BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

ERKUT ERDEM

INTRACTABILITY

May. 14, 2015

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick
and K. Wayne of Princeton University.

» Intractability
Search problems

P vs. NP

Classifying problems
NP-completeness

>
14
4
4

Questions about computation

Q. What is a general-purpose computer?
Q. Are there limits on the power of digital computers?
Q. Are there limits on the power of machines we can build?

(3o ! ? |
de “
David Hilbert Kurt Godel Alan Turing Alonzo Church John von Neumann

A simple model of computation: DFAs

Tape.

e Stores input.

® One arbitrarily long strip, divided into cells.
¢ Finite alphabet of symbols.

Tape head.
® Points to one cell of tape. . tape
® Reads a symbol from active cell. START v
] [(iciizoox

® Moves one cell at a time.

tape
head

tape head

e | n10111001

Q. Is there a more powerful model of computation?
A Yes.

A universal model of computation: Turing machines

Tape.
e Stores input, output, and intermediate results.
® One arbitrarily long strip, divided into cells.

¢ Finite alphabet of symbols.

Tape head.

® Points to one cell of tape.

® Reads a symbol from active cell.
® Writes a symbol to active cell.
® Moves one cell at a time.

tape head

tape . # 1 1 n 0 + 1 0 1 1 #

Q. Is there a more powerful model of computation?

A, NO' <—— most important scientific result of 20th century?

Church-Turing thesis (1936)

Turing machines can compute any function that can be computed by a
physically harnessable process of the natural world.

Remark. "Thesis" and not a mathematical theorem because it's a statement
about the physical world and not subject to proof.

Use simulation to prove models equivalent.
e Android simulator on iPhone.
e iPhone simulator on Android.

Implications.
® No need to seek more powerful machines or languages.
® Enables rigorous study of computation (in this universe).

Bottom line. Turing machine is a simple and universal model of computation.

Church-Turing thesis: evidence

® 8 decades without a counterexample. "universal"

® Many, many models of computation that turned out to be equivalent.

enhanced Turing machines multiple heads, multiple tapes, 2D tape, nondeterminism
untyped lambda calculus method to define and manipulate functions
recursive functions functions dealing with computation on integers
unrestricted grammars iterative string replacement rules used by linguists
extended L-systems parallel string replacement rules that model plant growth
programming languages Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel
random access machines registers plus main memory, e.g., TOY, Pentium
cellular automata cells which change state based on local interactions
quantum computer compute using superposition of quantum states

DNA computer compute using biological operations on DNA

A question about algorithms

Q. Which algorithms are useful in practice!?
® Measure running time as a function of input size N.
e Useful in practice ("efficient") = polynomial time for all inputs.

aN?

bv ', | ©

i
von Neumann Nash Godel Edmonds Rabin
(1953) (1955) (1956) (1965) (1966)

Ex |.Sorting N items takes N log N compares using mergesort.

Ex 2. Finding best TSP tour on N points takes N! steps using brute search.
Theory. Definition is broad and robust. LR R e
Practice. Poly-time algorithms scale to huge problems.

Exponential growth

Exponential growth dwarfs technological change.

e Suppose you have a giant parallel computing device...

® With as many processors as electrons in the universe...

e And each processor has power of today's supercomputers...

® And each processor works for the life of the universe...
(30, 230)/[
quantity value ‘
electrons in universe * 107°
supercomputer instructions per second ' 103
age of universe in seconds ' 10'7 !
t estimated J
I
® Will not help solve 1,000 city TSP problem via brute force. |
(20,220 |
\ \ /
SRS, W% 4

1000! >> 10'99° >> 1079 x 10'3 x 10'7

Questions about problems

Q. Which problems can we solve in practice?
A. Those with poly-time algorithms.

Q. Which problems have poly-time algorithms?
A. Not so easy to know. Focus of today's lecture.

“‘..........unn|unnm||||||||||I||||I|||I||I||||||||||||||||||||||||||||||||||||"|||||||||||||||||“"”||N”“WHW“H“W“H

"M|||||||.|“||I|‘|||“I||||||lI|.|."M”.llm||.|||.‘.||I|”|l|‘||||||.|M|||||‘.||.”.||||.||‘|||h|||||“ll.||||I‘.|||||||||I‘|||”|’.

many known poly-time algorithms for sorting no known poly-time algorithm for TSP

Bird's-eye view

Def. A problem is intractable if it can't be solved in polynomial time.

Desiderata. Prove that a problem is intractable.

input size =c + Ig K
Two problems that provably require exponential time. /
e Given a constant-size program, does it halt in at most K steps?
® Given N-by-N checkers board position, can the first player force a win?

N

using forced capture rule

HALTIT/,
f . [0-® ==
&-@ 000
\\y ©©® =

Frustrating news. Very few successes.

INTRACTABILITY

» Search problems

Four fundamental problems

‘LSOLVE. Given a system of linear equations, find a solution.

Ox, + lx, + lx, = 4 x, = -1 -
variables are

2xy + 4x, —2x, = 2 X = 2 — | A

0x, + 3x, +15x, = 36 x, = 2 real numbers

-LP. Given a system of linear inequalities, find a solution.

48x, +16x, +119x, < 88 5 = e
5x, + 4x, + 35x, =13 = 1 —
! ! : o= real numbers
15x, + 4x, + 20x, = 23 i o= Y
> 0

& o & o X,

ILP. Given a system of linear inequalities, find a 0-1 solution.

x +x, =1 X, = 0
Xo +x 21 x = 1 variables are
X + X t X% <2 x, = 1 Oorl

-SAT. Given a system of boolean equations, find a binary solution.

('yorx) and (xg or xy) = true xo = false variables are
(xo or x) and (x, or x'y) = false x| = false true or false
(Xporx;) and (x')) = true Xy = true

Four fundamental problems

LSOLVE. Given a system of linear equations, find a solution.

LP. Given a system of linear inequalities, find a solution.

ILP. Given a system of linear inequalities, find a 0-1 solution.
SAT. Given a system of boolean equations, find a binary solution.

Q. Which of these problems have poly-time algorithms?

e LSOLVE. Yes. Gaussian elimination solves N-by-N system in N3 time.

® LP. Yes. Ellipsoid algorithm is poly-time. <— but was open problem for decades
e |ILP, SAT. No poly-time algorithm known or believed to exist!

but we still don't know for sure

Search problems

Search problem. Given an instance / of a problem, find a solution S.
Requirement. Must be able to efficiently check that S is a solution. N

or report

none exists

poly-time in size of instance |

Search problems

Search problem. Given an instance / of a problem, find a solution S.
Requirement. Must be able to efficiently check that S is a solution.

LSOLVE. Given a system of linear equations, find a solution.

Ox, + lx, + lx, = 4 x, = -1
2xy + 4x, — 2x, = 2 x = 2
Ox, + 3x, +15x, = 36 x, = 2

instance | solution S

To check solution S, plug in values and verify each equation.

Search problems

Search problem. Given an instance / of a problem, find a solution S.
Requirement. Must be able to efficiently check that S is a solution.

LP. Given a system of linear inequalities, find a solution.

48x, +16x; +119x, < 88 "

5x, + 4x, + 35x, =13 o .

15x, + 4x, + 20x, > 23 = 1
x, =

Xo > X x, =2 0 2 %

instance | solution S

To check solution S, plug in values and verify each inequality.

Search problems

Search problem. Given an instance / of a problem, find a solution S.
Requirement. Must be able to efficiently check that S is a solution.

ILP. Given a system of linear inequalities, find a binary solution.

x o+ x, =21 X, = 0
Xy + x, =1 X =
X +x + x, <2 x, = 1

instance | solution S

To check solution S, plug in values and verify each inequality.

Search problems

Search problem. Given an instance / of a problem, find a solution S.
Requirement. Must be able to efficiently check that S is a solution.

SAT. Given a system of boolean equations, find a boolean solution.

(x'1or x%) and (xg or x;) = true Xo = false
(xp or x;) and (x| or x',) = false x| = false
(xpor xp) and (x'p) = true Xy = lrue
instance | solution S

To check solution S, plug in values and verify each equation.

Search problems

Search problem. Given an instance / of a problem, find a solution S.
Requirement. Must be able to efficiently check that S is a solution.

FACTOR. Given an n-bit integer x, find a nontrivial factor.
AN

input size = number of bits

147573952589676412927 193707721

instance | solution S

To check solution S, long divide 193707721 into 147573952589676412927.

20

INTRACTABILITY

» Search problems

» Pvs. NP

» Classifying problems
» NP-completeness

NP

Note: classic definition limits
NP to yes-no problems

Def. NP is the class of all search problems.

o poly-time) .
problem description lgorith instance | solution S
algorithm
LSOLVE Find a vector x that o O by 4 ln = 4 foo=
s Gaussian elimination 2 44y -2y = 2 o= 2
(A4, b) satisfies Ax =5 Ox, + 3y +15x, =36 xn = 2
. 48x, +16x, +119x, < 88 X = 1
LP Find a vector x that ellipsoid Sy, + 4y, + 35y, 213 o o= 1
e 155, + 4x + 20x, > 23 !
(4, b) satisfies Ax<b o n . om0 X = 4%
. N =0
ILP Find a binary vector x . woem o T
s Xy + x, = xo=
(4, b) that satisfies 4x<b X +x +ox, €2 xn o= 1
) 'y orx'y) and (xy orx,) = true xo = false
SAT Find a bo.ol'ean vector x m o or) and (& orxty = false o = false
(D, b) that satisfies ®(x) = b (orx) and () = true X, = true
FACTOR Find a nontrivial factor
m 147573952589676412927 193707721

(x) of the integer x

Significance. What scientists and engineers aspire to compute feasibly.

22

Def. P is the class of search problems solvable in poly-time.

\ Note: classic definition limits

P to yes-no problems

poly-time

problem description X instance | solution S
algorithm
LSOLVE Find a vector x that Gaussian elimination (2”" I:“‘ +;1 = : Yo = ‘21
Y, Ay - 2n = x =
(A4,b) satisfies Ax = b (Edmonds 1967) on, + 3 +15x, - 3% . -
. 48x, +16x, +119x, < 88 o= 1

LP Find a vector x that ellipsoid S+ 4y o+ 3y 213 !

i b isfies Ax <b (Khachi 1979) 155, + 4x + 20x, =23 xn o= 1
(4, b) satisfies Ax < achiyan o on . om0 N o= %
SORT Find a permutation that mergesort 2.3 8.5 1.2 s24013

(a) puts array a in order (von Neumann 1945) 9.12.20.3

STCONN Find a path in a depth-first search
(G, s, t) graph G from s to ¢ (Theseus)

Significance. What scientists and engineers do compute feasibly.

23

Nondeterminism

Nondeterministic machine can guess the desired solution.

AN

recall NFA implementation

Ex. int]] a = new int[N];
¢ Java:initializes entries to 0.
® Nondeterministic machine: initializes entries to the solution!

ILP. Given a system of linear inequalities, guess a 0-1 solution.

X + X, 1 x, = 0

X, + X, 1 & o=

2 =
- : 0:x

NIV IV

Xy t+ X + X,

Ex. Turing machine.
® Deterministic: state, input determines next state. B8y @
® Nondeterministic: more than one possible next state.

NP. Search problems solvable in poly time on a nondeterministic TM.

24

Extended Church-Turing thesis

P = search problems solvable in poly-time in the natural world.
Evidence supporting thesis. True for all physical computers.

Natural computers? No successful attempts (yet).

doesn't work

/for large N

Ex. Computing Steiner trees with soap bubbles

STEINER: Find set of lines of minimal length
connecting N given points

Implication. To make future computers more efficient,

suffices to focus on improving implementation of existing designs.

25

P vs. NP

Does P = NP ?

Copyright © 1990, Matt Groening Copyright © 2000, Twentieth Century Fox

26

Automating creativity

Q. Being creative vs. appreciating creativity?

Ex. Mozart composes a piece of music; our neurons appreciate it.
Ex. Wiles proves a deep theorem;a colleague referees it.

Ex. Boeing designs an efficient airfoil; a simulator verifies it.

Ex. Einstein proposes a theory;an experimentalist validates it.

creative ordinary

Computational analog. Does P = NP?

27

The central question

P. Class of search problems solvable in poly-time.
NP. Class of all search problems.

Does P = NP ? [Can you always avoid brute-force searching and do better]

Two worlds. NP

@,

P % NP P = NP

If P = NP... Poly-time algorithms for SAT, ILB TSP, FACTOR, ...
If P+ NP... Would learn something fundamental about our universe.

Overwhelming consensus. P # NP.

28

The central question

P. Class of search problems solvable in poly-time.
NP. Class of all search problems.

Does P = NP ? [Can you always avoid brute-force searching and do better]

Millennium prize. $1 million for resolution of P = NP problem.

‘\\‘ Clay Mathematics Institute
Q 4 ¥ Dedicated to increasing and disseminating mathematical knowledge

29

INTRACTABILITY

» Classifying problems

A key problem: satisfiability

SAT. Given a system of boolean equations, find a solution.

X'y or x, or x3 = true
xXjorx'y or x3 = true
x'1or x'y or x's = true

x'yorx'y or x4 = true

Key applications.
e Automatic verification systems for software.
® Electronic design automation (EDA) for hardware.

® Mean field diluted spin glass model in physics.
L .ee

31

Exhaustive search

Q. How to solve an instance of SAT with 7 variables?
A. Exhaustive search: try all 2” truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for SAT.

e
“intractable"

Congratulatiens,
it only took A
65298 seconds /

Classifying problems

Q. Which search problems are in P?
A. No easy answers (we don't even know whether P = NP).

Cook reduction
/

Problem X poly-time reduces to problem Y if X can be solved with:
® Polynomial number of standard computational steps.
® Polynomial number of calls to Y.

. Algorithm i .
instance | ¢ solution S to |

forY
(of X)

Algorithm for X

Consequence. If SAT poly-time reduces to Y, then we conclude that ¥
is (probably) intractable.

SAT poly-time reduces to ILP

SAT. Given a system of boolean equations, find a solution.

X'| or x, or x3 = true
Xjorx'y or x3 = true

<«<—— can to reduce any SAT problem to this form
x'ior x', or x's = true

x'{or x', or x4 = true

ILP. Given a system of linear inequalities, find a 0-1 solution.

1= (I=-Xx)+x+x
l=sx+(-x)+x;

I (-x)+A=-x)+ (1-x3)
1= (I=x)+A=-x) + x4

solution to this ILP instance gives solution to original SAT instance

More poly-time reductions from boolean satisfiability

SAT
3-COLOR IND-SET VERTEX COVER Dick Karp
'85 Turing award
w
z
g
5
EXACT COVER {f CLIQUE HAM-CYCLE
o
=
5
SUBSET-SUM ILP TSP HAM-PATH
PARTITION
\ Conjecture. SAT is intractable.
KNAPSACK BIN-PACKING Implication. All of these problems are intractable.

35

Still more reductions from SAT

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer aj, ..., a, compute /‘;1 cos(a10) x cos(az0) x - -+ X cos(an0) df
Mechanical engineering. Structure of turbulence in sheared flows.

Medicine. Reconstructing 3d shape from biplane angiocardiogram.

Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley-Shubik voting power.

Recreation. Versions of Sudoko, Checkers, Minesweeper, Tetris.

Statistics. Optimal experimental design.

plus over 6,000 scientific papers per year

INTRACTABILITY

» NP-completeness

NP-completeness

Def.An NP problem is NP-complete if every problem in NP poly-time
reduce to it.

Proposition. [Cook 1971, Levin 1973] SAT is NP-complete.

N

every NP problem is a

Extremely brief proof sketch: SAT problem in disguise

e Convert non-deterministic TM notation to SAT notation.
e If you can solve SAT, you can solve any problem in NP.

—>

nondeterministic TM SAT instance

Corollary. Poly-time algorithm for SAT iff P = NP.

You NP-complete me

You
NP-Complete
Me

39

Implications of Cook-Levin theorem

SAT

3-COLOR

Stephen Cook Leonid Levin
'82 Turing award

EXACT CLIQUE

SUBSET-SUM HAM-PATH

PARTITIO.

All of these problems (and many, many more)

KNAPSACK BIN-PACKING poly-time reduce to SAT.

40

Implications of Karp + Cook-Levin

SAT
500" it
PSS +
AT
S
3-COLOR 20u® ND-SET VERTEX COVER

= Z5
pricr COV cuiovr M.cy<

PARTITION

\ All of these problems are NP-complete; they are

KNAPSACK <—> BIN-PACKING

TSP<«—> HAM-PATH

manifestations of the same really hard

problem.

41

Implications of NP-Completeness

Implication. [SAT captures difficulty of whole class NP]
® Poly-time algorithm for SAT iff P = NP.
® No poly-time algorithm for some NP problem = none for SAT.

Remark. Can replace SAT with any of Karp's problems.

Proving a problem NP-complete guides scientific inquiry.
® [926: Ising introduces simple model for phase transitions.

1944: Onsager finds closed form solution to 2D version in tour de force.

19xx: Feynman and other top minds seek 3D solution.
2000: 3D-ISING proved NP-complete.

a holy grail of statistical mechanics

search for closed formula appears doomed

4

Two worlds (more detail)

Overwhelming consensus (still). P # NP.

P+ NP P = NP

Why we believe P # NP.

“ We admire Wiles' proof of Fermat's last theorem, the scientific theories of Newton,
Einstein, Darwin, Watson and Crick, the design of the Golden Gate bridge and the
Pyramids, precisely because they seem to require a leap which cannot be made by

everyone, let alone a by simple mechanical device. ” — Avi Wigderson

43

Summary

P. Class of search problems solvable in poly-time.

NP. Class of all search problems, some of which seem wickedly hard.
NP-complete. Hardest problems in NP.

Intractable. Problem with no poly-time algorithm.

Many fundamental problems are NP-complete.
e SAT, ILE HAMILTON-PATH, ...
* 3D-ISING, ...

Use theory a guide:

e A poly-time algorithm for an NP-complete problem would be a stunning
breakthrough (a proof that P = NP).

e You will confront NP-complete problems in your career.

o Safe to assume that P # NP and that such problems are intractable.

Identify these situations and proceed accordingly.

Exploiting intractability

Modern cryptography.

® Ex. Send your credit card to Amazon.

e Ex. Digitally sign an e-document.

® Enables freedom of privacy, speech, press, political association.

RSA cryptosystem.
® To use: multiply two n-bit integers. [poly-time]
® To break: factor a 2 n-bit integer. [unlikely poly-time]

Multiply = EASY
23x67 <+——> 1,541

Factor = HARD

45

Exploiting intractability
Challenge. Factor this number.

740375634795617128280467960974295731425931888892312890849362
326389727650340282662768919964196251178439958943305021275853
701189680982867331732731089309005525051168770632990723963807
86710086096962537934650563796359

RSA-704
($30,000 prize if you can factor)

Can't do it? Create a company based on the difficulty of factoring.

P £ @ PRINE
P

€0 = [mob (P-D@-h
C= M' MODN¥
M= C° mob ¥
The RSA aigorithm is the
most widely used method
of implementing public key
raphy and has been

RSA|

RSA sold
for $2.1 billion

cepl ore than one
billion applications
worldwice

RSA algorithm

or design a t-shirt

46

Exploiting intractability
FACTOR. Given an n-bit integer x, find a nontrivial factor.

Q. What is complexity of FACTOR?
A. In NP, but not known (or believed) to be in P or NP-complete.

Q. What if P = NP?
A. Poly-time algorithm for factoring; modern e-conomy collapses.

Proposition. [Shor 1994] Can factor an n-bit integer in n* steps

on a "quantum computer.”

Q. Do we still believe the extended Church-Turing thesis???

47

Coping with intractability

Relax one of desired features.

® Solve arbitrary instances of the problem.

Special cases may be tractable.
e Ex: Linear time algorithm for 2-SAT. <~ at most two variables per equation

® Ex: Linear time algorithm for Horn-SAT. <— at most one un-negated variable per equation

48

Coping with intractability
Relax one of desired features.

® Solve the problem to optimality.

Develop a heuristic, and hope it produces a good solution.
® No guarantees on quality of solution.

® Ex.TSP assignment heuristics.

® Ex. Metropolis algorithm, simulating annealing, genetic algorithms.

Approximation algorithm. Find solution of provably good quality.
e Ex. MAX-3SAT: provably satisfy 87.5% as many clauses as possible.

\

but if you can guarantee to satisfy 87.51% as many clauses
as possible in poly-time, then P = NP !

49

Coping with intractability

Relax one of desired features.

® Solve the problem in poly-time.

Complexity theory deals with worst case behavior.
® Instance(s) you want to solve may be "easy."
o Chaff solves real-world SAT instances with ~ |0K variable.

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz Conor F. Madigan Ying Zhao, Lintao Zhang, Sharad Malik
Department of EECS Department of EECS Department of Electrical Engineering
UC Berkeley MIT Princeton University
princeton.edu edu {yingzhao, lintaoz, sharad)@ee.princeton.edu
ABSTRACT Many publicly available SAT solvers (e.g. GRASP [8],
Boolean Satisfiability is probably the most studied of ~ POSIT [5]. SATO [13], rel_sat [2]. WalkSAT [9]) have been
developed, most employing some combination of two main

combinatorial optimization’
has been devoted to tryi

problem for problem’ insta a range of
applications in Electronic Design Automation (EDA), as well as
in Artificial Intelligence (AD. This study has culminated in the

search problems. Significant effort

strategies: the Davis-Putnam (DP) backtrack search and heuristic

local search. Heuristic local search techniques are not
‘suaranteed to be complete (i.¢. they are not guaranteed to find a
satisfying assignment if one exists or prove unsatisfiability): as a

Combinatorial search

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size =

effectiveness may be limited to relatively small instances.

Backtracking. Systematic method for examining feasible solutions
to a problem, by systematically pruning infeasible ones.

51

N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that

no rook can attack any other?

[[o]:lz]elelslel7]
E
p-S

a

n! a[4] = 6 means the rook
E / from row 4 is in column 6
a E

=] E

<)|

E

Representation. No two rooks in the same row or column = permutation.

Challenge. Enumerate all N! permutations of N integers 0 to NV - 1.

Enumerating permutations

Recursive algorithm to enumerate all N'! permutations of N elements.
e Start with permutation a[0] to a[N-1].
® For each value of i:

- swap a[i] into position 0

- enumerate all (N — 1) ! permutations of a[1] to a[N-1]

- clean up (swap a[i] back to original position)

Enumerating permutations

Recursive algorithm to enumerate all N ! permutations of N elements.

e Start with permutation a[0] to a[N-1].
® For each value of i:

- swap a[i] into position 0

- enumerate all (N —1)! permutations of a[1] to a[N-1]

- clean up (swap a[i] back to original position)

java Rooks 4
2

o followed by

perms of1 2 3

private void exch(int i, int j)
{ int t = a[i]; a[i] = a[j]l; a[j] = t; }

%
of 1 3
o132
0213
o231
00321
0312
10 2 3
10 3 2
120 3 1 followed by
e o0 followed by 1 followed by 2 followed by 3 followed by : 12 3 0| permsofo 23
ol1 2 permsof1 2 3 permsof0 2 3 permsofl 0 3 permsofl 2 0 // place N-k rooks in a[k] to a[N-1] 1320
N =2 l 1 l 1 private void enumerate (int k) 130 2
0]21 { 2[103
0l1 2 3 1/0 2 3 2|10 3 3]11 20 if (k == N) izig loned b
{ rocess () ; return; } 2 followed by
1 0[132 1/032 2130 3{102 = 203 1| perms of s 0 5
1 0|2 13 1|2 0 3 2|01 3 3|1210 for (int i = k; i < N; i++) 222;
0|2 31 11230 2|0 31 31201 { ATzo
1320| 2(301| 3021 exchlk, i) 3102
0/321 enumerate (k+1) ; 3l2 1 0] 3followed by
2 0 0|3 12 1302 2310 3|01 2 exch(i, k); <« cleanup 320 1| permsofi 2o
} 31021
2 L T T } 301 2
cleanup swaps that bring 4 4
permutation back to original SCl =] | |
&8 a[0] a[N-1] 54
Enumerating permutations 4-rooks search tree
public class Rooks
* FH
private int N;
private int[] a; // bits (0 or 1) |
public Rooks (int N) i :"’-“'a Rooks 2 ‘ ‘ ‘ ‘
{
" s = i e =
a = new int[N]; .
for (int i = 0; i < N; i++) i ia‘z’a Rooks 3 | ’
ali] = i; <«— initial permutation 021
enumerate (0) ;
} 102 ‘ |
120
private void enumerate (int k) 210 E @
{ /* see previous slide */ } 201

public static void main(String[] args)
{
int N = Integer.parselnt(args[0]);
new Rooks (N) ;

55

=
E =
2 om
2 =
S

T m

i
B o

&
K
EFE
FEE
FEE
e
EEE
/ﬁ
) &
e
P
il
gl
il
gl
FEee
FrEe

solutions

=

&
el

i
%}@
il

ik
i
Gz
g
FERd
FER

N-rooks problem: back-of-envelope running time estimate

Slow way to compute N!.

% java Rooks 7 | wc - <«— instant
5040
<“<—— 1.6 seconds
% java Rooks 8 | wc -
40320

<«<—— 15 seconds
% java Rooks 9 | wc -

362880 <«—— 170 seconds

% java Rooks 10 | wc -I
3628800

<«—— forever

% java Rooks 25 | wc -I

Hypothesis. Running time is about 2 (N'! / 8!) seconds.

57

N-queens problem

Q. How many ways are there to place N queens on an N-by-N board so that
no queen can attack any other?

a[1] = 6 means the queen
.nnnun from row 1 is in column 6
o W
W
[2 |
H v 0
a w
5 | w
< | w
w

int[] a={2, 7, 3, 6, 0, 5, 1, 41};
Representation. No two queens in the same row or column =

permutation.
Additional constraint. No diagonal attack is possible.

< unlike N-rooks problem,

nobody knows answer for N > 30
Challenge. Enumerate (or even count) the solutions.

4-queens search tree

diagonal conflict

E on partial solution:

’ no point going deeper

solutions 59

4-queens search tree (pruned)

E "backtrack" on
diagonal conflicts

— \

solutions 60

Backtracking

Backtracking paradigm. Iterate through elements of search space.

® When there are several possible choices, make one choice and recur.

o |f the choice is a dead end, backtrack to previous choice,

and make next available choice.

Benefit. ldentifying dead ends allows us to prune the search tree.

Ex. [backtracking for N-queens problem]

® Dead end: a diagonal conflict.

® Pruning: backtrack and try next column when diagonal conflict found.

Applications. Puzzles, combinatorial optimization, parsing, ...

61

N-queens problem: backtracking solution

private boolean canBacktrack (int k)
{
for (int i = 0; i < k; i++)
{
if ((a[i] - a[k]) == (k - i)) return true;
if ((a[k] - a[i]) == (k - i)) return true;
}

return false;

// place N-k queens in a[k] to\a[N-1]
private void enumerate (int k)

{

stop enumerating if
adding queen k leads
} to a diagonal violation

if (k == N)
{ process(); return;

for (int i = k; i < N; i++)

{
exch(k, i);
if (!'canBacktrack(k)) enumerate (k+1);
exch(i, k);

o

java Queens 4
302
031

LV

java Queens 5
4 3

BB W WNNKHEREO O K
N HOR B®OBAWWN

O wWNA~KFE WNOBR
W o BRNWRONAKSER
HNKH OOB®WMBDN

% java Queens 6
135024
251403
304152
420531

——f—

a[o0] a[N-1]

62

N-queens problem: effectiveness of backtracking

Pruning the search tree leads to enormous time savings.

2 0

3 0

4 2

5 10

6 4

7 40
8 92
9 352
10 724
11 2,680
12 14,200
13 73,712

14 365,596

2
6
24
120
720
5,040
40,320
362,880
3,628,800
39,916,800
479,001,600
6,227,020,800

87,178,291,200

63

Hamilton path

Goal. Find a simple path that visits every vertex exactly once.

visit every edge exactly once

Remark. Euler path easy, but Hamilton path is NP-complete.

Hamilton path: backtracking solution

Backtracking solution. To find Hamilton path starting at v :

® Add v to current path.
® For each vertex w adjacent to v

- find a simple path starting at w using all remaining vertices
® Clean up: remove v from current path.

Q. How to implement?
A. Add cleanup to DFS (!!

65

Hamilton path: Java implementation

public class HamiltonPath

{
private boolean[] marked; // vertices on current path
private int count = 0; // number of Hamiltonian paths

public HamiltonPath (Graph G)
{
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
dfs(G, v, 1);
}

private void dfs(Graph G, int v, int depth)

{ \ length of current path

(depth of recursion)

marked[v] = true;
found one —— if (depth == G.V()) count++;

for (int w : G.adj(v)) -
if ('marked[w]) dfs(G, w, depth+l); backtrack if w is
already part of path

marked[v] = false; <«—— cleanup

66

