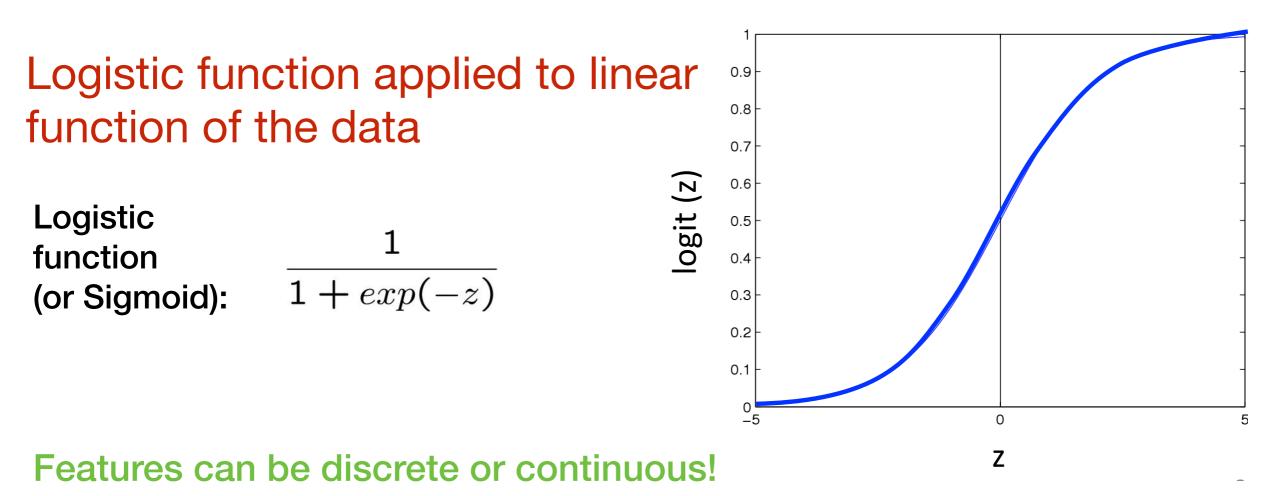


Erkut Erdem // Hacettepe University // Fall 2021

Last time... Logistic Regression

Assumes the following functional form for P(Y|X):

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$



Last time.. Logistic Regression vs. Gaussian Naïve Bayes

- \cdot LR is a linear classifier
 - decision rule is a hyperplane
- LR optimized by maximizing conditional likelihood
 - no closed-form solution
 - concave ! global optimum with gradient ascent
- Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
 - Solution differs because of objective (loss) function
- In general, NB and LR make different assumptions
 - NB: Features independent given class! assumption on P(X|Y)
 - LR: Functional form of P(Y|X), no assumption on P(X|Y)
- Convergence rates
 - GNB (usually) needs less data
 - LR (usually) gets to better solutions in the limit

Linear Discriminant Functions

Linear Discriminant Function

• Linear discriminant function for a vector **x**

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

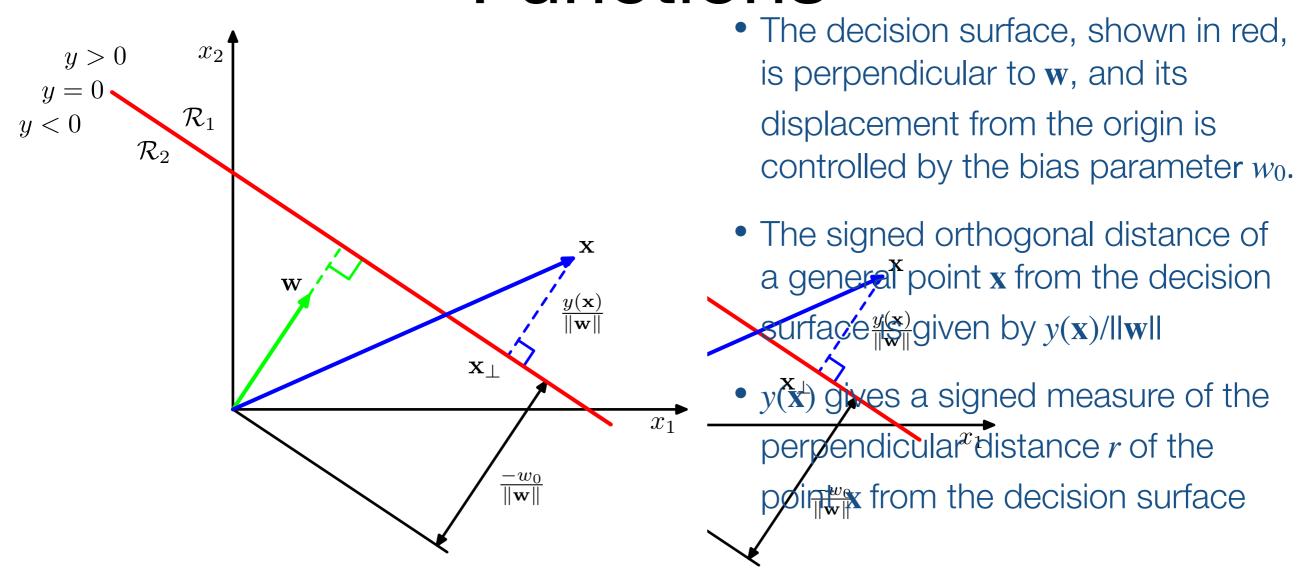
where w is called weight vector, and w_0 is a bias.

• The classification function is $C(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + w_0)$

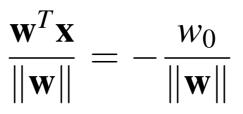
where step function $sign(\cdot)$ is defined as

$$\operatorname{sign}(a) = \begin{cases} +1, & a \ge 0\\ -1, & a < 0 \end{cases}$$

Properties of Linear Discriminant Functions



• $y(\mathbf{x}) = 0$ for \mathbf{x} on the decision surface. The normal distance from the origin to the decision surface is



So w₀ determines the location of the decision surface.

slide by C

Properties of Linear Discriminant Functions

• Let $\mathbf{x} = \mathbf{x}_{\perp} + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$

where \mathbf{x}_{\perp} is the projection \mathbf{x} on the decision surface. Then

$$\mathbf{w}^{T}\mathbf{x} = \mathbf{w}^{T}\mathbf{x}_{\perp} + r\frac{\mathbf{w}^{T}\mathbf{w}}{\|\mathbf{w}\|}$$
$$\mathbf{w}^{T}\mathbf{x} + w_{0} = \mathbf{w}^{T}\mathbf{x}_{\perp} + w_{0} + r\|\mathbf{w}\|$$
$$y(\mathbf{x}) = r\|\mathbf{w}\|$$
$$r = \frac{y(\mathbf{x})}{\|\mathbf{w}\|}$$

• Simpler notion: define $\widetilde{\mathbf{w}} = (w_0, \mathbf{w})$ and $\widetilde{\mathbf{x}} = (1, \mathbf{x})$ so that

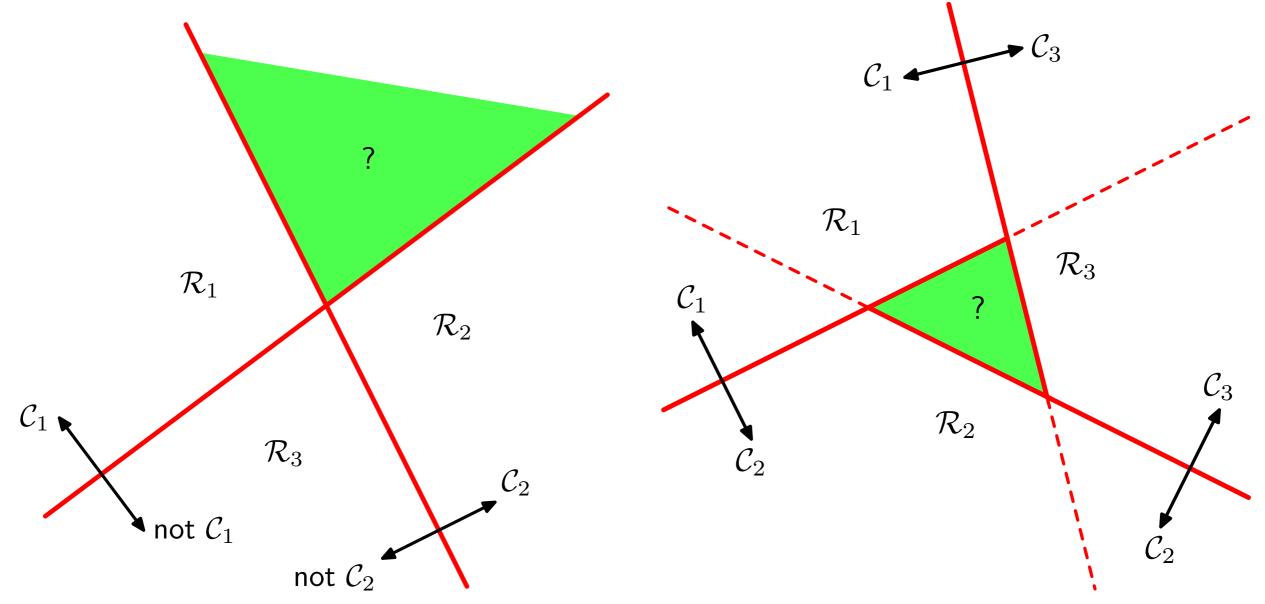
$$y(\mathbf{x}) = \widetilde{\mathbf{w}}^T \widetilde{\mathbf{x}}$$

 \mathbf{X}

 $\|\mathbf{w}\|$

Multiple Classes: Simple Extension

- **One-versus-the-rest** classifier: classify C_k and samples not in C_k . (K –1 classifiers)
- One-versus-one classifier: classify every pair of classes. K(K – 1)/2 classifiers)



Multiple Classes: K-Class Discriminant

• A single K-class discriminant comprising K linear functions

$$y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

Decision function

$$C(\mathbf{x}) = k$$
, if $y_k(\mathbf{x}) > y_j(\mathbf{x}) \forall j \neq k$

• The decision boundary between class C_k and C_j is given by $y_k(\mathbf{x}) = y_j(\mathbf{x})$

$$(\mathbf{w}_k - \mathbf{w}_j)^T \mathbf{x} + (w_{k0} - w_{j0}) = 0$$

Property of the Decision Regions

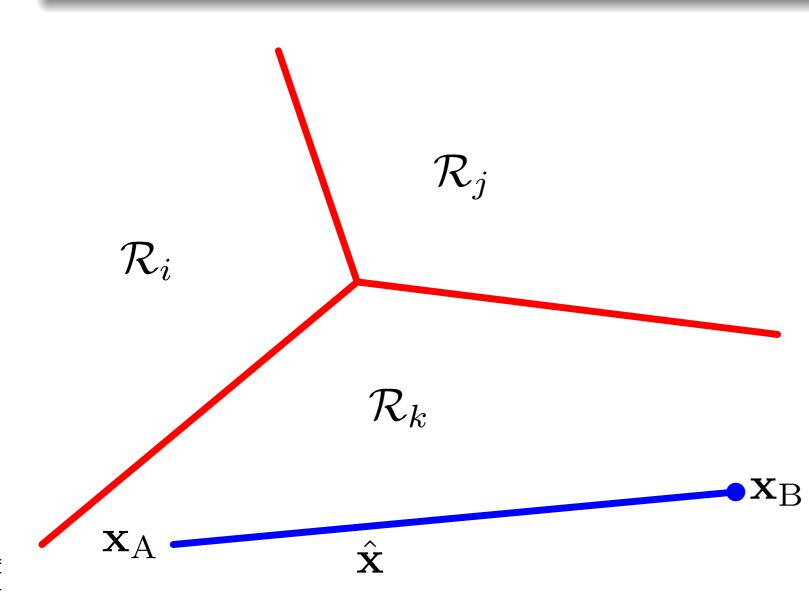
Theorem

The decision regions of the K-class discriminant $y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$ are singly connected and convex.

Property of the Decision Regions

Theorem

The decision regions of the K-class discriminant $y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$ are singly connected and convex.



If two points \mathbf{x}_A and \mathbf{x}_B both lie inside the same decision region R_k , then any point \mathbf{x} that lies on the line connecting these two points must also lie in R_k , and hence the decision region must be singly connected and convex.

Fisher's Linear Discriminant

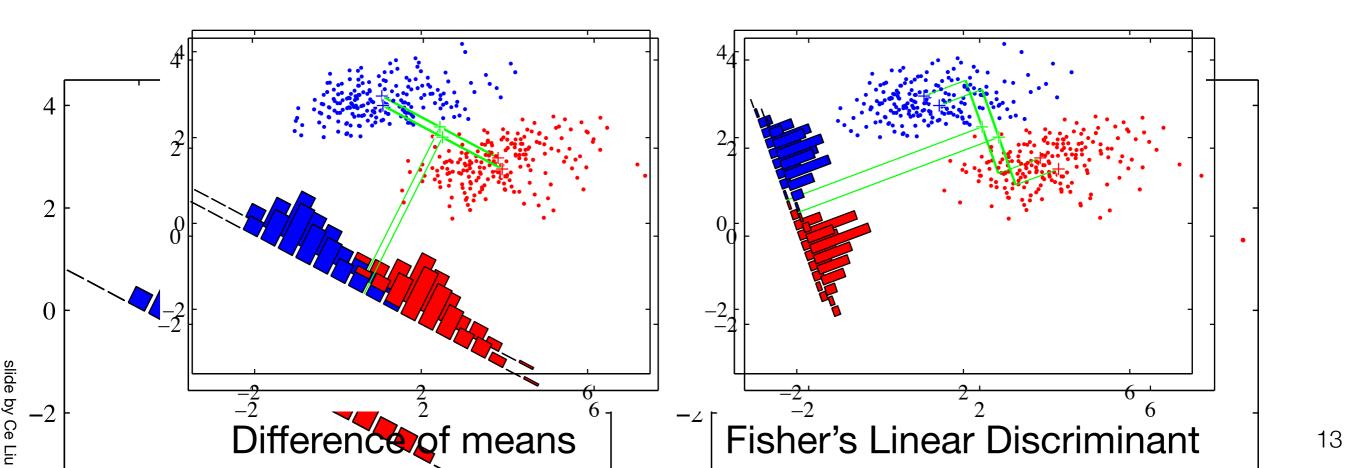
 Pursue the optimal linear projection on which the two classes can be maximally separated

$$y = \mathbf{w}^T \mathbf{x}$$

The mean vectors of the two classes

$$\mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in \mathcal{C}_1} \mathbf{x}_n, \quad \mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in \mathcal{C}_2} \mathbf{x}_n$$

A way to view a linear classification model is in terms of dimensionality reduction.



What's a Good Projection?

• After projection, the two classes are separated as much as possible. Measured by the distance between projected center

$$\left(\mathbf{w}^{T}(\mathbf{m}_{1} - \mathbf{m}_{2})\right)^{2} = \mathbf{w}^{T}(\mathbf{m}_{1} - \mathbf{m}_{2})(\mathbf{m}_{1} - \mathbf{m}_{2})^{T}\mathbf{w}$$

= $\mathbf{w}^{T}\mathbf{S}_{B}\mathbf{w}$

where $S_B = (m_1 - m_2)(m_1 - m_2)^T$ is called **between-class** covariance matrix.

 After projection, the variances of the two classes are as small as possible. Measured by the within-class covariance

where

$$\mathbf{w}^T \mathbf{S}_W \mathbf{w}$$

$$\mathbf{S}_W = \sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1) (\mathbf{x}_n - \mathbf{m}_1)^T + \sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2) (\mathbf{x}_n - \mathbf{m}_2)^T$$

Fisher's Linear Discriminant

Fisher criterion: maximize the ratio w.r.t. w

 $J(\mathbf{w}) = \frac{\text{Between-class variance}}{\text{Within-class variance}} = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$

• Recall the quotient rule: for $f(x) = \frac{g(x)}{h(x)}$

$$f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{h^2(x)}$$

• Setting $\nabla J(w) = 0$, we obtain

$$(\mathbf{w}^T \mathbf{S}_B \mathbf{w}) \mathbf{S}_W \mathbf{w} = (\mathbf{w}^T \mathbf{S}_W \mathbf{w}) \mathbf{S}_B \mathbf{w}$$
$$(\mathbf{w}^T \mathbf{S}_B \mathbf{w}) \mathbf{S}_W \mathbf{w} = (\mathbf{w}^T \mathbf{S}_W \mathbf{w}) (\mathbf{m}_2 - \mathbf{m}_1) \left((\mathbf{m}_2 - \mathbf{m}_1)^T \mathbf{w} \right)$$

Terms $\mathbf{w}^T \mathbf{S}_B \mathbf{w}$, $\mathbf{w}^T \mathbf{S}_W \mathbf{w}$ and $(\mathbf{m}_2 - \mathbf{m}_1)^T \mathbf{w}$ are scalars, and we only care about directions. So the scalars are dropped. Therefore

$$\mathbf{w} \propto \mathbf{S}_W^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$$

From Fisher's Linear Discriminant to Classifiers

- Fisher's Linear Discriminant is not a classifier; it only decides on an optimal projection to convert high-dimensional classification problem to 1D.
- A bias (threshold) is needed to form a linear classifier (multiple thresholds lead to nonlinear classifiers). The final classifier has the form

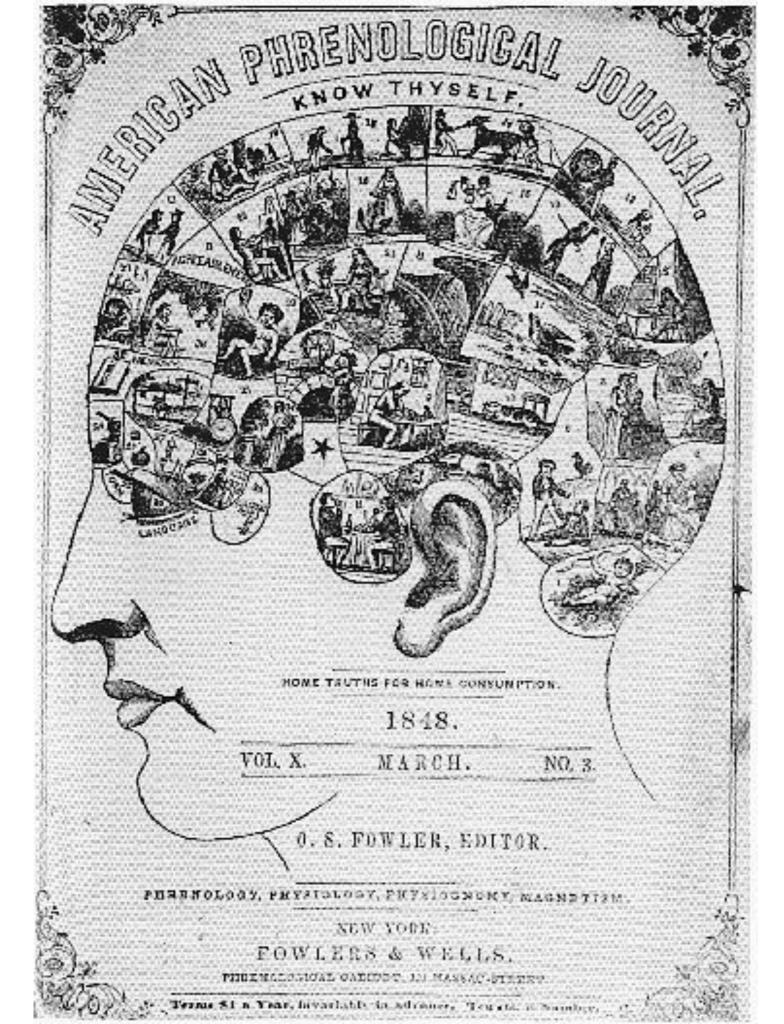
$$y(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + w_0)$$

where the nonlinear activation function sign(\cdot) is a step function

$$\operatorname{sign}(a) = \begin{cases} +1, & a \ge 0\\ -1, & a < 0 \end{cases}$$

• How to decide the bias w_0 ?

Perceptron



slide by Alex Smola

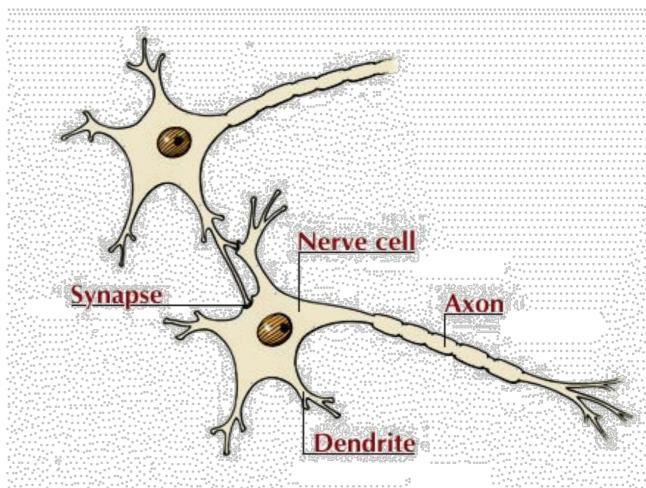
early theories of the brain

Biology and Learning

- Basic Idea
 - Good behavior should be rewarded, bad behavior punished (or not rewarded). This improves system fitness.
 - Killing a sabertooth tiger should be rewarded ...
 - Correlated events should be combined.
 - Pavlov's salivating dog.
- Training mechanisms
 - Behavioral modification of individuals (learning) Successful behavior is rewarded (e.g. food).
 - Hard-coded behavior in the genes (instinct)
 The wrongly coded animal does not reproduce.

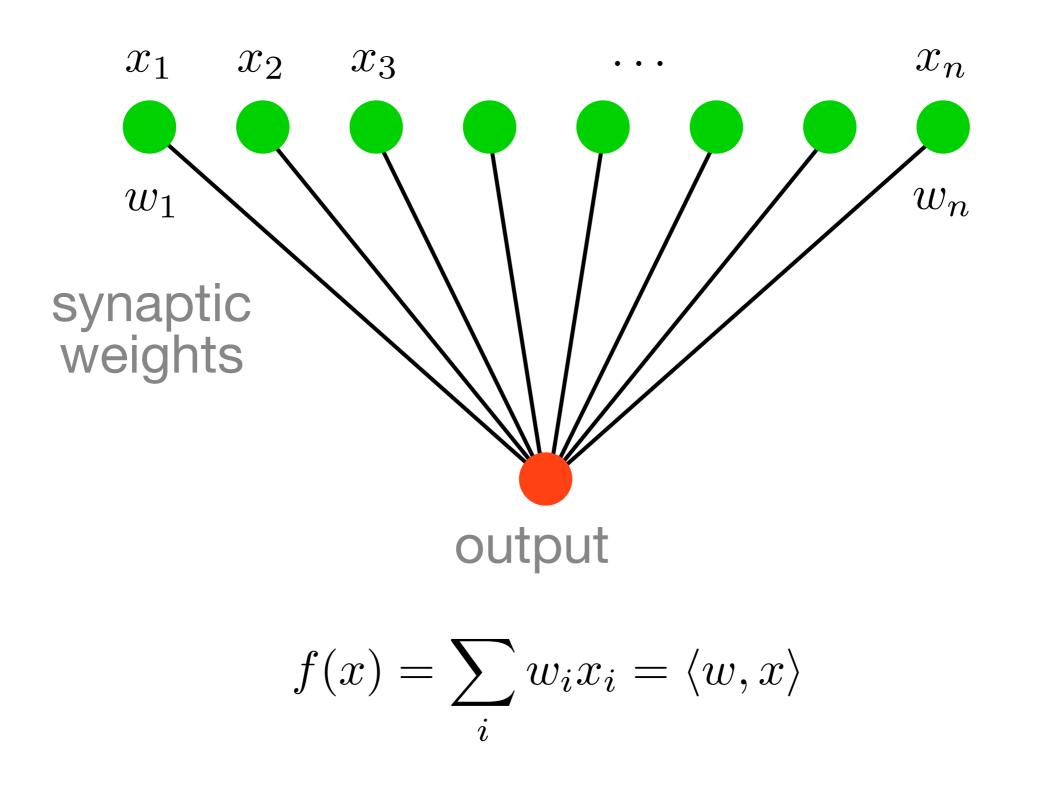
Neurons

- Soma (CPU)
 Cell body combines signals
- Dendrite (input bus)
 Combines the inputs from several other nerve cells



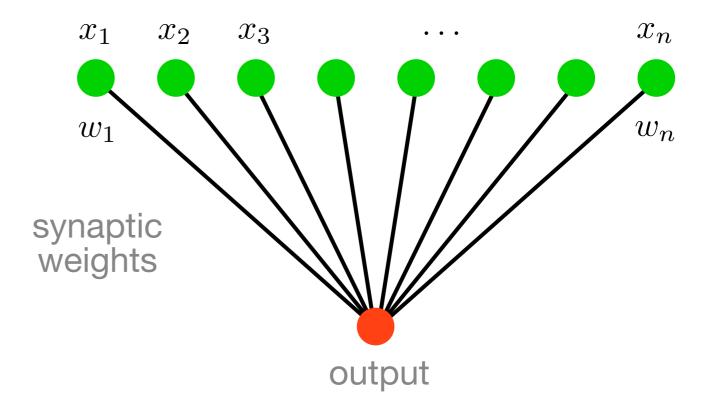
- Synapse (interface)
 Interface and parameter store between neurons
- Axon (cable)
 May be up to 1m long and will transport the activation signal to neurons at different locations

Neurons



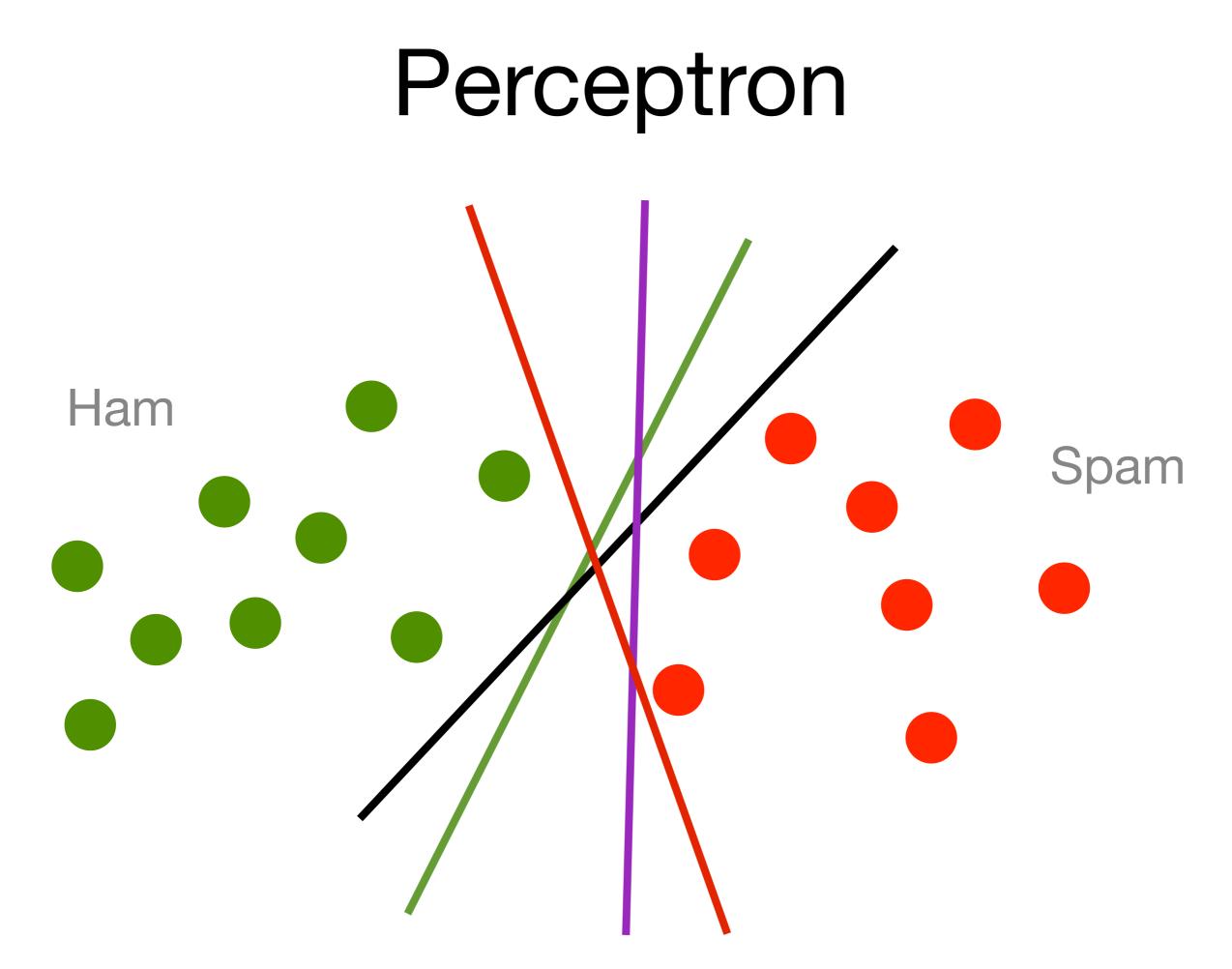
Perceptron

- Weighted linear combination
- Nonlinear decision function
- Linear offset (bias)



$$f(x) = \sigma\left(\langle w, x \rangle + b\right)$$

- Linear separating hyperplanes
 (spam/ham, novel/typical, click/no click)
- Learning
 - Estimating the parameters w and b



Perceptron

Rosenblatt

The Perceptron

- initialize w = 0 and b = 0repeat if $y_i [\langle w, x_i \rangle + b] \le 0$ then $w \leftarrow w + y_i x_i$ and $b \leftarrow b + y_i$ end if until all classified correctly
- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum y_i x_i$
- Classifier is linear combination of inner products $f(x) = \sum_{i \in I} y_i \langle x_i, x \rangle + b$

 $i \in I$

Convergence Theorem

• If there exists some (w^*, b^*) with unit length and $y_i [\langle x_i, w^* \rangle + b^*] \ge \rho$ for all *i*

then the perceptron converges to a linear separator after a number of steps bounded by

$$(b^{*2}+1)(r^2+1)\rho^{-2}$$
 where $||x_i|| \le r$

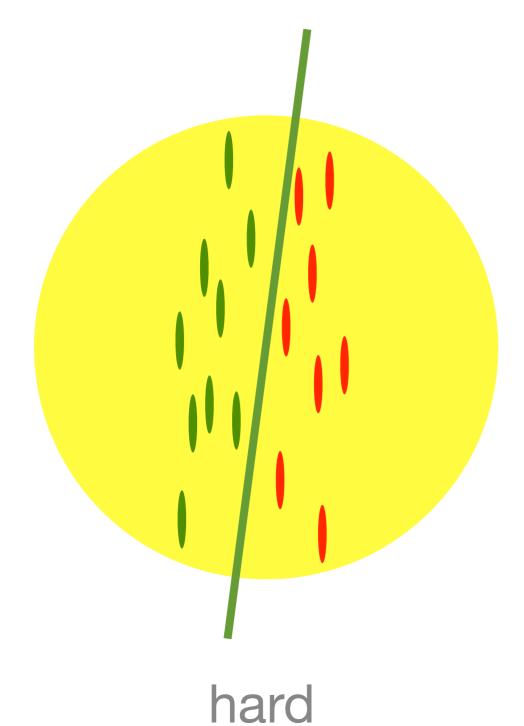
- Dimensionality independent
- Order independent (i.e. also worst case)
- Scales with 'difficulty' of problem

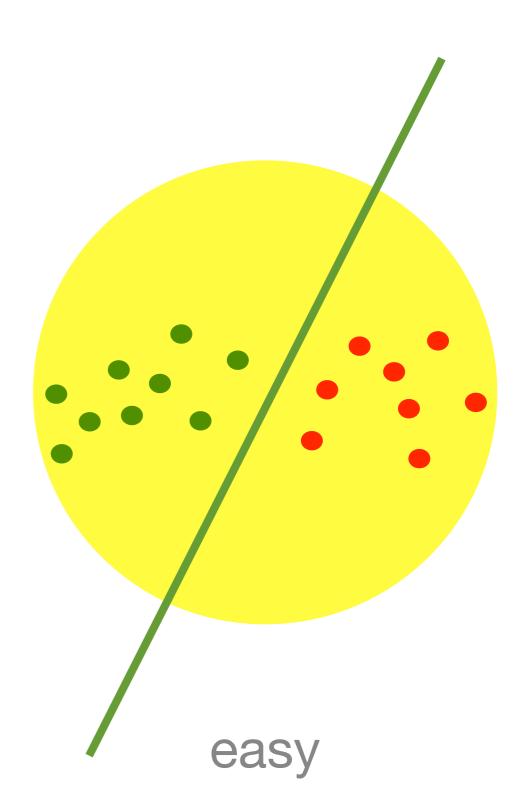
Consequences

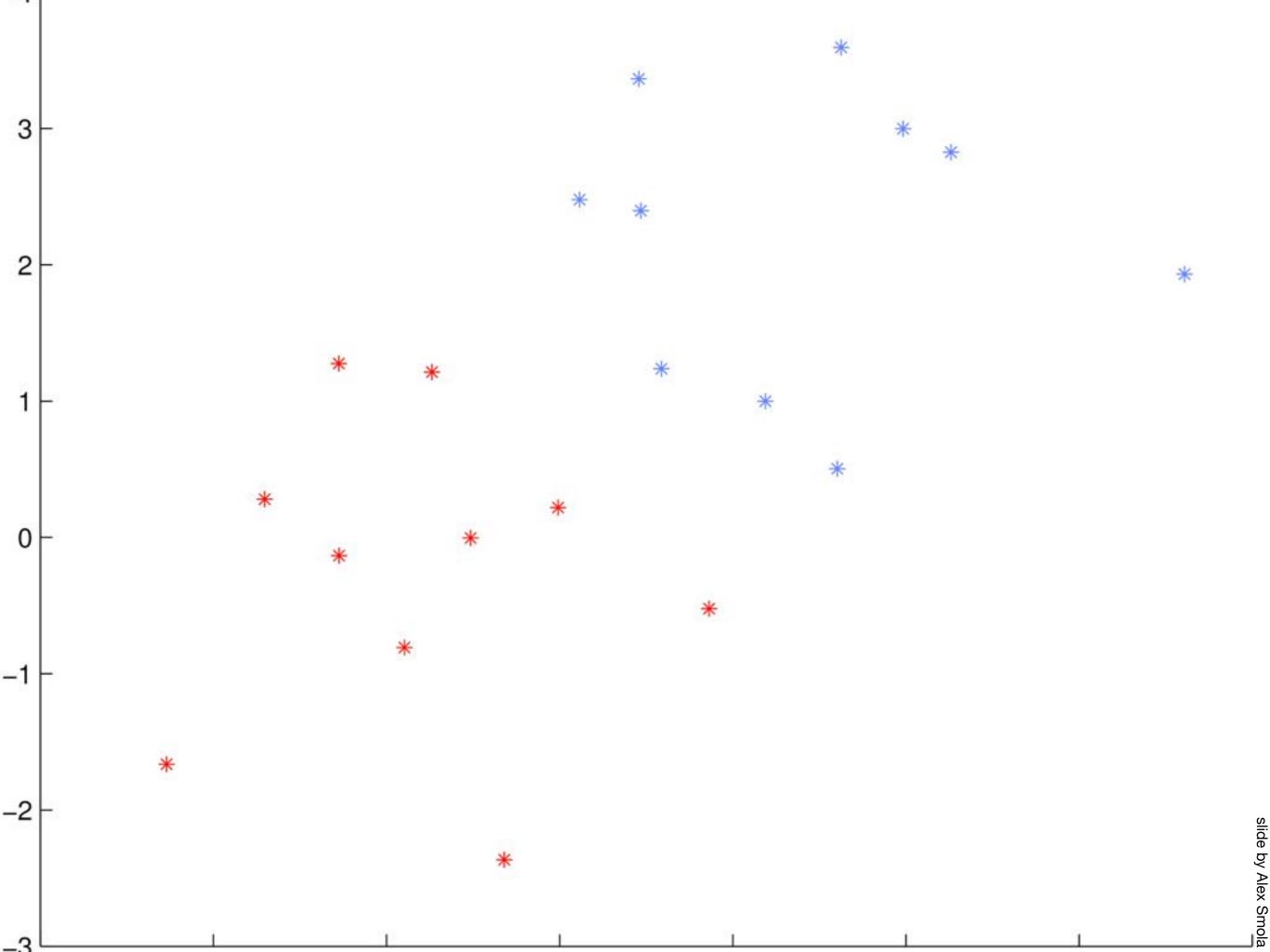
- Only need to store errors.
 This gives a compression bound for perceptron.
- Stochastic gradient descent on hinge loss $l(x_i, y_i, w, b) = \max(0, 1 - y_i [\langle w, x_i \rangle + b])$
- Fails with noisy data

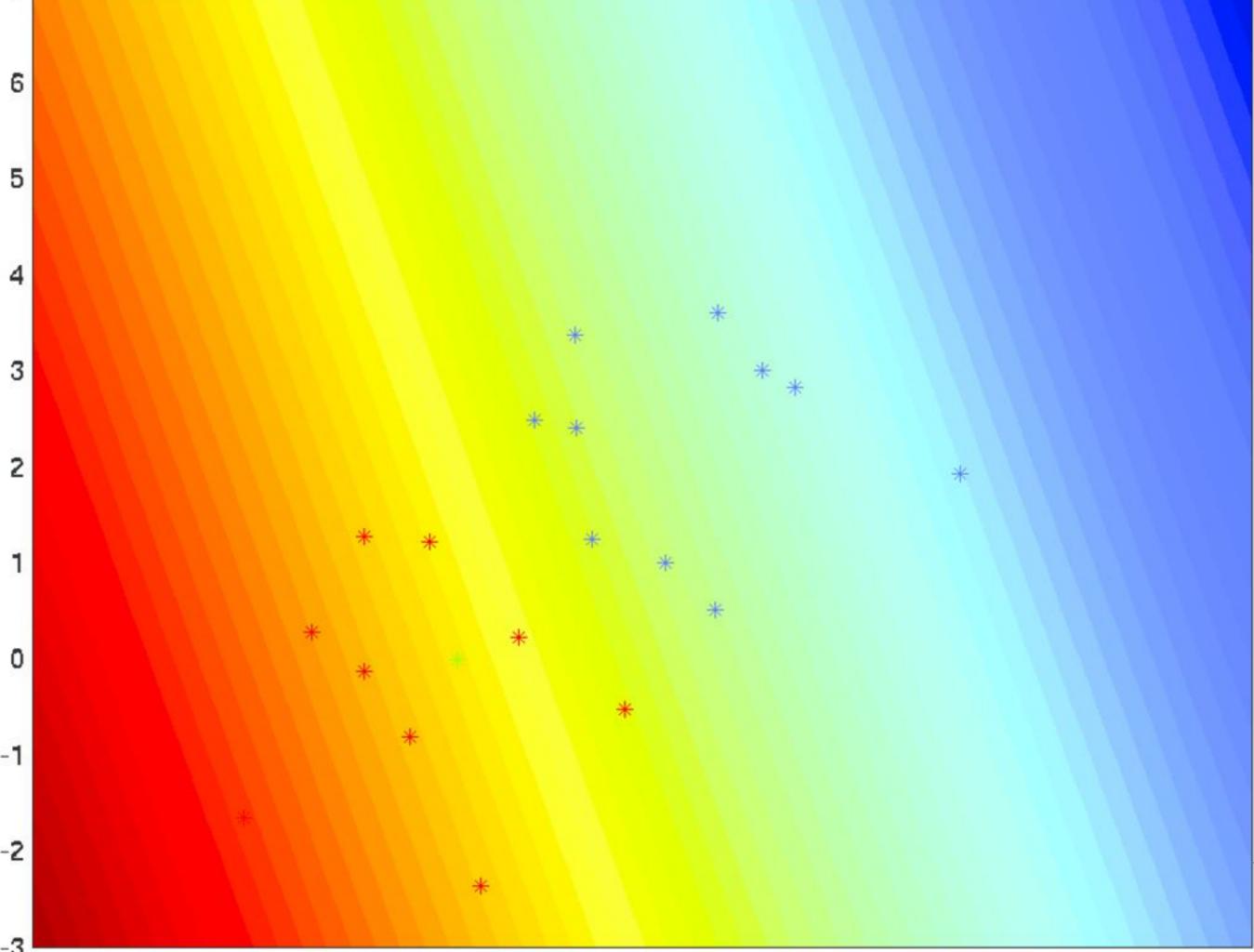
do NOT train your avatar with perceptrons

Hardness: margin vs. size

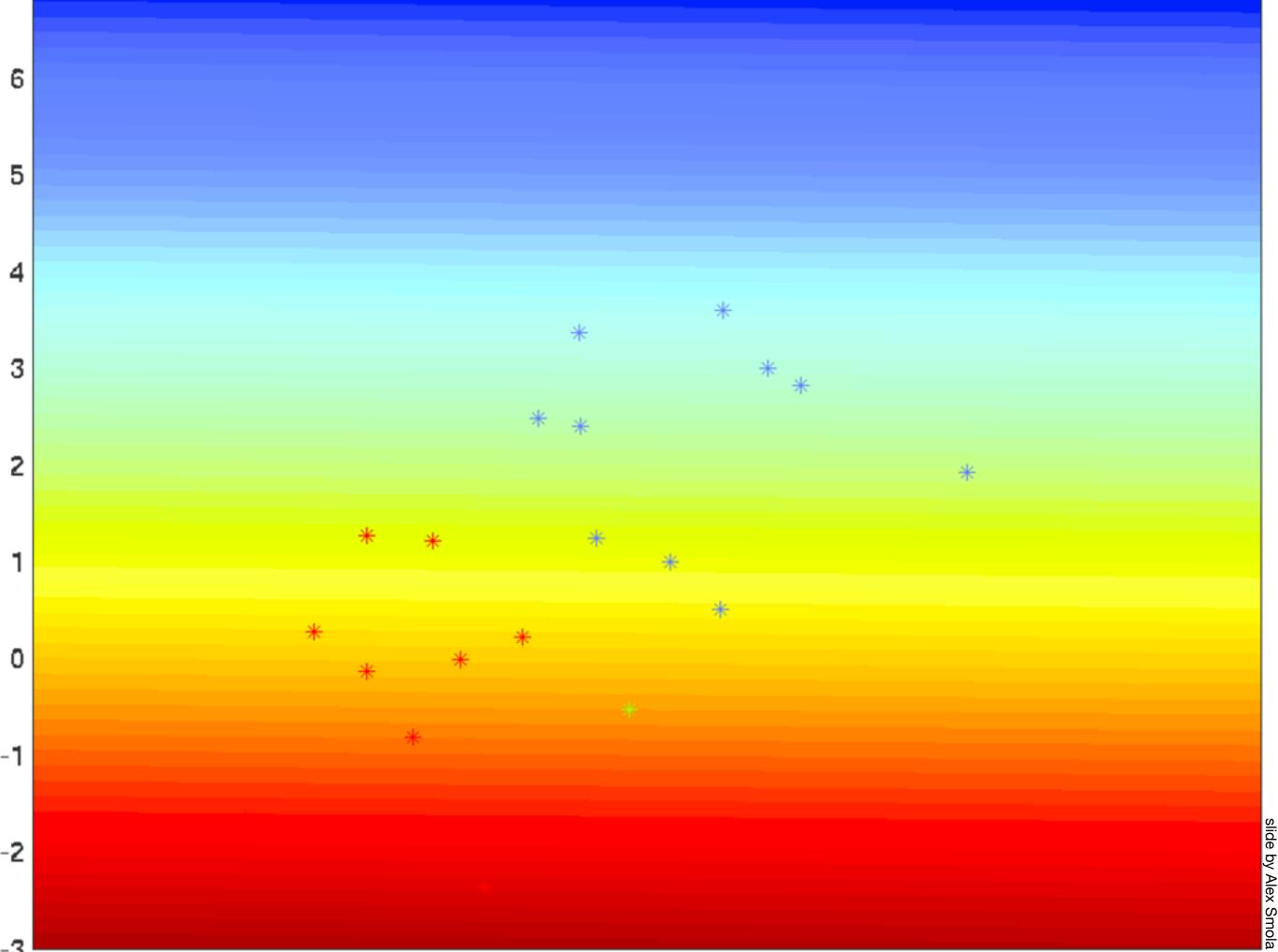




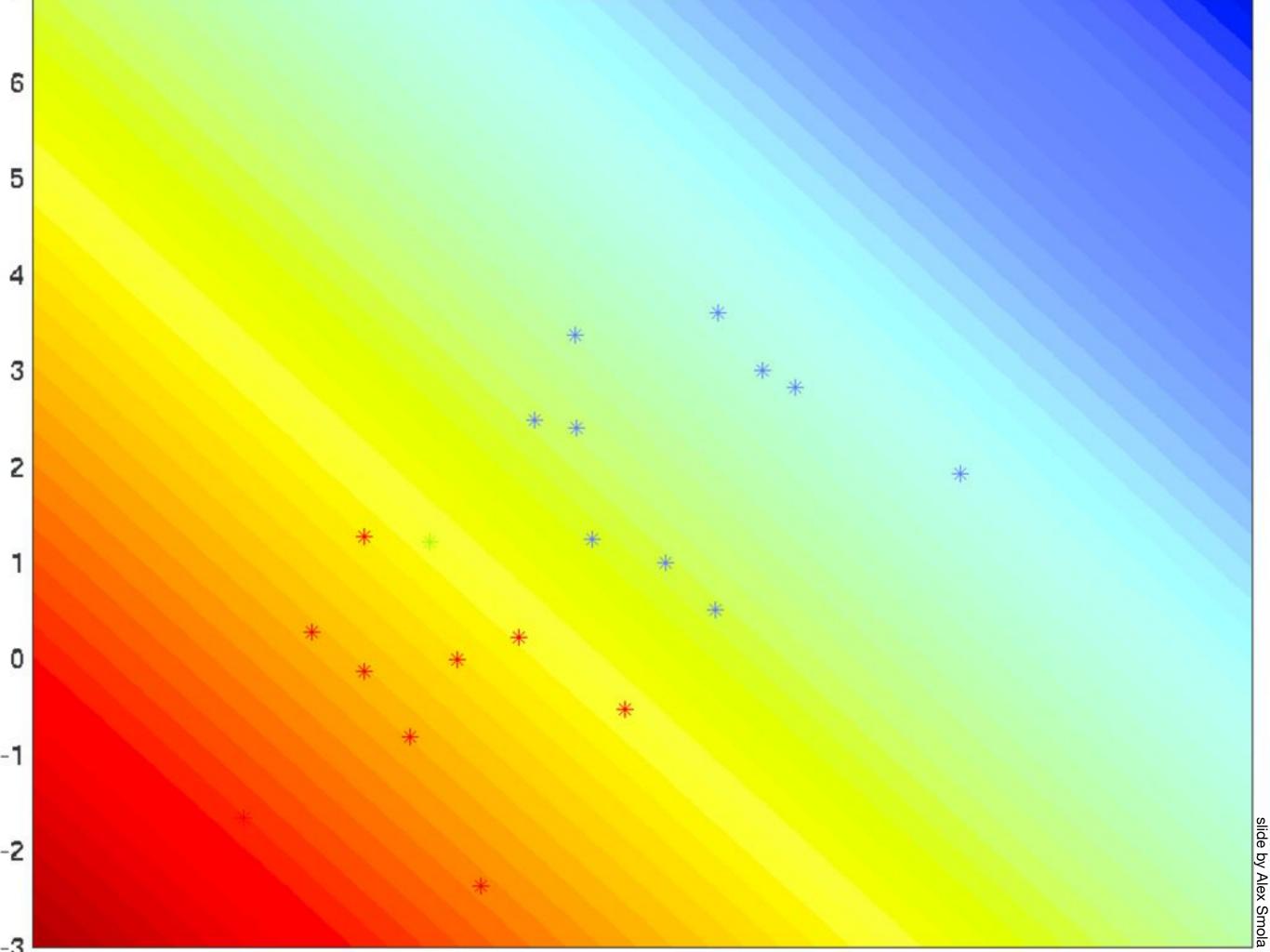


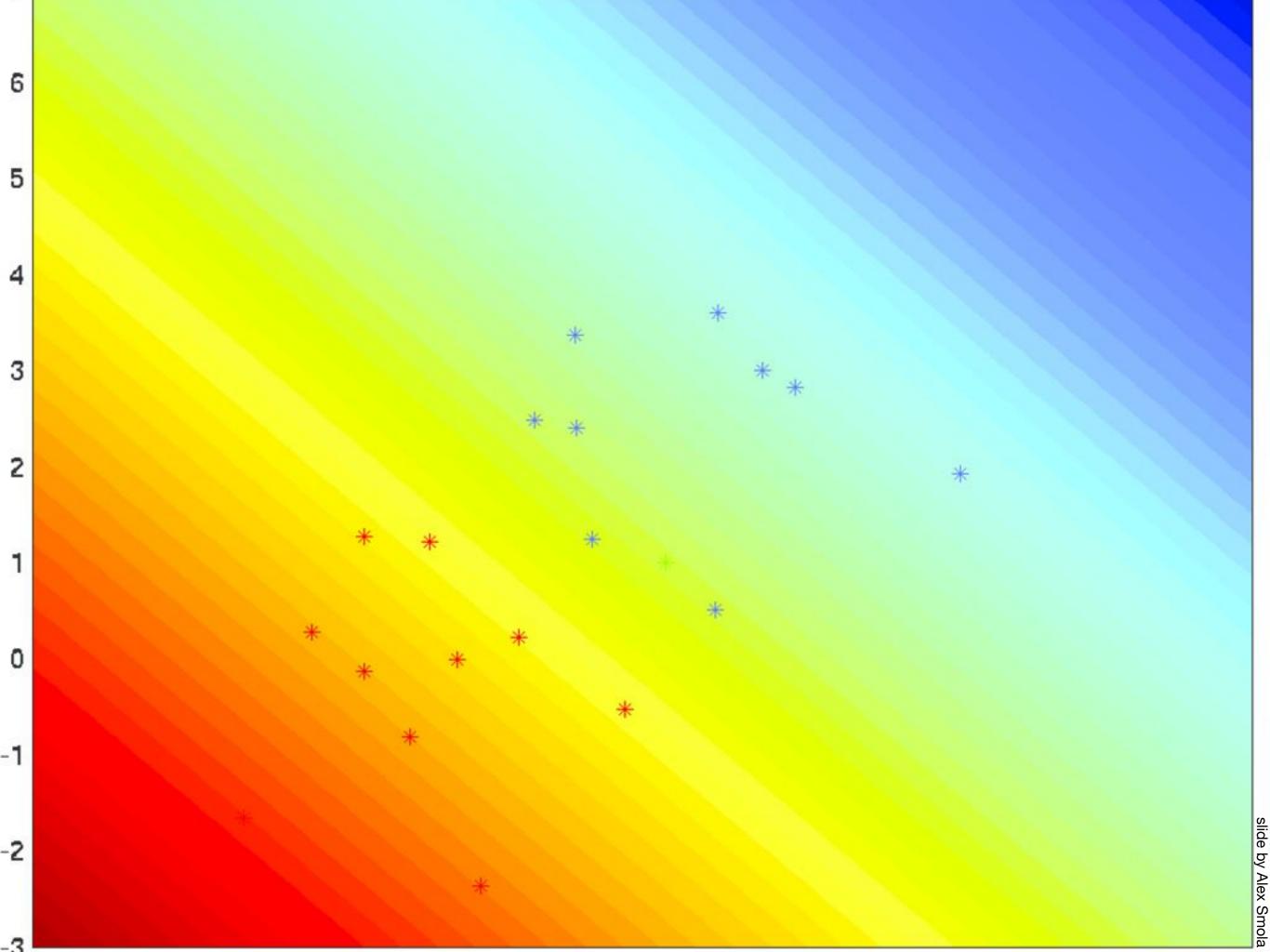


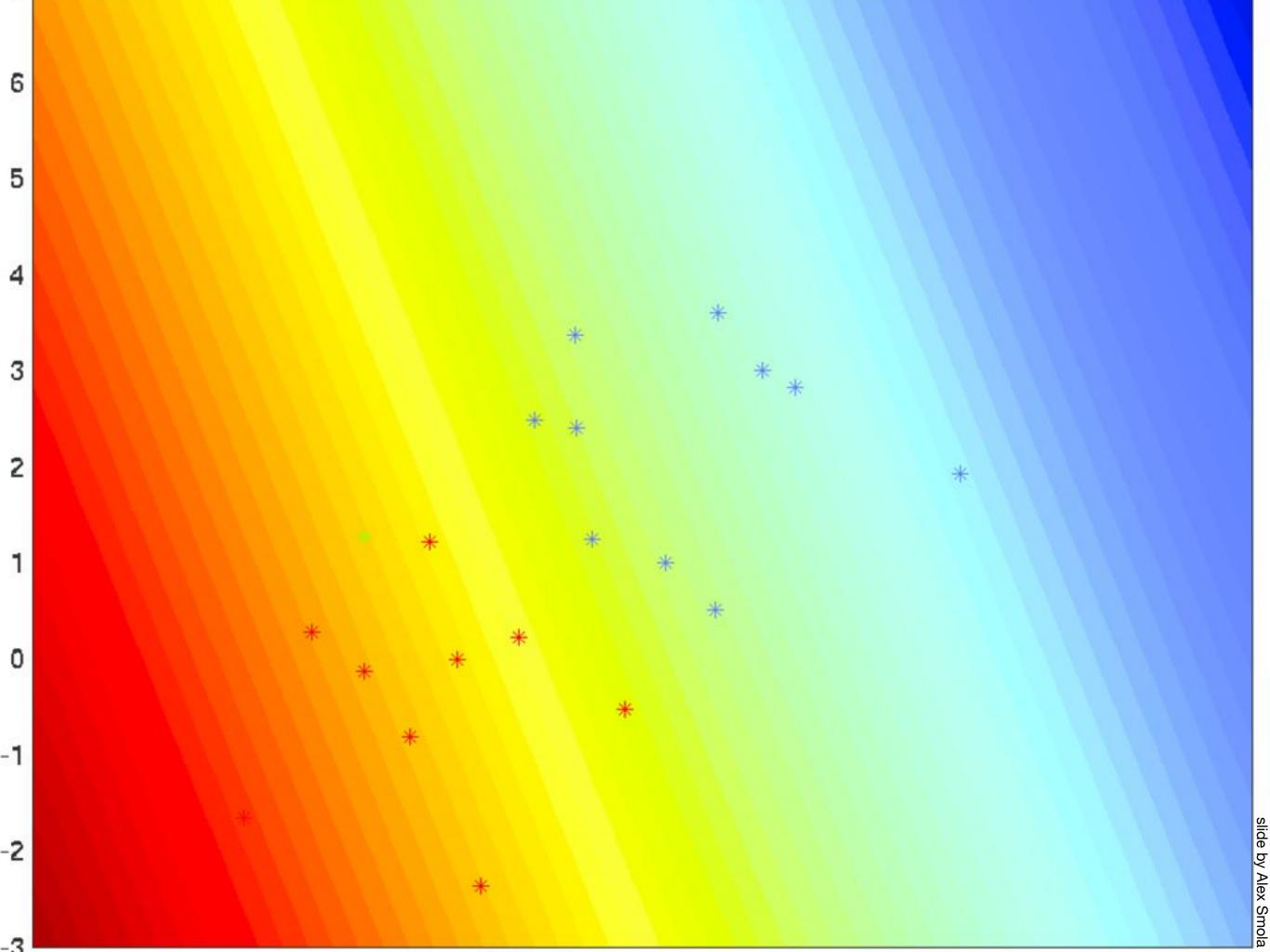
slide by Alex Smola

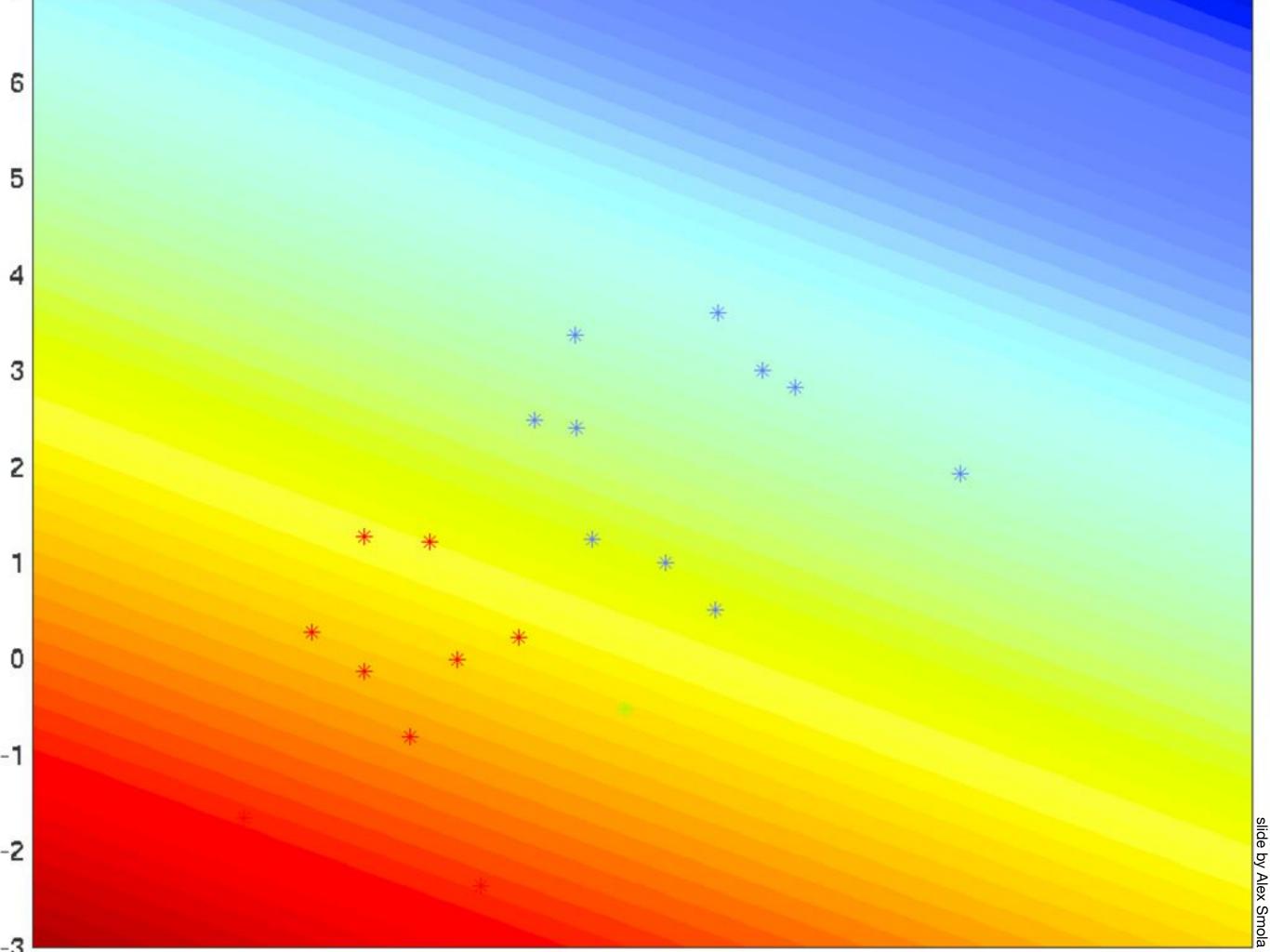


-3

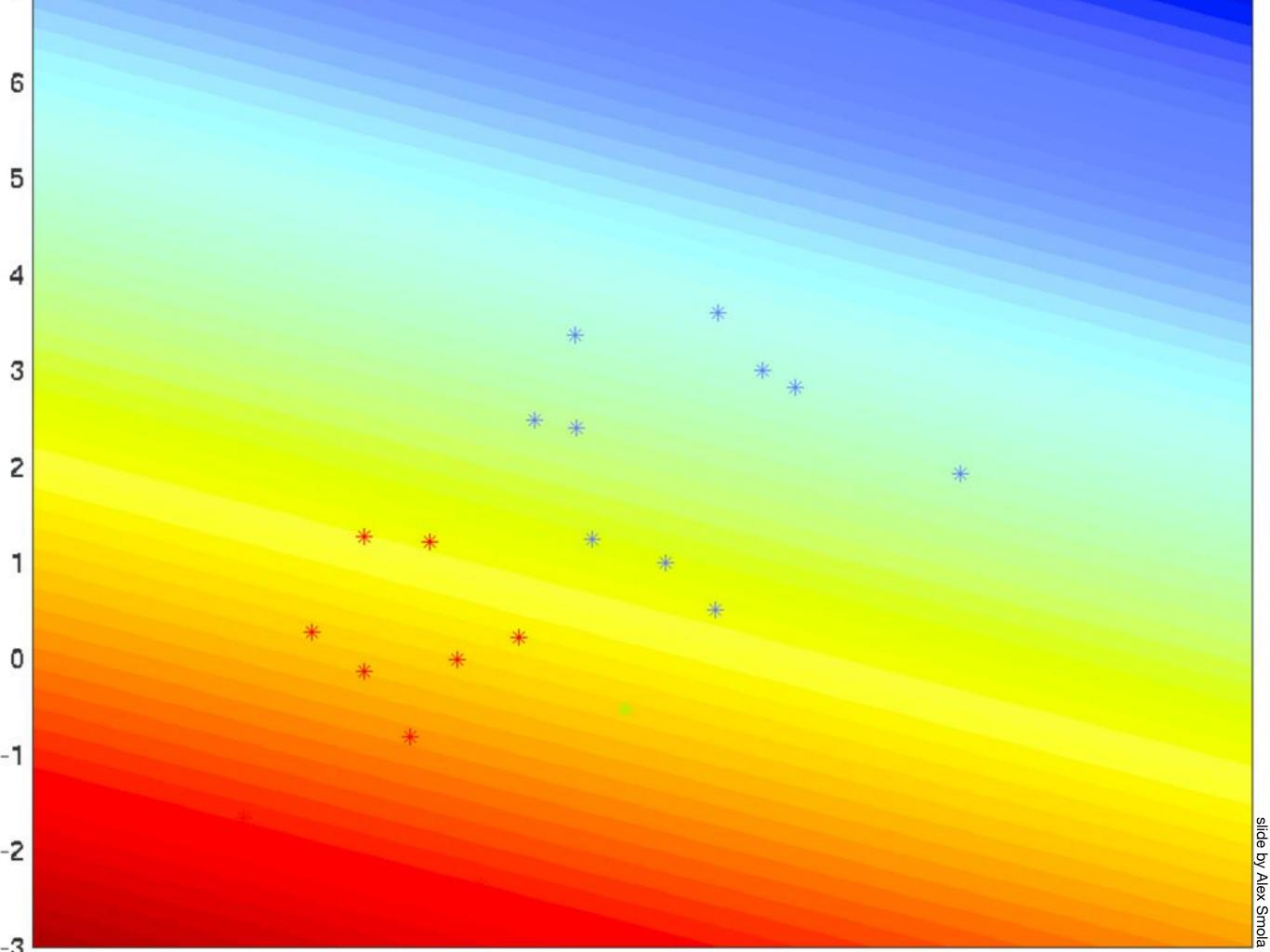


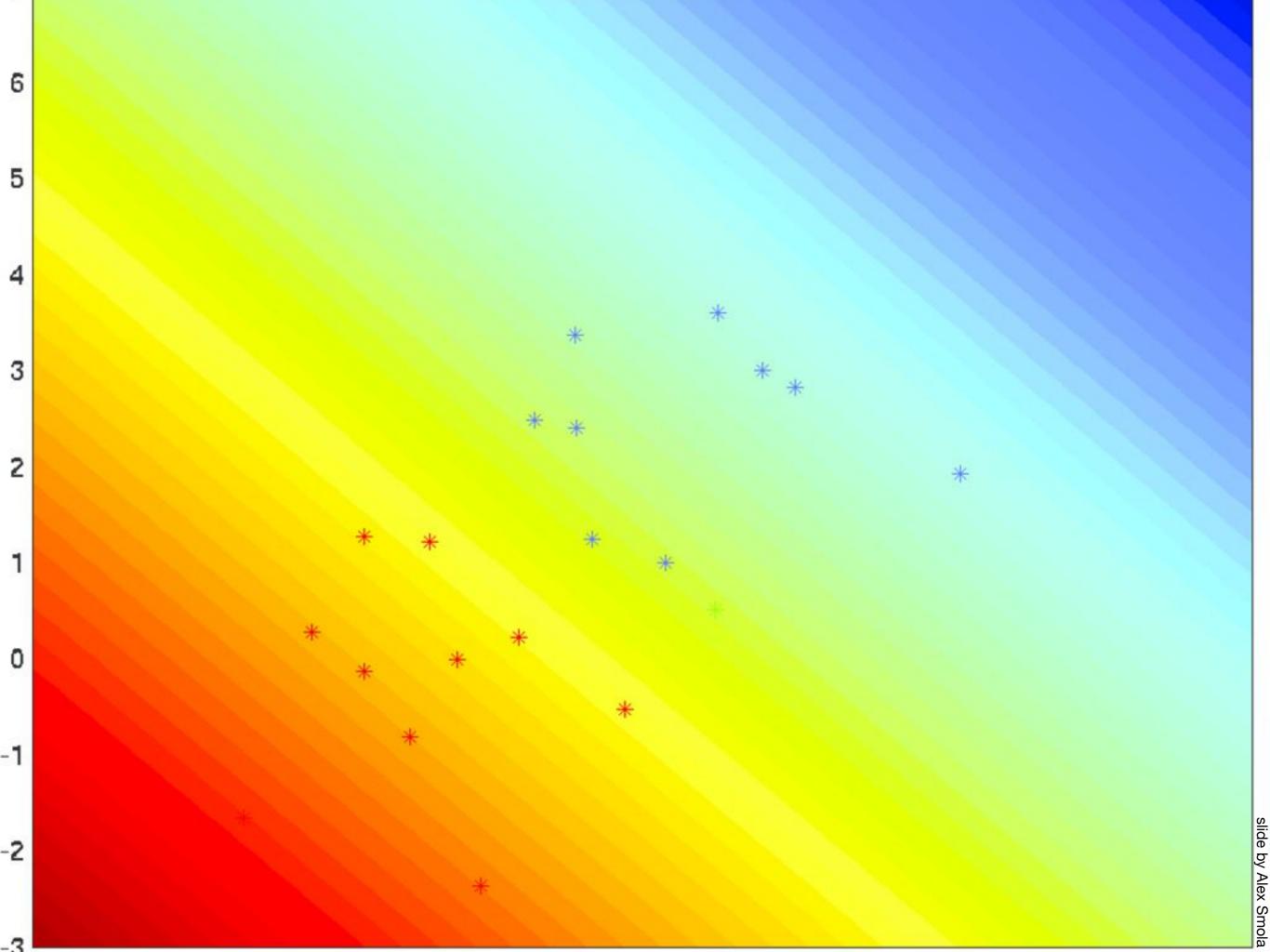


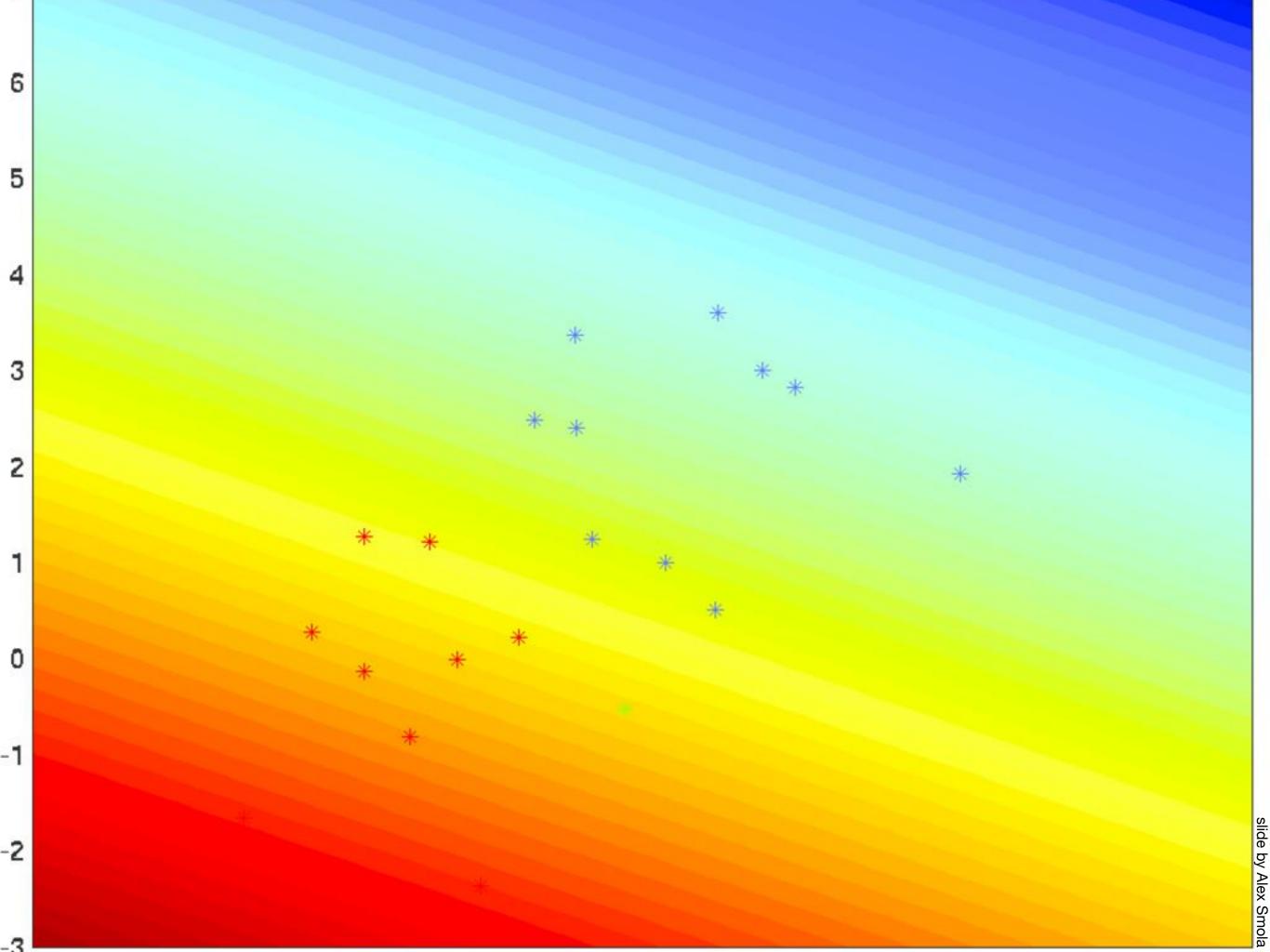


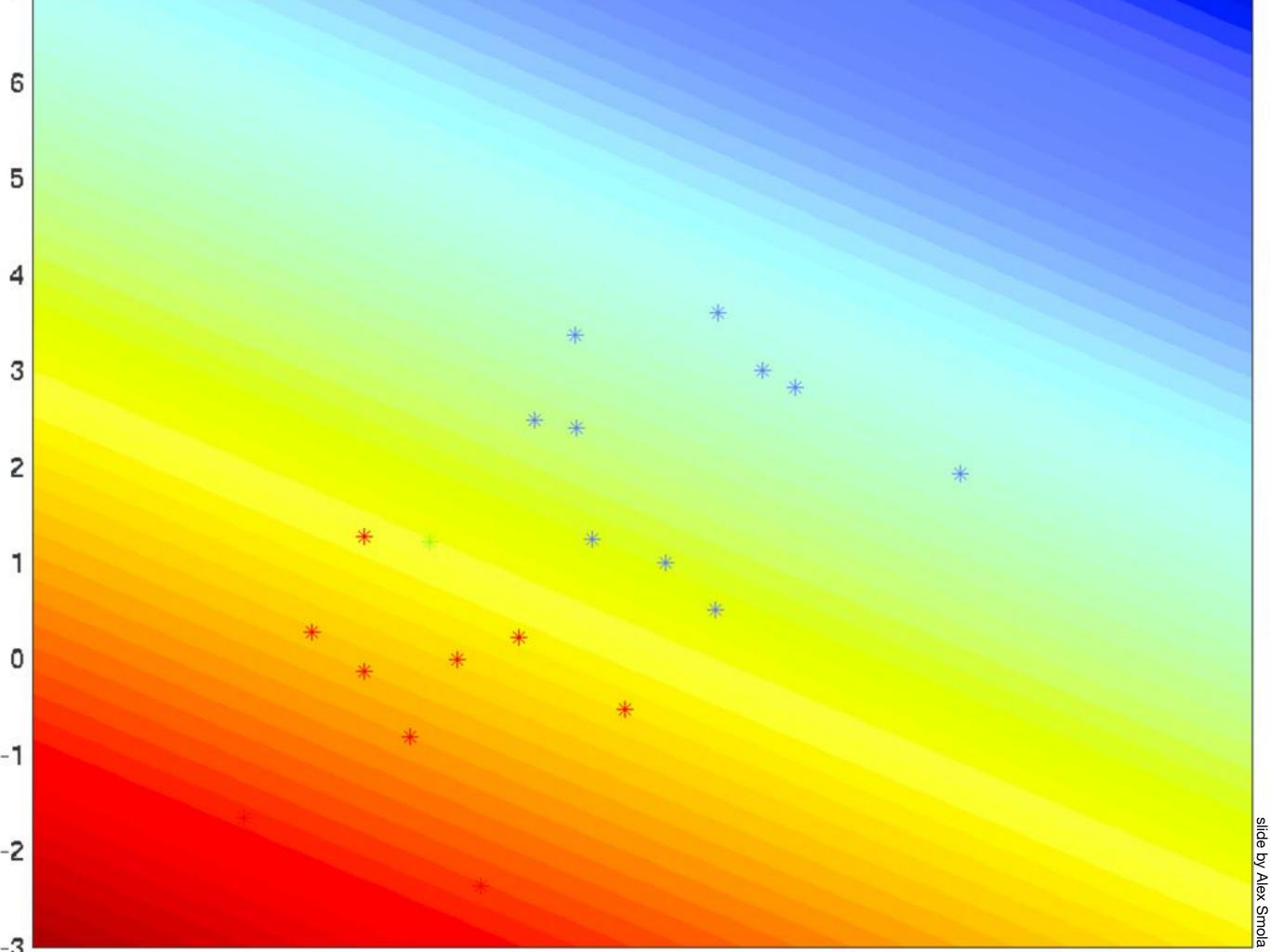






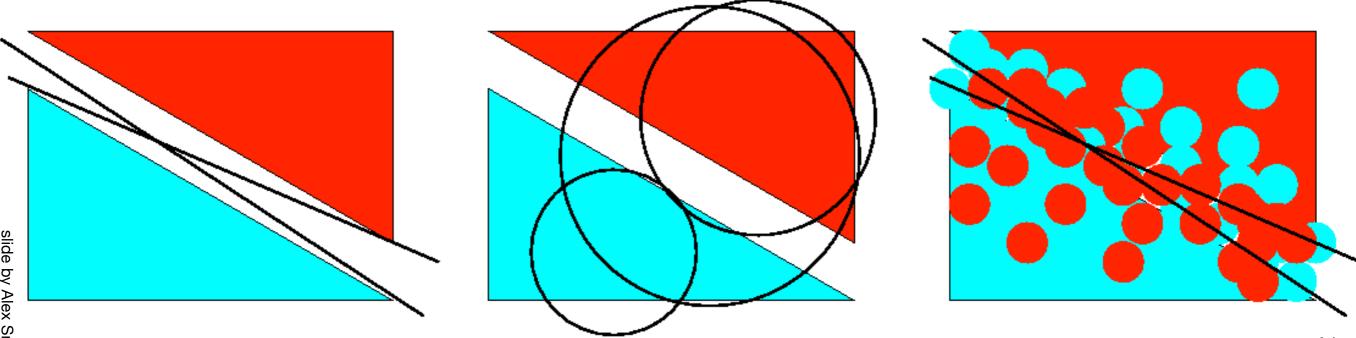


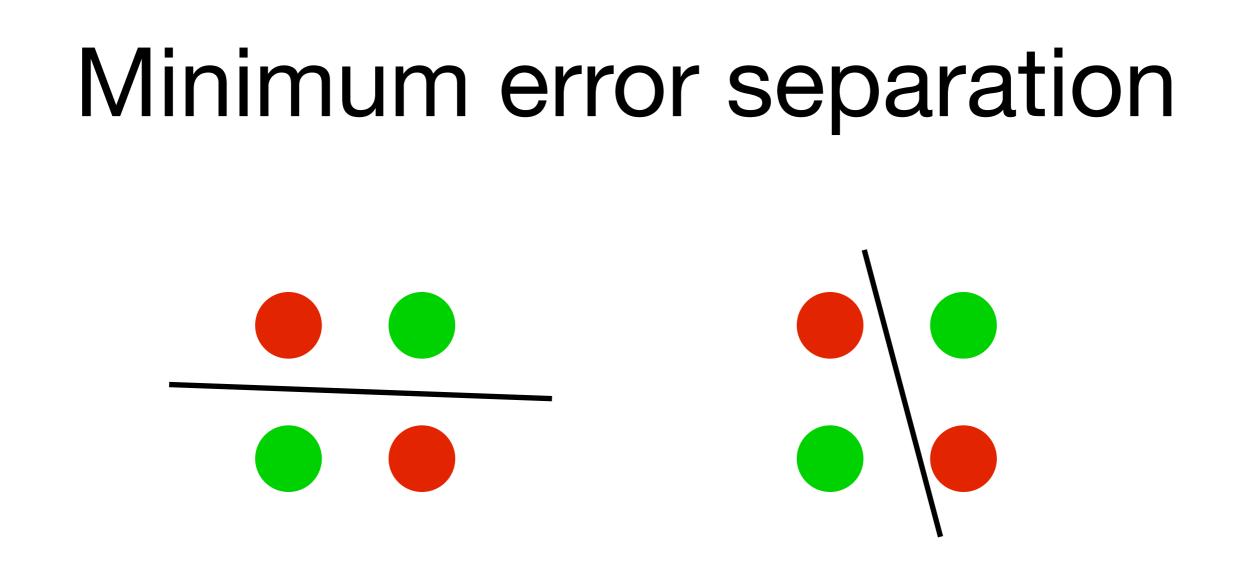




Concepts & version space

- Realizable concepts
 - Some function exists that can separate data and is included in the concept space
 - For perceptron data is linearly separable
- Unrealizable concept
 - Data not separable
 - We don't have a suitable function class (often hard to distinguish)





- XOR not linearly separable
- Nonlinear separation is trivial
- Caveat (Minsky & Papert)
 Finding the minimum error linear separator
 is NP hard (this killed Neural Networks in the 70s).

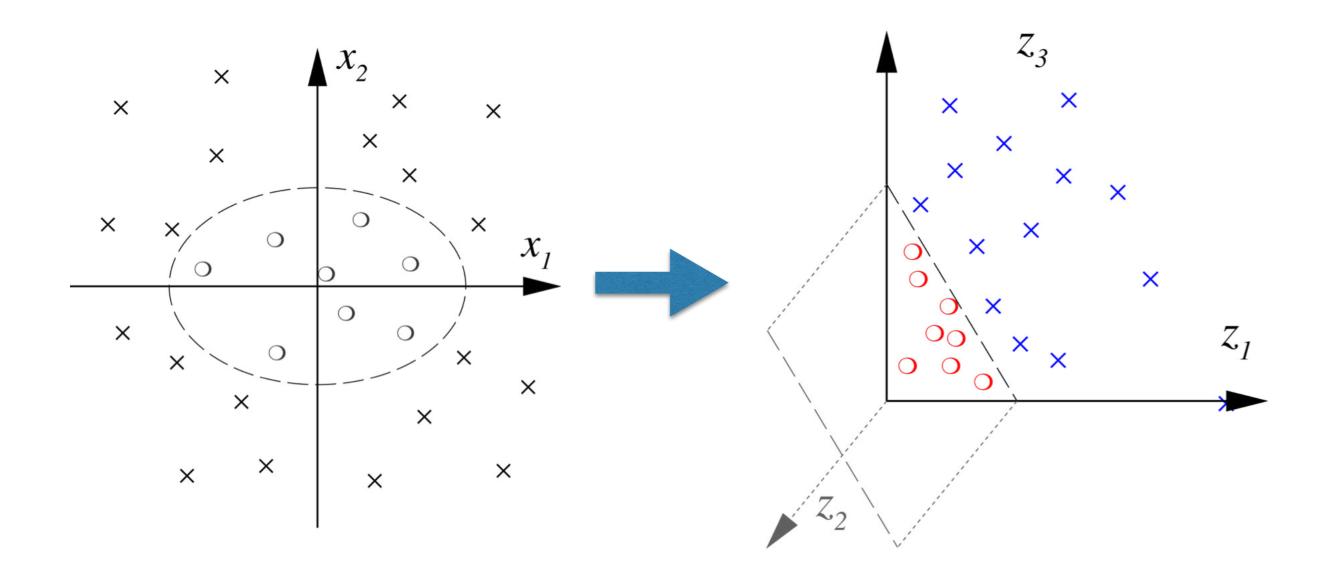
Nonlinear Features

Regression

We got nonlinear functions by preprocessing

- Perceptron
 - Map data into feature space $x \to \phi(x)$
 - Solve problem in this space
 - Query replace $\langle x,x'\rangle\,$ by $\langle \phi(x),\phi(x')\rangle$ for code
- Feature Perceptron
 - Solution in span of $\phi(x_i)$

Quadratic Features



Separating surfaces are Circles, hyperbolae, parabolae

Constructing Features (very naive OCR system)

	I	2	3	4	5	6	7	8	9	0
Loops	0	0	0	Ι	0	Ι	0	2	I	Ι
3 Joints	0	0	0	0	0	Ι	0	0	I	0
4 Joints	0	0	0	I	0	0	0	Ι	0	0
Angles	0	Ι	I	I	I	0	I	0	0	0
Ink	Ι	2	2	2	2	2	Ι	3	2	2

Delivered-To: <u>alex.smola@gmail.com</u> Received: by 10.216.47.73 with SMTP id s51cs361171web; Tue, 3 Jan 2012 14:17:53 -0800 (PST) Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725; Tue, 03 Jan 2012 14:17:51 -0800 (PST) Return-Path: <alex+caf_=alex.smola=<u>amail.com@smola.ora</u>> Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175]) by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51 (version=TLSv1/SSLv3 cipher=OTHER); Tue, 03 Jan 2012 14:17:51 -0800 (PST) Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of alex+caf_=alex.smola=<u>amail.com@smola.org</u>) clientip=209.85.215.175; Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of alex+caf_=alex.smola=gmail.com@smola.org) smtp.mail=alex+caf_=alex.smola=<u>amail.com@smola.org;</u> dkim=pass (test mode) header.i=@googlemail.com Received: by eaal1 with SMTP id l1so15092746eaa.6 for <<u>alex.smola@amail.com</u>>; Tue, 03 Jan 2012 14:17:51 -0800 (PST) Received: by 10.205.135.18 with SMTP id ie18mr5325064bkc.72.1325629071362; Tue, 03 Jan 2012 14:17:51 -0800 (PST) X-Forwarded-To: <u>alex.smola@qmail.com</u> X-Forwarded-For: <u>alex@smola.org</u> <u>alex.smola@gmail.com</u> Delivered-To: <u>alex@smola.ora</u> Received: by 10.204.65.198 with SMTP id k6cs206093bki; Tue, 3 Jan 2012 14:17:50 -0800 (PST) Received: by 10.52.88.179 with SMTP id bh19mr10729402vdb.38.1325629068795; Tue, 03 Jan 2012 14:17:48 -0800 (PST) Return-Path: althoff.tim@googlemail.com Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179]) by mx.google.com with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48 (version=TLSv1/SSLv3 cipher=OTHER); Tue, 03 Jan 2012 14:17:48 -0800 (PST) Received-SPF: pass (google.com: domain of <u>althoff.tim@googlemail.com</u> designates 209.85.220.179 as permitted sender) client-ip=209.85.220.179; Received: by vcbf13 with SMTP id f13so11295098vcb.10 for <<u>alex@smola.org</u>>; Tue, 03 Jan 2012 14:17:48 -0800 (PST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=googlemail.com; s=gamma; h=mime-version:sender:date:x-google-sender-auth:message-id:subject :from:to:content-type; bh=WCbdZ5sXac25dpH02XcRyD0dts993hKwsAVXpGrFh0w=; b=WK2B2+ExWnf/gvTkw6uUvKuP4XeoKnlJq3USYTm0RARK8dSFjy0QsIHeAP9Yssxp60 7ngGoTzYqd+ZsyJfvQcLAWp1PCJhG8AMcnqWkx0NMeoFvIp2HQooZwxS0Cx5ZRgY+7qX uIbbdna41UDXj6UFe16SpLDCkptd80Z3ar7+o= MIME-Version: 1.0 Received: by 10.220.108.81 with SMTP id e17mr24104004vcp.67.1325629067787; Tue, 03 Jan 2012 14:17:47 -0800 (PST) Sender: <u>althoff.tim@googlemail.com</u> Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47 -0800 (PST) Date: Tue, 3 Jan 2012 14:17:47 -0800 X-Google-Sender-Auth: 6bwi6D17HjZIkxOEol38NZzyeHs Message-ID: <<u>CAFJJHDGPBW+SdZq0MdAABiAKydDk9tpeMoDijYGjoG0-WC7osq@mail.gmail.com</u>> Subject: CS 281B. Advanced Topics in Learning and Decision Making From: Tim Althoff <<u>althoff@eecs.berkeley.edu</u>> To: <u>alex@smola.ora</u> Content-Type: multipart/alternative; boundary=f46d043c7af4b07e8d04b5a7113a

Feature Engineering for Spam Filtering

- bag of words
- pairs of words
- date & time
- recipient path
- IP number
- sender
- encoding
- links
- ... secret sauce ...

--f46d043c7af4b07e8d04b5a7113a

Content-Type: text/plain; charset=ISO-8859-1

lide

More feature engineering

Two Interlocking Spirals
 Transform the data into a radial and angular part

 $(x_1, x_2) = (r\sin\phi, r\cos\phi)$

- Handwritten Japanese Character Recognition
 - Break down the images into strokes and recognize it
 - Lookup based on stroke order
- Medical Diagnosis
 - Physician's comments
 - Blood status / ECG / height / weight / temperature ...
 - Medical knowledge
- Preprocessing
 - Zero mean, unit variance to fix scale issue (e.g. weight vs. income)
 - Probability integral transform (inverse CDF) as alternative

The Perceptron on features

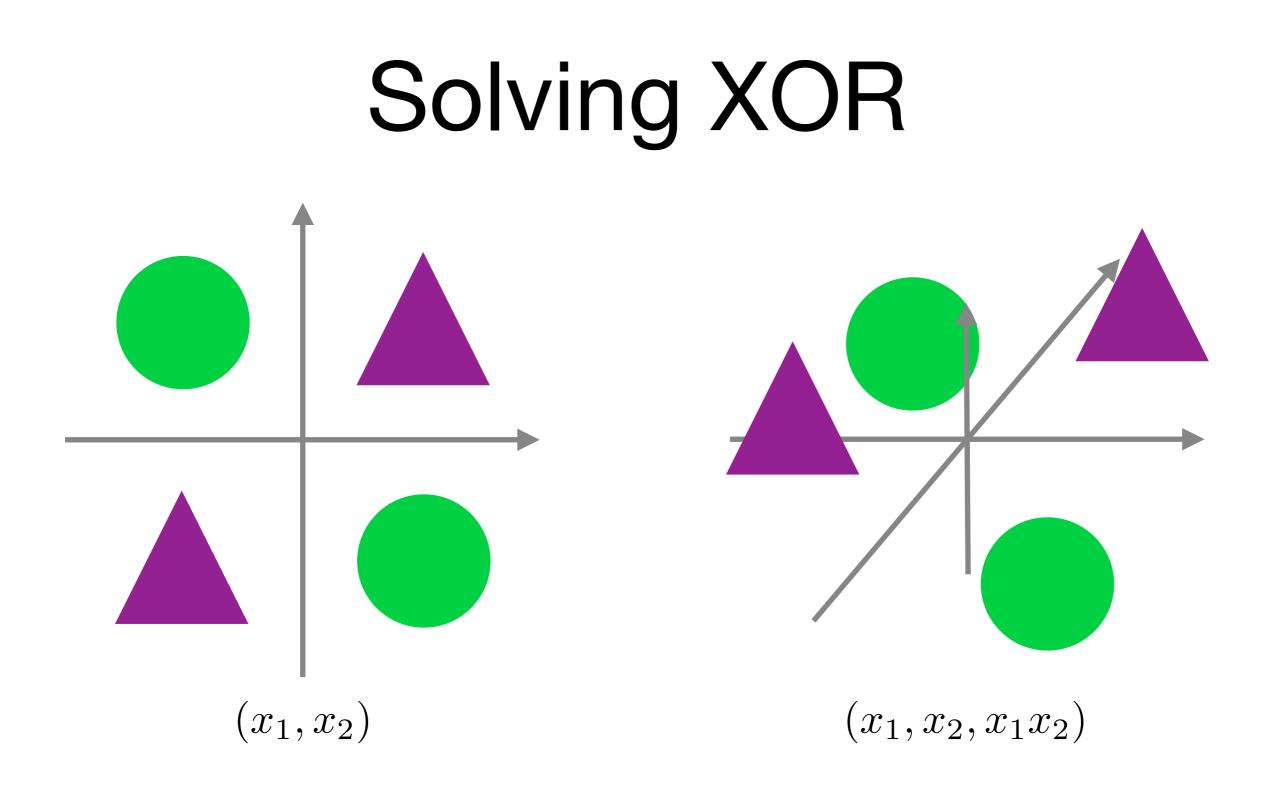
initialize
$$w, b = 0$$

repeat
Pick (x_i, y_i) from data
if $y_i(w \cdot \Phi(x_i) + b) \leq 0$ then
 $w' = w + y_i \Phi(x_i)$
 $b' = b + y_i$
until $y_i(w \cdot \Phi(x_i) + b) > 0$ for all i

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum y_i \phi(x_i)$
- Classifier is linear combination of $i \in I$ inner products $f(x) = \sum_{i \in I} y_i \langle \phi(x_i), \phi(x) \rangle + b$

Problems

- Problems
 - Need domain expert (e.g. Chinese OCR)
 - Often expensive to compute
 - Difficult to transfer engineering knowledge
- Shotgun Solution
 - Compute many features
 - Hope that this contains good ones
 - Do this efficiently



- XOR not linearly separable
- Mapping into 3 dimensions makes it easily solvable

Next Lecture: Multi-layer Perceptron