Fundamentals of Machine earning Lecture 15: Support Vector Machines

Erkut Erdem // Hacettepe University // Spring 2021

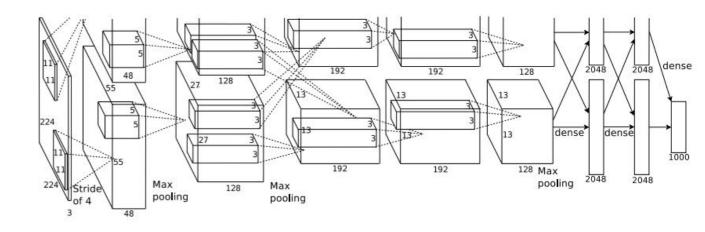
Announcement

- Midterm exam will be held on Apr 21, 2021 at 09.00 (online).
- No class next Monday! Extra office hour.

Last time...

AlexNet [Krizhevsky et al. 2012]

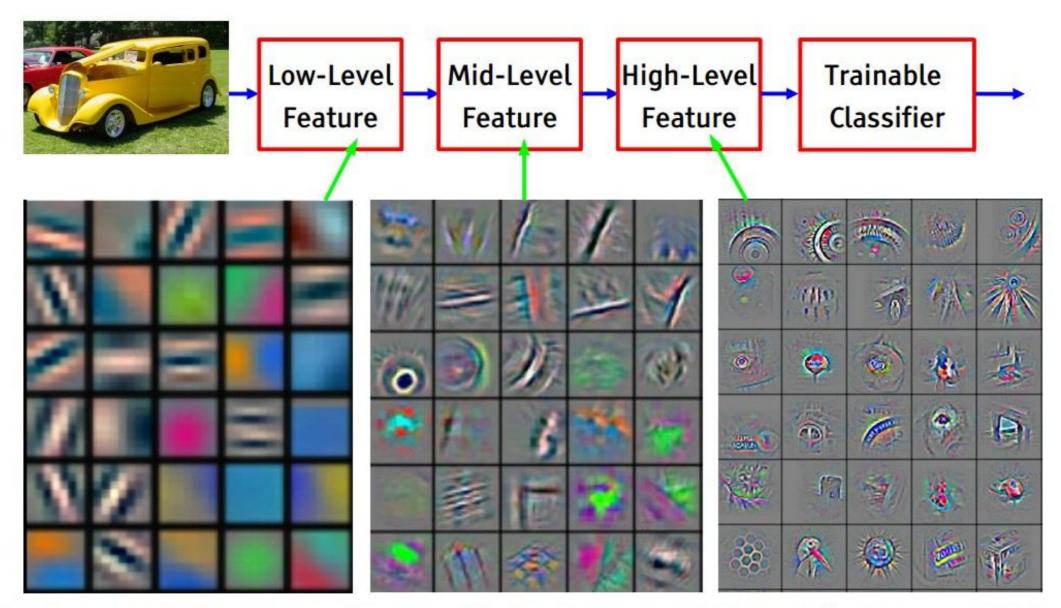
Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV2: 2011 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 ⁴/₂ [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons 🕈 [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)



Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Last time.. Understanding ConvNets



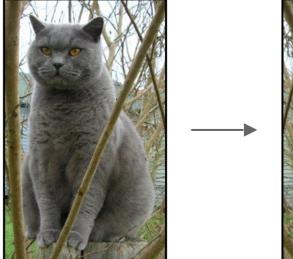
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

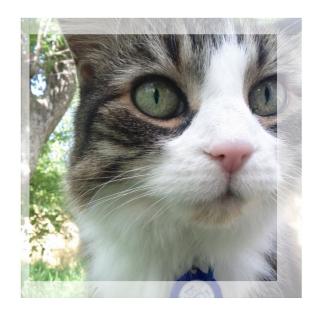
http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

Last time... Data Augmentation

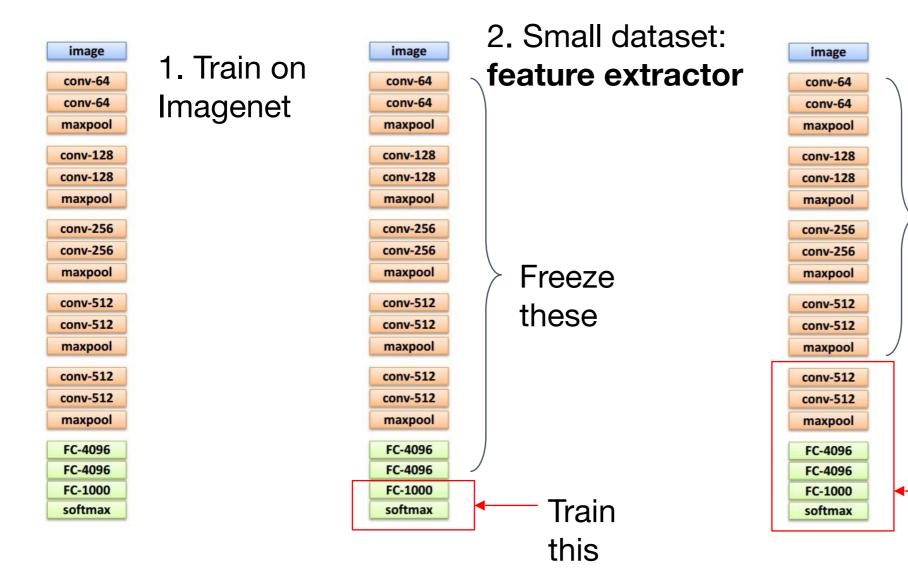
Random mix/combinations of:

- translation
- rotation
- stretching
- shearing,
- lens distortions, ...





Last time... Transfer Learning with Convolutional Networks



3. Medium dataset: finetuning

more data = retrain more of the network (or all of it)

Freeze these

tip: use only ~1/10th of the original learning rate in finetuning top layer, and ~1/100th on intermediate layers

Train this

Today

- Support Vector Machines
 - Large Margin Separation
 - Optimization Problem
 - Support Vectors

Bindle $\mathcal{F}_{\mathcal{F}}$ in $\mathcal{F}_{\mathcal{F}}$ is a second second

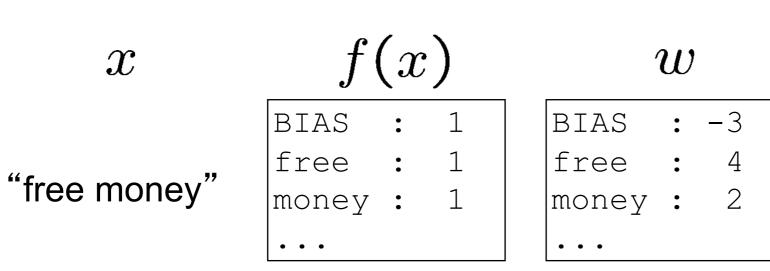
- Training data: sample drawn i.j.d. from set $X \subseteq \mathbb{R}^{N}$ according to some distribution D, D
- $S = ((x_1, y_1), (x_n, (y_n)) \in X \{ \{ \downarrow, \downarrow, \downarrow \} \}, S = ((x_1, y_1), (y_n), (y$

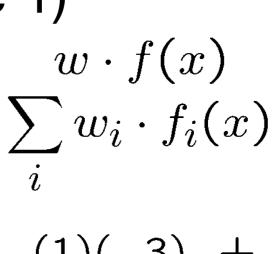
Linear classification:

- Hypotheses based on hyperplanes.
- Linear separation in high-dimensional space.

Example: Spam

- Imagine 3 features (spam is "positive" class):
 - 1. free (number of occurrences of "free")
 - 2. money (occurrences of "money")
 - 3. BIAS (intercept, always has value 1)





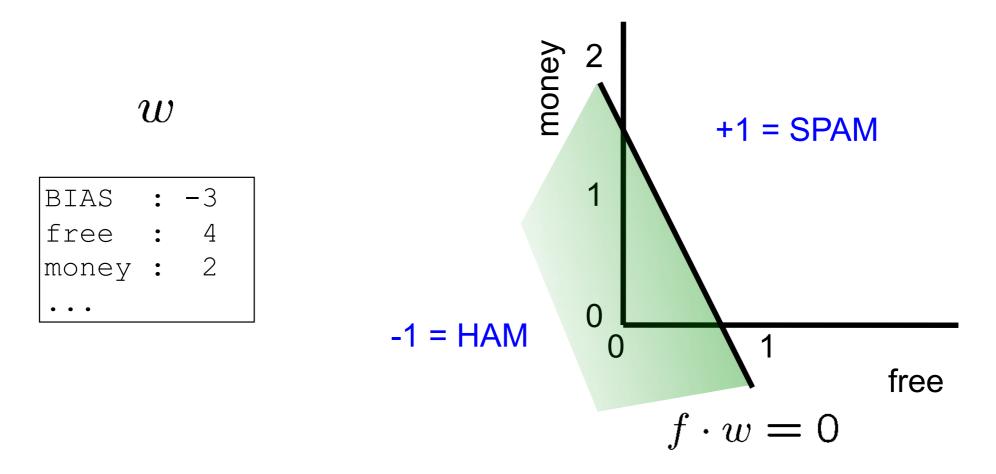
(1)(-3) + (1)(4) + (1)(2) +

= 3

 $w \cdot f(x) > 0 \rightarrow \mathbf{SPAM}!!!$

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y = +1
 - Other corresponds to Y = -1



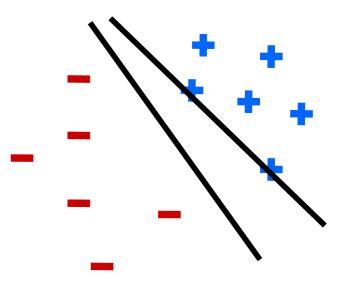
 $w_{i} = \frac{\mu_{i0} + \mu_{i1}}{w_{i}} + \frac{\mu_{i0} + \mu_{i1}}{w$ • For each training instance (x_i, y_i^*) : w_{t} $w - + G as if [y_j ith p(y_j i | x_j, w)] = \begin{cases} i+1 & \text{if } w \cdot f(x_i) \ge 0 \\ -1 & \text{if } w \cdot f(x_i) < 0 \end{cases}$ -(X_i) $w = w + \begin{bmatrix} y^* & \overline{y} \\ \overline{y} \end{bmatrix} (x \cdot w) = \int (x \cdot y) =$ w_{t+1} - If wrong: update

$$w = w = + y = f(x) + f(x)$$

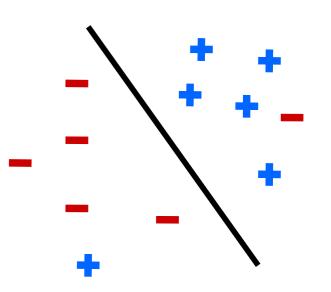
Properties of the perceptron algorithm

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is linearly separable, perceptron will eventually converge

Separable

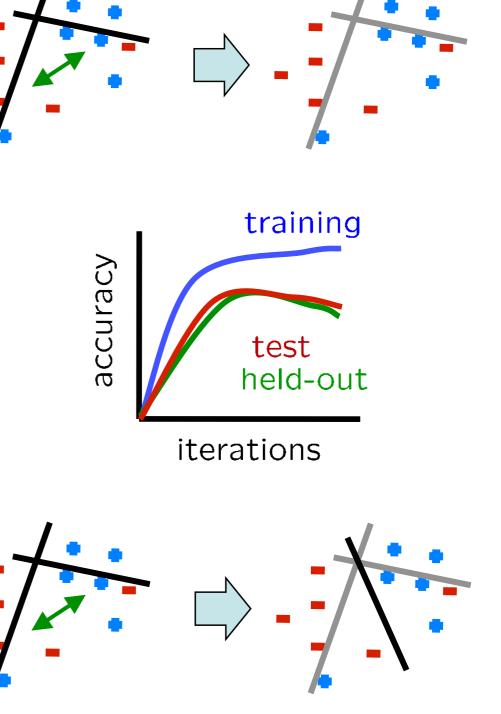


Non-Separable



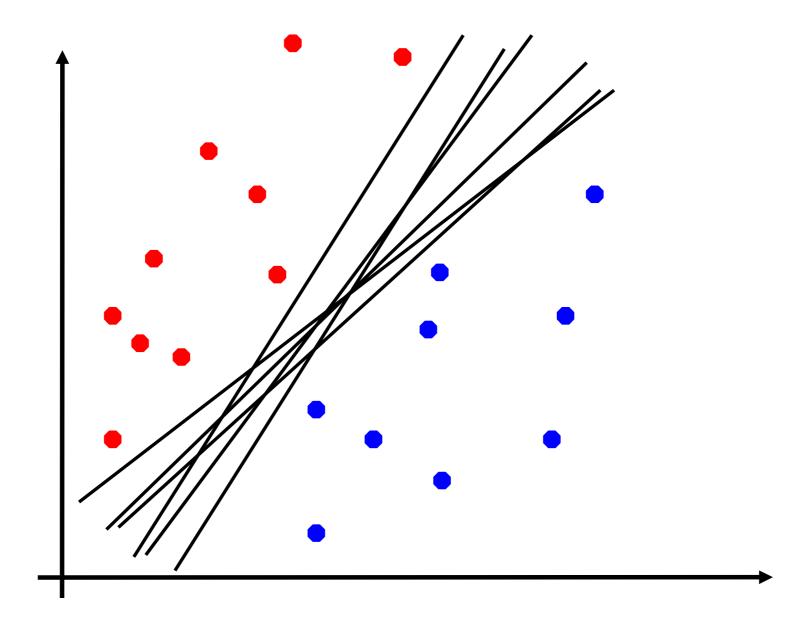
Problems with the perceptron algorithm

- Noise: if the data isn't linearly separable, no guarantees of convergence or accuracy
- Frequently the training data is linearly separable! Why?
 - When the number of features is much larger than the number of data points, there is lots of flexibility
 - As a result, Perceptron can significantly overfit the data
 - Averaged perceptron is an algorithmic modification that helps with both issues
 - Averages the weight vectors across all iterations

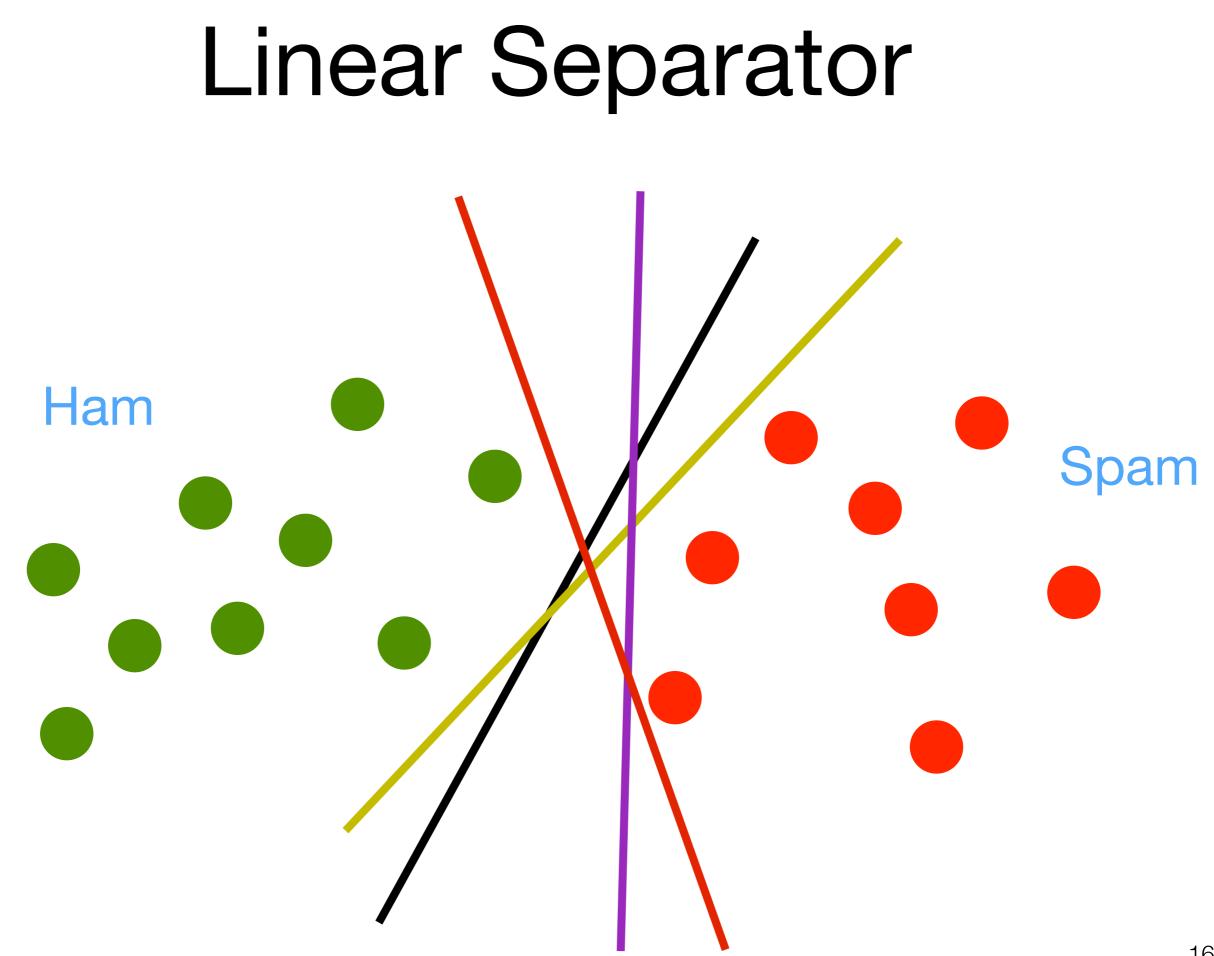


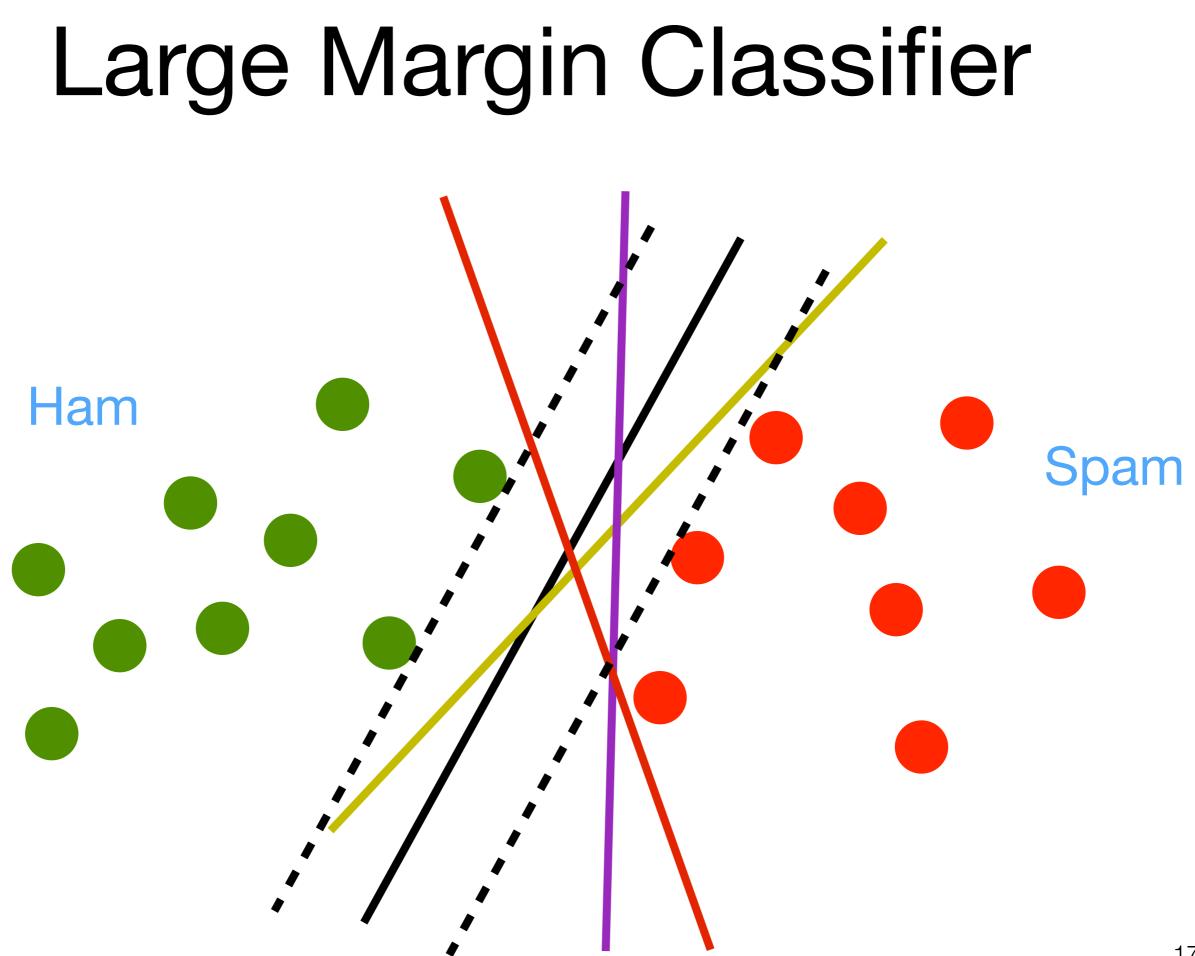
Linear Separators

Which of these linear separators is optimal?



Support Vector Machines

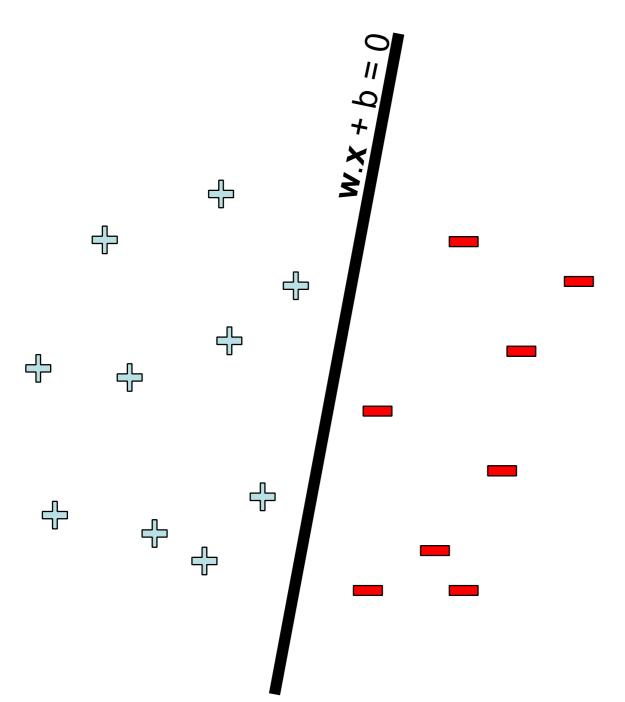




Review: Normal to a plane

 $\frac{1}{\|\mathbf{w}\|}$ -- unit vector normal to w W.X + b = **x**_j = $\bar{\mathbf{x}}_{j} + \lambda \frac{\mathbf{v}}{|\mathbf{x}_{j}|^{2}}$ projection of x_{j} onto the plane ᠿ \mathbf{x}_{j} ᠿ \mathbf{W} ᠿ $\mathbf{\bar{x}}_{j}$ – $\lambda \frac{1}{||\mathbf{w}||}$ $x_j - \bar{x}_j = \lambda \frac{w}{\|w\|}$ ᠿ ₽ λ Is the length of the vector, i.e. $x_j - \bar{x}_j = \frac{\lambda}{\|w\|} \|w\| = \lambda$ $|\mathbf{W}|$

Scale invariance



Any other ways of writing the same dividing line?

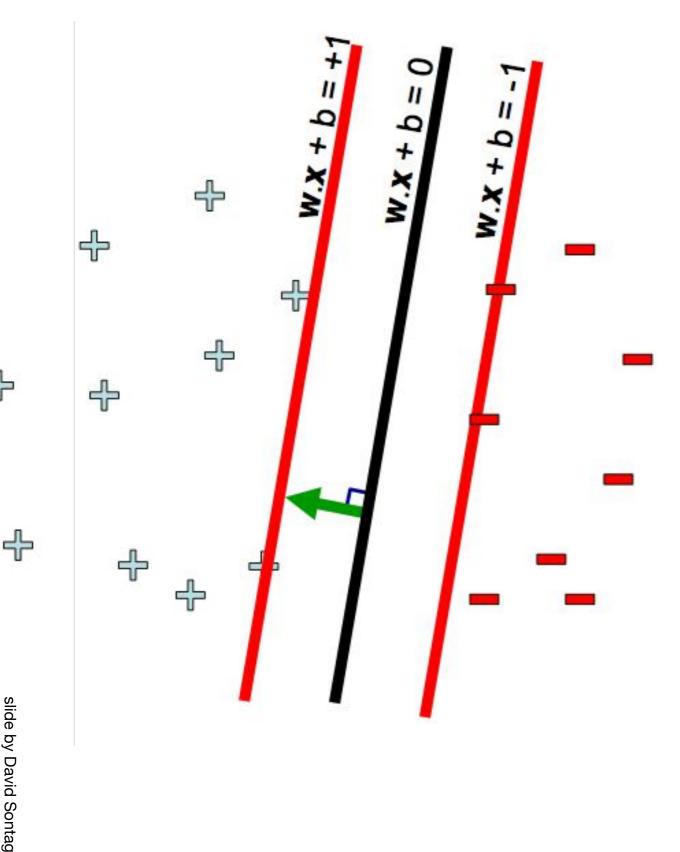
• w.x+b=0

. .

- 2**w.x**+2b=0
- 1000**w**.**x** + 1000b = 0

slide by David Sontag

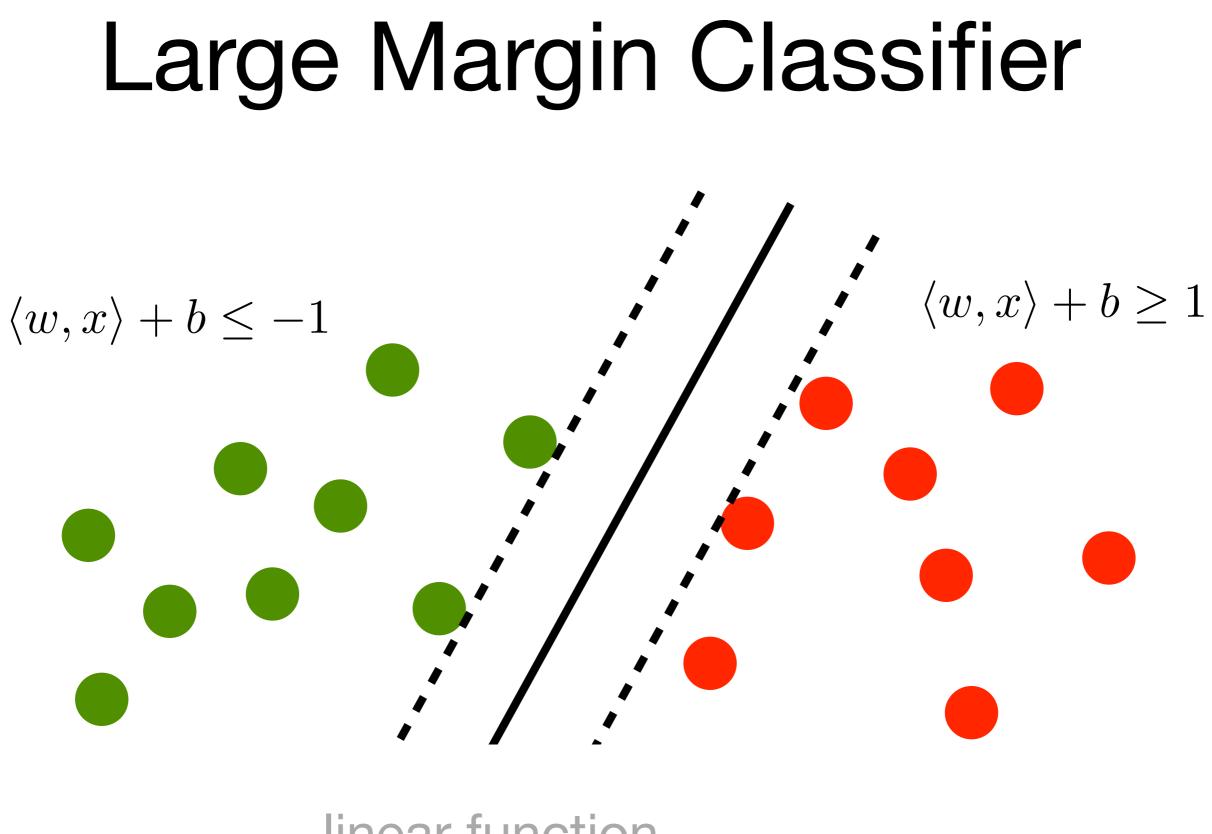
Scale invariance

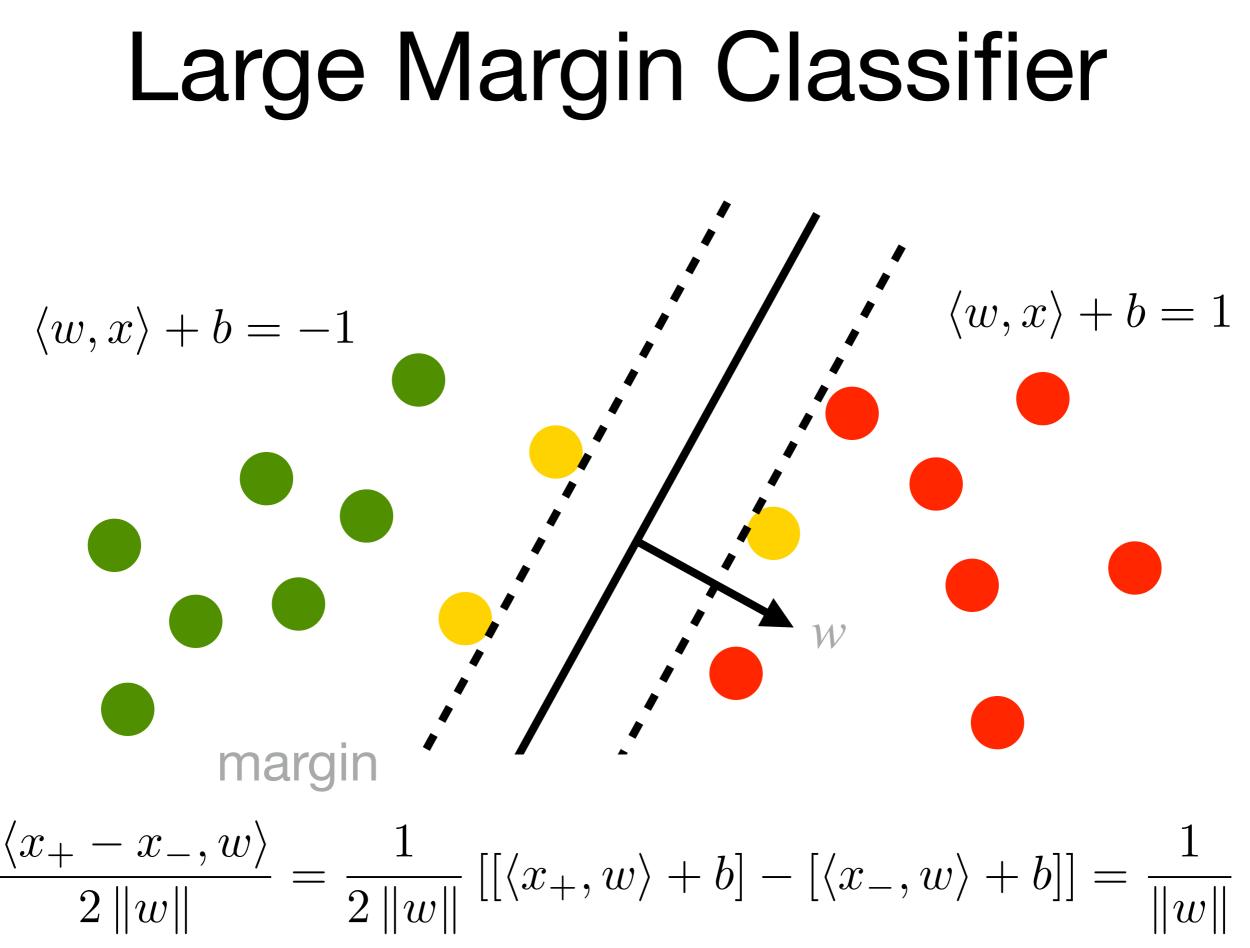


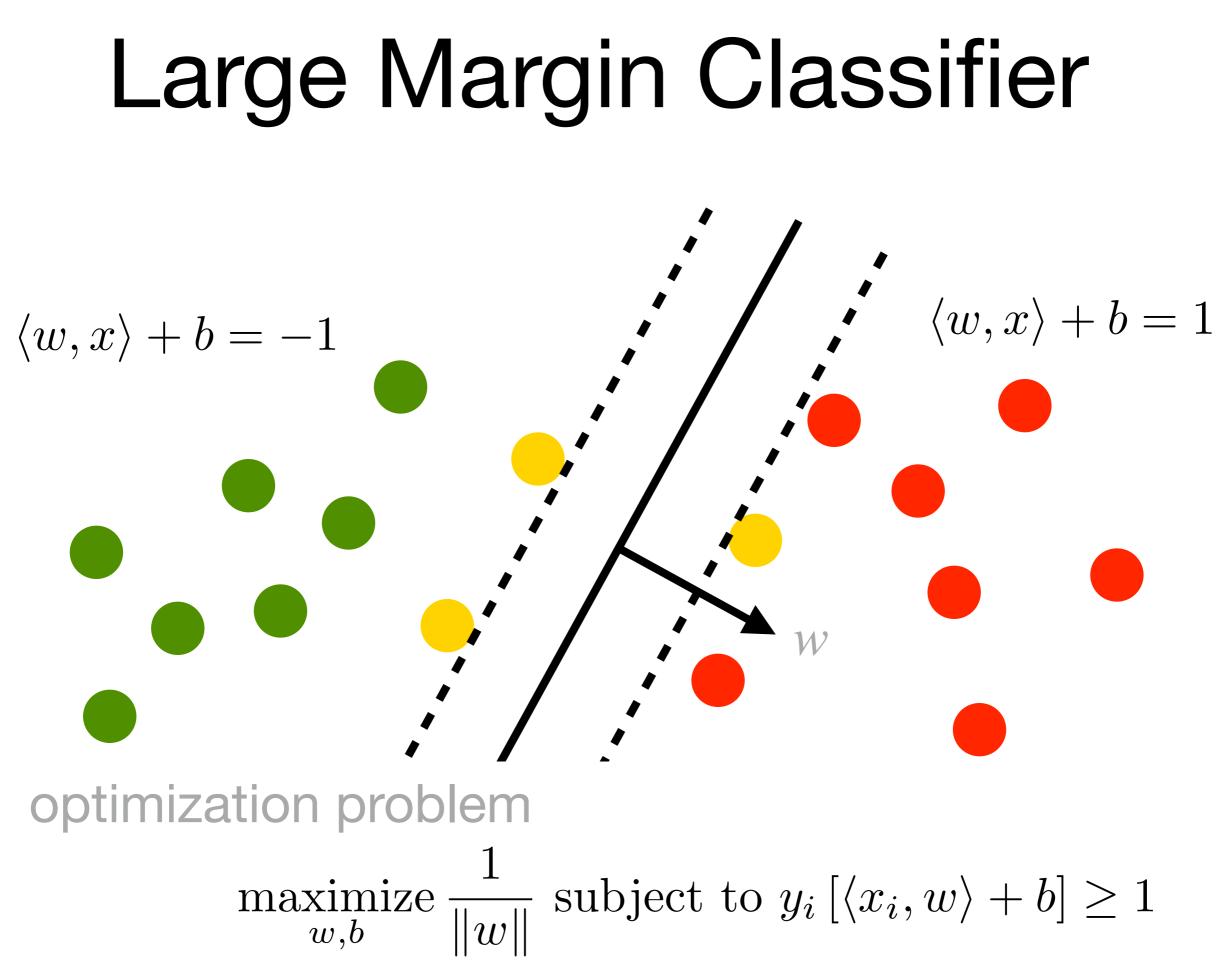
During learning, we set the scale by asking that, for all *t*, for $y_t = +1$, $w \cdot x_t + b \ge 1$ and for $y_t = -1$, $w \cdot x_t + b \le -1$

That is, we want to satisfy all of the **linear** constraints

$$y_t(w \cdot x_t + b) \ge 1 \quad \forall t$$







Large Margin Classifier $\langle w, x \rangle + b = 1$ $\langle w, x \rangle + b = -1$ optimization problem $\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \ge 1$

Convex Programs for Dummies

Primal optimization problem

 $\underset{x}{\operatorname{minimize}} f(x) \text{ subject to } c_i(x) \leq 0$

Lagrange function

$$L(x,\alpha) = f(x) + \sum_{i} \alpha_i c_i(x)$$

• First order optimality conditions in x

$$\partial_x L(x,\alpha) = \partial_x f(x) + \sum_i \alpha_i \partial_x c_i(x) = 0$$

• Solve for x and plug it back into L $\max_{\alpha} L(x(\alpha), \alpha)$

(keep explicit constraints)

Dual Problem

Primal optimization problem

 $\underset{w,b}{\text{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i [\langle x_i, w \rangle + b] \ge 1$

Lagrange function constraint
L(w, b, α) = ¹/₂ ||w||² - ∑_i α_i [y_i [⟨x_i, w⟩ + b] - 1]

Optimality in w, b is at saddle point with α
Derivatives in w, b need to vanish

Dual Problem

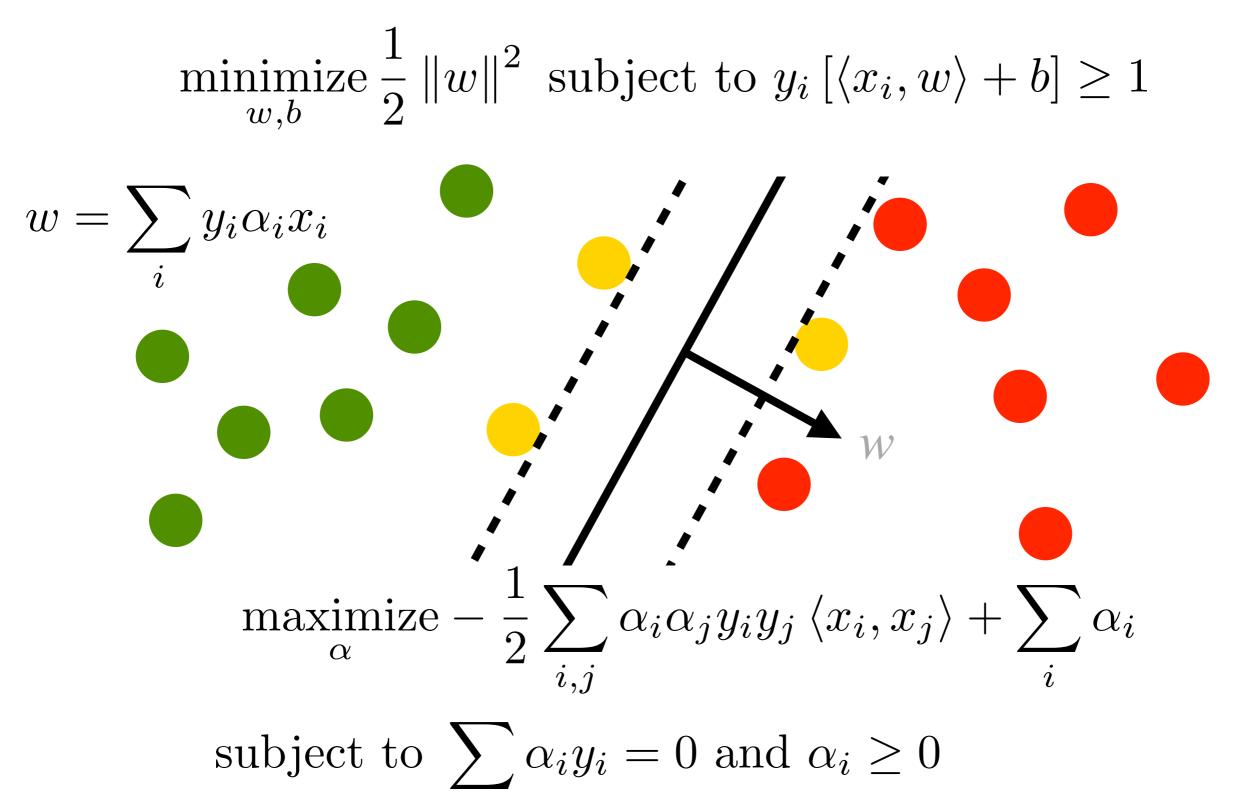
- Lagrange function $L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_i \alpha_i \left[y_i \left[\langle x_i, w \rangle + b\right] - 1\right]$
- Derivatives in w, b need to vanish

$$\partial_w L(w, b, a) = w - \sum_i \alpha_i y_i x_i = 0$$

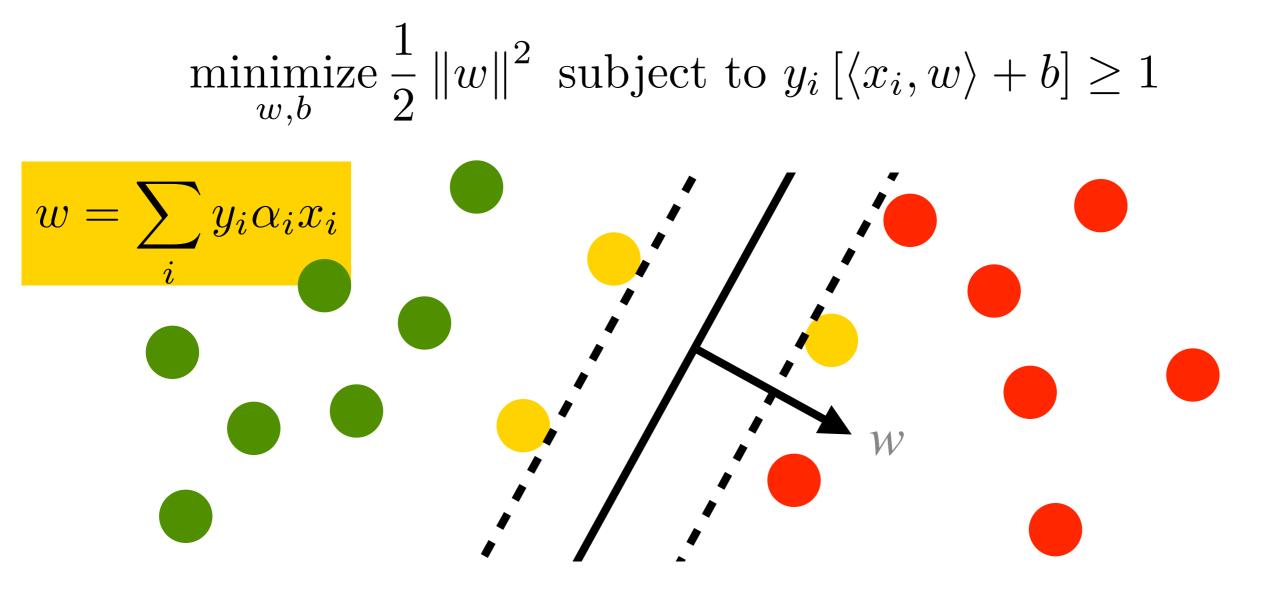
$$\partial_b L(w, b, a) = \sum_i \alpha_i y_i = 0$$

• Plugging terms back into L yields $\max_{\alpha} \min z = -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_i \alpha_i$ subject to $\sum_i \alpha_i y_i = 0$ and $\alpha_i \ge 0$

Support Vector Machines



Support Vectors

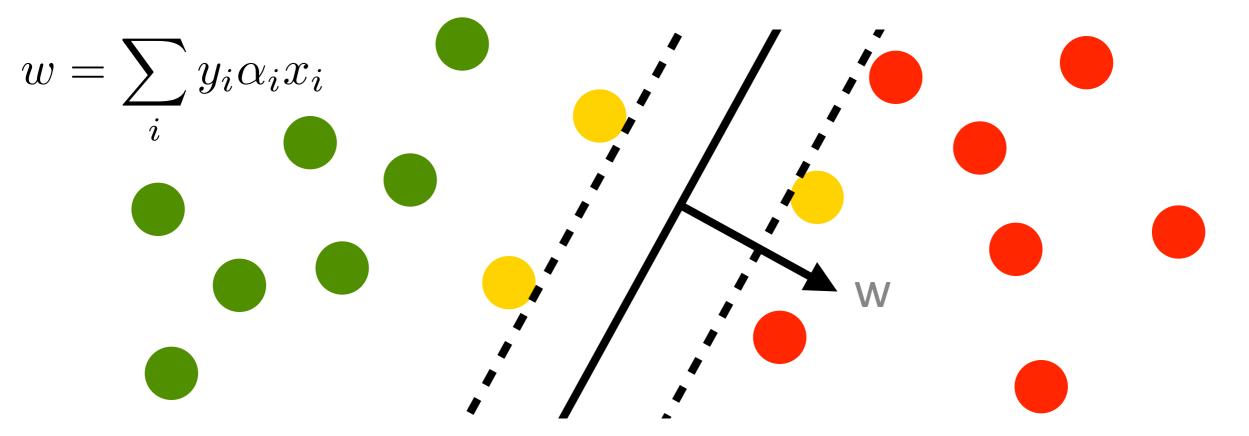


Karush Kuhn Tucker Optimality condition $\alpha_i [y_i [\langle w, x_i \rangle + b] - 1] = 0$

$$\alpha_{i} = 0$$

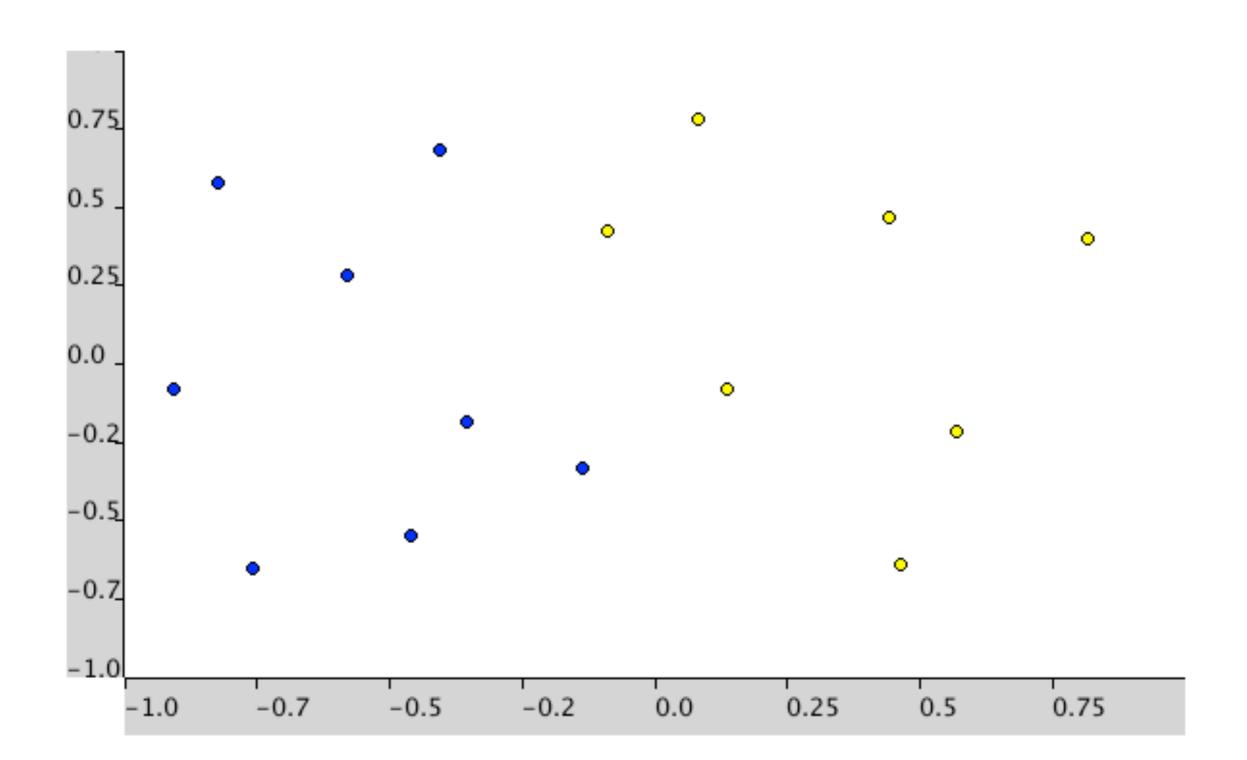
$$\alpha_{i} > 0 \Longrightarrow y_{i} [\langle w, x_{i} \rangle + b] = 1$$

Properties



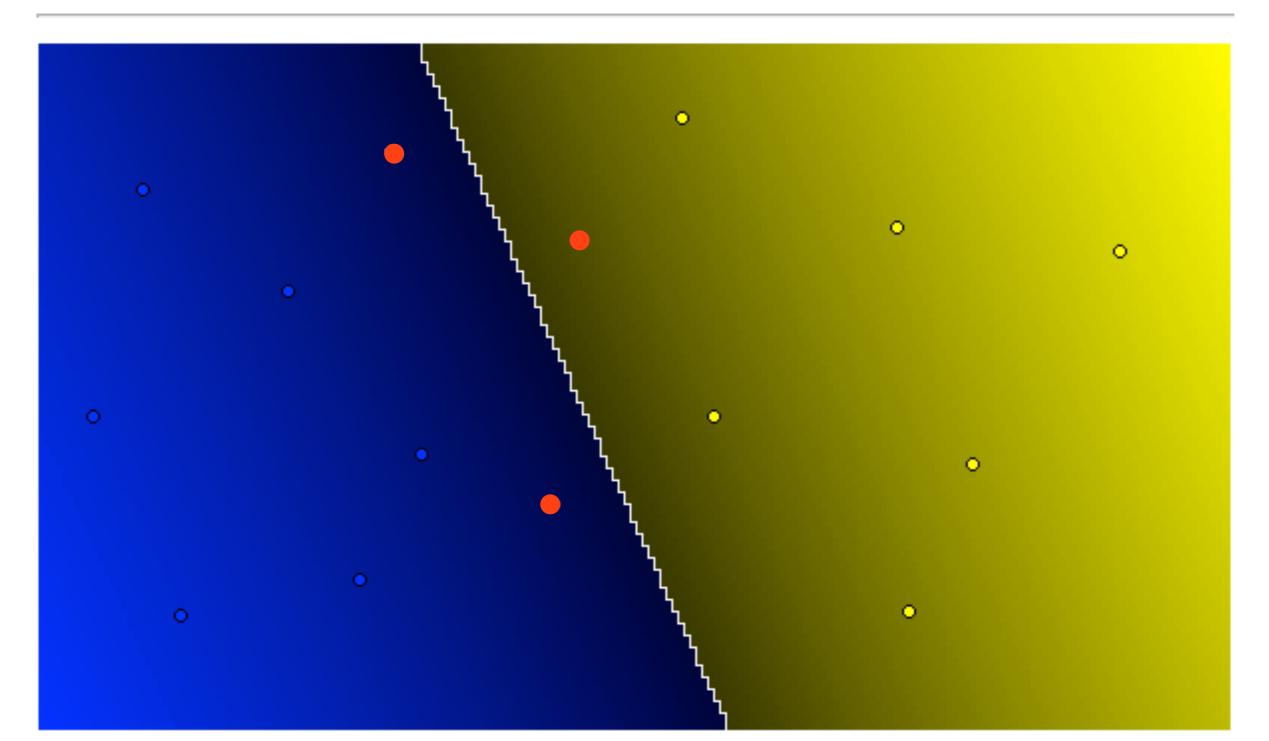
- Weight vector w as weighted linear combination of instances
- Only points on margin matter (ignore the rest and get same solution)
- Only inner products matter
 - Quadratic program
 - We can replace the inner product by a kernel
- Keeps instances away from the margin

Example

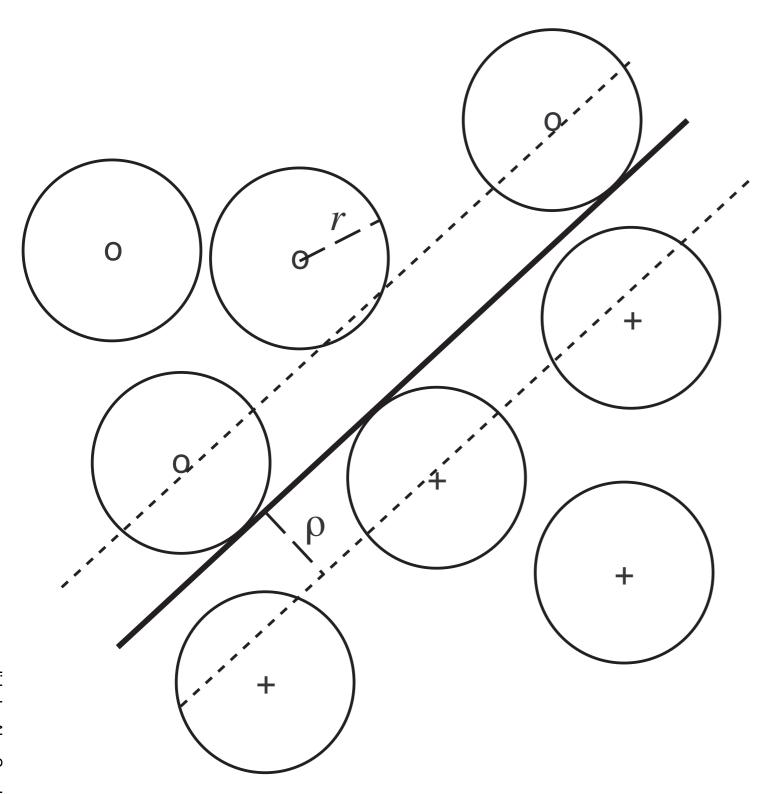


Example

Number of Support Vectors: 3 (-ve: 2, +ve: 1) Total number of points: 15

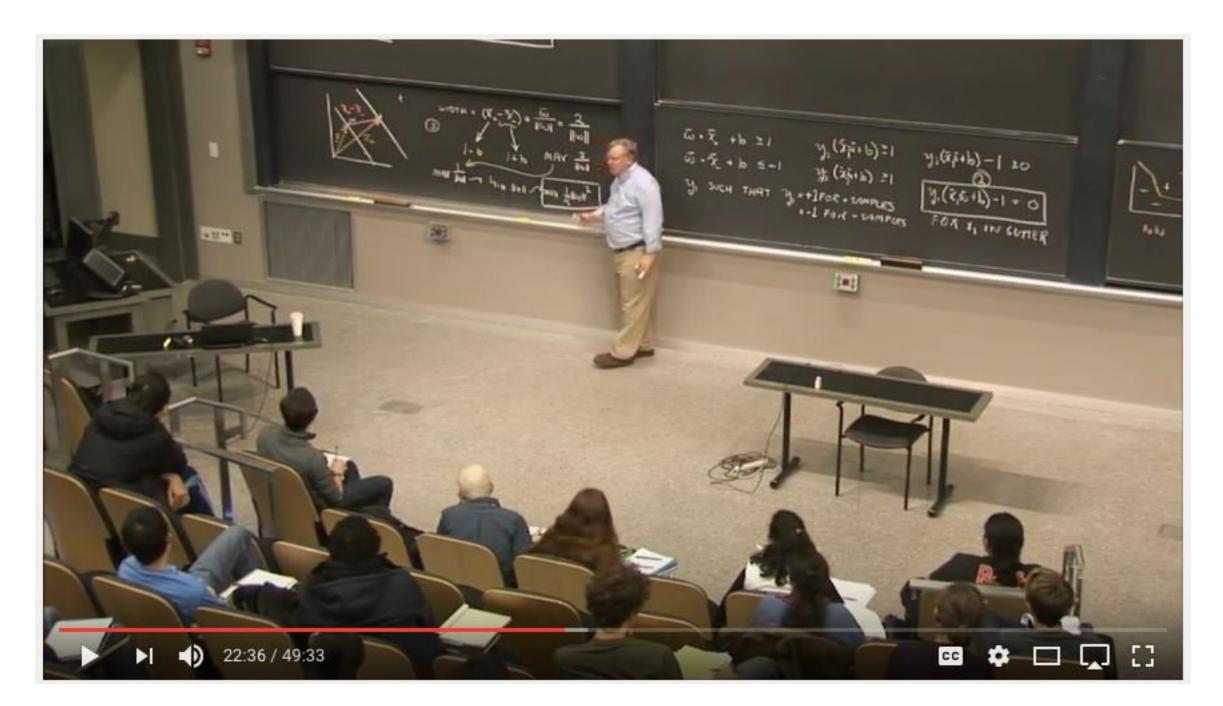


Why Large Margins?



- Maximum
 robustness relative
 to uncertainty
- Symmetry breaking
- Independent of correctly classified instances
- Easy to find for easy problems

Watch: Patrick Winston, Support Vector Machines



https://www.youtube.com/watch?v=_PwhiWxHK8o

Next Lecture: Soft Margin Classification, Multi-class SVMs