACKING

3-COLOR 

reduces to SAT

Stephen Cook 
'82 Turing award

All of these problems (and many, many more) 

poly-time reduce to SAT.

Leonid Levin

HAM-PATH
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Implications of Karp + Cook-Levin

SAT

VERTEX COVER

CLIQUE

3-COLOR

EXACT COVER

SUBSET-SUM

PARTITION

KNAPSACK

SAT  

reduces to 3-COLOR

TSP

BIN-PACKING

3-COLOR 

reduces to SAT

All of these problems are NP-complete; they are 

manifestations of the same really hard 

problem.

IND-SET

ILP

+

HAM-CYCLE

HAM-PATH
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Implications of NP-Completeness

Implication.  [SAT captures difficulty of whole class NP]
• Poly-time algorithm for SAT iff  P = NP.

• No poly-time algorithm for some NP problem  ⇒  none for SAT.

 
Remark.  Can replace SAT with any of Karp's problems.
 
 
Proving a problem NP-complete guides scientific inquiry.
• 1926:  Ising introduces simple model for phase transitions.

• 1944:  Onsager finds closed form solution to 2D version in tour de force.

• 19xx:  Feynman and other top minds seek 3D solution.

• 2000:  3D-ISING proved NP-complete. a holy grail of statistical mechanics

search for closed formula appears doomed

43

Two worlds (more detail)

Overwhelming consensus (still).  P ≠ NP.
 
 
 
 
 
 
 
 
Why we believe P ≠ NP.

NP

P NPC

P ≠ NP

P = NP

P = NP

“ We admire Wiles' proof of Fermat's last theorem, the scientific theories of Newton, 

Einstein, Darwin, Watson and Crick, the design of the Golden Gate bridge and the 

Pyramids, precisely because they seem to require a leap which cannot be made by 

everyone, let alone a by simple mechanical device. ”        —   Avi Wigderson

44

Summary

P.  Class of search problems solvable in poly-time.
NP.  Class of all search problems, some of which seem wickedly hard.
NP-complete.  Hardest problems in NP.
Intractable.  Problem with no poly-time algorithm.
 
Many fundamental problems are NP-complete.
• SAT, ILP, HAMILTON-PATH, …

• 3D-ISING, …

 
Use theory a guide:
• A poly-time algorithm for an NP-complete problem would be a stunning 

breakthrough (a proof that P = NP).

• You will confront NP-complete problems in your career.

• Safe to assume that P ≠ NP and that such problems are intractable.

• Identify these situations and proceed accordingly.
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Exploiting intractability

Modern cryptography.
• Ex.  Send your credit card to Amazon.

• Ex.  Digitally sign an e-document.

• Enables freedom of privacy, speech, press, political association. 

 
RSA cryptosystem.
• To use:  multiply two n-bit integers.  [poly-time]

• To break:  factor a 2 n-bit integer.    [unlikely poly-time]

23 × 67 1,541

Multiply = EASY

Factor = HARD

46

Challenge.  Factor this number.
 
 
 
 
 
 
 
Can't do it?  Create a company based on the difficulty of factoring.

Exploiting intractability

740375634795617128280467960974295731425931888892312890849362

326389727650340282662768919964196251178439958943305021275853

701189680982867331732731089309005525051168770632990723963807

86710086096962537934650563796359

RSA-704 
($30,000 prize if you can factor)

RSA algorithm
RSA sold 
for $2.1 billion or design a t-shirt

47

Exploiting intractability

FACTOR.  Given an n-bit integer x, find a nontrivial factor.
 
Q.  What is complexity of FACTOR?
A.  In NP, but not known (or believed) to be in P or NP-complete.
 
Q.  What if P = NP?
A.  Poly-time algorithm for factoring; modern e-conomy collapses.
 
 
 
Proposition.  [Shor 1994]  Can factor an n-bit integer in n3 steps 
on a "quantum computer.”
 
Q.  Do we still believe the extended Church-Turing thesis???

48

Coping with intractability

Relax one of desired features.
• Solve arbitrary instances of the problem.

• Solve the problem to optimality.

• Solve the problem in poly-time.

 
Special cases may be tractable.
• Ex:  Linear time algorithm for 2-SAT.

• Ex:  Linear time algorithm for Horn-SAT.

at most two variables per equation

at most one un-negated variable per equation



49

Coping with intractability

Relax one of desired features.
• Solve arbitrary instances of the problem.

• Solve the problem to optimality.

• Solve the problem in poly-time.

 
Develop a heuristic, and hope it produces a good solution.
• No guarantees on quality of solution.

• Ex. TSP assignment heuristics.

• Ex.  Metropolis algorithm, simulating annealing, genetic algorithms.

 
Approximation algorithm.  Find solution of provably good quality.
• Ex.  MAX-3SAT:  provably satisfy 87.5% as many clauses as possible.

but if you can guarantee to satisfy 87.51% as many clauses 
as possible in poly-time, then P = NP !

Relax one of desired features.
• Solve arbitrary instances of the problem.

• Solve the problem to optimality.

• Solve the problem in poly-time.

 
Complexity theory deals with worst case behavior.
• Instance(s) you want to solve may be "easy."

• Chaff solves real-world SAT instances with ~ 10K variable.  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Coping with intractability

Chaff: Engineering an Efficient SAT Solver 
Matthew W. Moskewicz 
Department of EECS 
UC Berkeley 
moskewcz@alumni.princeton.edu 

Conor F. Madigan 
Department of EECS 
MIT 
cmadigan@mit.edu 

Ying Zhao, Lintao Zhang, Sharad Malik 
Department of Electrical Engineering 
Princeton University 
{yingzhao, lintaoz, sharad}@ee.princeton.edu

 
ABSTRACT 

Boolean Satisfiability is probably the most studied of 
combinatorial optimization/search problems. Significant effort 
has been devoted to trying to provide practical solutions to this 
problem for problem instances encountered in a range of 
applications in Electronic Design Automation (EDA), as well as 
in Artificial Intelligence (AI). This study has culminated in the 
development of several SAT packages, both proprietary and in 
the public domain (e.g. GRASP, SATO) which find significant 
use in both research and industry. Most existing complete solvers 
are variants of the Davis-Putnam (DP) search algorithm. In this 
paper we describe the development of a new complete solver, 
Chaff, which achieves significant performance gains through 
careful engineering of all aspects of the search – especially a 
particularly efficient implementation of Boolean constraint 
propagation (BCP) and a novel low overhead decision strategy. 
Chaff has been able to obtain one to two orders of magnitude 
performance improvement on difficult SAT benchmarks in 
comparison with other solvers (DP or otherwise), including 
GRASP and SATO.  
Categories and Subject Descriptors 
J6 [Computer-Aided Engineering]: Computer-Aided Design. 

General Terms 
Algorithms, Verification. 

Keywords 
Boolean satisfiability, design verification. 

1. Introduction 
The Boolean Satisfiability (SAT) problem consists of 

determining a satisfying variable assignment, V, for a Boolean 
function, f, or determining that no such V exists.  SAT is one of 
the central NP-complete problems. In addition, SAT lies at the 
core of many practical application domains including EDA (e.g. 
automatic test generation [10] and logic synthesis [6]) and AI 
(e.g. automatic theorem proving).  As a result, the subject of 
practical SAT solvers has received considerable research 
attention, and numerous solver algorithms have been proposed 
and implemented. 

 
 
 
 
 
 
 
 
 
 

 Many publicly available SAT solvers (e.g. GRASP [8], 
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been 
developed, most employing some combination of two main 
strategies: the Davis-Putnam (DP) backtrack search and heuristic 
local search.  Heuristic local search techniques are not 
guaranteed to be complete (i.e. they are not guaranteed to find a 
satisfying assignment if one exists or prove unsatisfiability); as a 
result, complete SAT solvers (including ours) are based almost 
exclusively on the DP search algorithm. 

1.1 Problem Specification 
Most solvers operate on problems for which f is specified in 

conjunctive normal form (CNF).  This form consists of the 
logical AND of one or more clauses, which consist of the logical 
OR of one or more literals.  The literal comprises the 
fundamental logical unit in the problem, being merely an 
instance of a variable or its complement.  (In this paper, 
complement is represented by ¬.)  All Boolean functions can be 
described in the CNF format.  The advantage of CNF is that in 
this form, for f to be satisfied (sat), each individual clause must 
be sat. 

1.2 Basic Davis-Putnam Backtrack Search 
We start with a quick review of the basic Davis-Putnam 

backtrack search. This is described in the following pseudo-code 
fragment: 
 
while (true) { 
  if (!decide()) // if no unassigned vars 
    return(satisifiable); 
  while (!bcp()) {  
    if (!resolveConflict()) 

return(not satisfiable); 
  } 
} 
 
bool resolveConflict() { 
  d = most recent decision not ‘tried both 
ways’; 
 
  if (d == NULL) // no such d was found 
    return false; 
       
  flip the value of d; 
  mark d as tried both ways; 
  undo any invalidated implications; 
  return true; 
} 
 

The operation of decide() is to select a variable that is 
not currently assigned, and give it a value.  This variable 
assignment is referred to as a decision.  As each new decision is 
made, a record of that decision is pushed onto the decision stack. 
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Combinatorial search

Exhaustive search.  Iterate through all elements of a search space.

Applicability.  Huge range of problems (include intractable ones).

Caveat.  Search space is typically exponential in size  ⇒ 
effectiveness may be limited to relatively small instances.

Backtracking.  Systematic method for examining feasible solutions
to a problem, by systematically pruning infeasible ones.
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N-rooks problem

Q.  How many ways are there to place N rooks on an N-by-N board so that 
no rook can attack any other?

Representation.  No two rooks in the same row or column  ⇒  permutation.

Challenge.  Enumerate all N ! permutations of N integers 0 to N - 1.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 };

a[4] = 6 means the rook 

from row 4 is in column 6 
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Enumerating permutations

Recursive algorithm to enumerate all N ! permutations of N elements.

• Start with permutation a[0] to a[N-1].

• For each value of i:
- swap a[i] into position 0

- enumerate all (N – 1) ! permutations of a[1] to a[N-1]

- clean up (swap a[i] back to original position)

3 1 2 0 
3 1 0 2 
3 2 1 0 
3 2 0 1 
3 0 2 1 
3 0 1 2

1 0 2 3 
1 0 3 2 
1 2 0 3 
1 2 3 0 
1 3 2 0 
1 3 0 2

2 1 0 3 
2 1 3 0 
2 0 1 3 
2 0 3 1 
2 3 0 1 
2 3 1 0

3 followed by 
perms of 1 2 0

0 followed by 
perms of 1 2 3

1 followed by 
perms of 0 2 3

2 followed by 
perms of 1 0 3

0 1 2 3 
0 1 3 2 
0 2 1 3 
0 2 3 1 
0 3 2 1 
0 3 1 2

0 1 2 
0 2 1 
0 1 2 
1 0 2 
1 2 0 
1 0 2 
0 1 2 
2 1 0 
2 0 1 
2 1 0 
0 1 2

0 1 
1 0  
0 1

cleanup swaps that bring 
permutation back to original

N = 2

N = 3

a[0] a[N-1]

Recursive algorithm to enumerate all N ! permutations of N elements.

• Start with permutation a[0] to a[N-1].

• For each value of i:
- swap a[i] into position 0

- enumerate all (N – 1) ! permutations of a[1] to a[N-1]

- clean up (swap a[i] back to original position)

// place N-k rooks in a[k] to a[N-1] 
private void enumerate(int k) 
{ 
   if (k == N) 
   {  process(); return;  } 
   
   for (int i = k; i < N; i++) 
   { 
      exch(k, i); 
      enumerate(k+1); 
      exch(i, k); 
   } 
}

Enumerating permutations
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clean up

% java Rooks 4 
0 1 2 3  
0 1 3 2  
0 2 1 3  
0 2 3 1  
0 3 2 1  
0 3 1 2  
1 0 2 3  
1 0 3 2  
1 2 0 3  
1 2 3 0  
1 3 2 0  
1 3 0 2  
2 1 0 3  
2 1 3 0  
2 0 1 3  
2 0 3 1  
2 3 0 1  
2 3 1 0  
3 1 2 0  
3 1 0 2  
3 2 1 0  
3 2 0 1  
3 0 2 1  
3 0 1 2  

1 followed by 
perms of 0 2 3

0 followed by 
perms of 1 2 3

2 followed by 
perms of 1 0 3

3 followed by 
perms of 1 2 0

a[0] a[N-1]

public class Rooks 
{ 
   private int N; 
   private int[] a;  // bits (0 or 1) 

   public Rooks(int N) 
   { 
      this.N = N; 
      a = new int[N]; 
      for (int i = 0; i < N; i++) 
         a[i] = i; 
      enumerate(0); 
   } 

   private void enumerate(int k) 
   { /* see previous slide */  }  

   private void exch(int i, int j) 
   {  int t = a[i]; a[i] = a[j]; a[j] = t;  } 

   public static void main(String[] args) 
   { 
      int N = Integer.parseInt(args[0]); 
      new Rooks(N); 
   } 
}
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Enumerating permutations

% java Rooks 2 
0 1  
1 0  

% java Rooks 3 
0 1 2  
0 2 1  
1 0 2  
1 2 0  
2 1 0  
2 0 1 

initial permutation
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4-rooks search tree

solutions

. . .



Slow way to compute N ! .

Hypothesis.  Running time is about 2 (N !  /  8! ) seconds.

% java Rooks 7 | wc -l 
5040 

% java Rooks 8 | wc -l 
40320 

% java Rooks 9 | wc -l 
362880 

% java Rooks 10 | wc -l 
3628800 

% java Rooks 25 | wc -l 
...

N-rooks problem:  back-of-envelope running time estimate
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instant

1.6 seconds 

15 seconds 

170 seconds

forever

Q.  How many ways are there to place N queens on an N-by-N board so that 
no queen can attack any other?

Representation.  No two queens in the same row or column  ⇒  

permutation.
Additional constraint.  No diagonal attack is possible.

Challenge.  Enumerate (or even count) the solutions.
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N-queens problem

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

unlike N-rooks problem, 
nobody knows answer for N  > 30

int[] a = { 2, 7, 3, 6, 0, 5, 1, 4 };

a[1] = 6 means the queen 

from row 1 is in column 6 
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4-queens search tree

diagonal conflict 

on partial solution: 

no point going deeper

solutions 60

4-queens search tree (pruned)

"backtrack" on 
diagonal conflicts

solutions
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Backtracking paradigm.  Iterate through elements of search space.
• When there are several possible choices, make one choice and recur.

• If the choice is a dead end, backtrack to previous choice,  
and make next available choice.

Benefit.  Identifying dead ends allows us to prune the search tree.

Ex.  [backtracking for N-queens problem]

• Dead end:  a diagonal conflict.

• Pruning:  backtrack and try next column when diagonal conflict found.

Applications.  Puzzles, combinatorial optimization, parsing, ... 

Backtracking

  private boolean canBacktrack(int k) 
  { 
     for (int i = 0; i < k; i++) 
     { 
        if ((a[i] - a[k]) == (k - i)) return true; 
        if ((a[k] - a[i]) == (k - i)) return true; 
     } 
     return false; 
  } 

  // place N-k queens in a[k] to a[N-1] 
  private void enumerate(int k) 
  { 
     if (k == N) 
     {  process(); return;  } 

     for (int i = k; i < N; i++) 
     { 
        exch(k, i); 
        if (!canBacktrack(k)) enumerate(k+1); 
        exch(i, k); 
     } 
  }
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N-queens problem:  backtracking solution

stop enumerating if 

adding queen k leads 

to a diagonal violation

% java Queens 4 
1 3 0 2 
2 0 3 1 

% java Queens 5 
0 2 4 1 3  
0 3 1 4 2  
1 3 0 2 4  
1 4 2 0 3  
2 0 3 1 4  
2 4 1 3 0  
3 1 4 2 0  
3 0 2 4 1  
4 1 3 0 2  
4 2 0 3 1  

% java Queens 6 
1 3 5 0 2 4  
2 5 1 4 0 3  
3 0 4 1 5 2  
4 2 0 5 3 1 

a[0] a[N-1]

Pruning the search tree leads to enormous time savings.

N-queens problem:  effectiveness of backtracking
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N Q(N) N !

2 0 2

3 0 6

4 2 24

5 10 120

6 4 720

7 40 5,040

8 92 40,320

9 352 362,880

10 724 3,628,800

11 2,680 39,916,800

12 14,200 479,001,600

13 73,712 6,227,020,800

14 365,596 87,178,291,200

Goal.  Find a simple path that visits every vertex exactly once.

Remark.  Euler path easy, but Hamilton path is NP-complete.
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Hamilton path

visit every edge exactly once
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Hamilton path:  backtracking solution

Backtracking solution.  To find Hamilton path starting at v :
• Add v to current path.

• For each vertex w adjacent to v 
- find a simple path starting at w using all remaining vertices

• Clean up:  remove v from current path.

Q.  How to implement?
A.  Add cleanup to DFS (!!)
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Hamilton path:  Java implementation

public class HamiltonPath 
{ 
   private boolean[] marked;    // vertices on current path 
   private int count = 0;       // number of Hamiltonian paths 

   public HamiltonPath(Graph G) 
   { 
      marked = new boolean[G.V()]; 
      for (int v = 0; v < G.V(); v++) 
         dfs(G, v, 1); 
   } 

   private void dfs(Graph G, int v, int depth) 
   { 
      marked[v] = true; 
      if (depth == G.V()) count++; 
       

      for (int w : G.adj(v)) 
         if (!marked[w]) dfs(G, w, depth+1); 

      marked[v] = false; 
  } 
}

clean up

length of current path 
(depth of recursion)

found one

backtrack if w is 
already part of path


