Photo by Unsplash user @foodiesfeed

undamentals of Machine earning ecture 21: Clustering **K-Means**

NOGMELON

SINER

20-

Erkut Erdem // Hacettepe University // Spring 2021

Last time... Boosting

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let the learned classifiers vote
- On each iteration *t*:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis h_t
 - A strength for this hypothesis a_t
- Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength $H(X) = sign\left(\sum \alpha_t h_t(X)\right)$
- Practically useful
- Theoretically interesting

Last time.. The AdaBoost Algorithm

0) Set
$$\tilde{W}_i^{(0)} = 1/n$$
 for $i = 1, \ldots, n$

1) At the m^{th} iteration we find (any) classifier $h(\mathbf{x}; \hat{\theta}_m)$ for which the weighted classification error ϵ_m

$$\epsilon_m = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(m-1)} y_i h(\mathbf{x}_i; \hat{\theta}_m) \right)$$

is better than chance.

2) The new component is assigned votes based on its error:

$$\hat{\alpha}_m = 0.5 \log((1 - \epsilon_m)/\epsilon_m)$$

3) The weights are updated according to $(Z_m \text{ is chosen so that the new weights } \tilde{W}_i^{(m)} \text{ sum to one})$:

$$\tilde{W}_i^{(m)} = \frac{1}{Z_m} \cdot \tilde{W}_i^{(m-1)} \cdot \exp\{-y_i \hat{\alpha}_m h(\mathbf{x}_i; \hat{\theta}_m)\}$$

Today

- What is clustering?
- K-means algorithm

What is clustering

Grouping data according to similarity

Grouping data according to similarity

Grouping <u>data</u> according to similarity

Grouping <u>data</u> according to similarity

Distance East

Distance East

- Grouping data according to similarity e.g. archaeological dig

Distance East

slide by Tamara Broderick

Grouping data according to similarity Distance North •

e.g. archaeological dig

Distance East

<u>Grouping</u> data according to similarity Distance North •

e.g. archaeological dig

Distance East

- Grouping data according to similarity
 - e.g. archaeological dig

Clustering vs. Classification

<u>Grouping</u> data according to similarity
 <u>Predicting</u> new labels from old labels

Clustering vs. Classification

<u>Grouping</u> data according to similarity
 <u>Predicting</u> new labels from old labels

Clustering vs. Classification

 Grouping data according to similarity <u>Predicting new labels from old labels</u>

Exploratory data analysis

Exploratory data analysis

slide by Tamara Broderick

Exploratory data analysis

slide by Tamara Broderick

Datum: person

Similarity: the number of common interests of two people

Exploratory data analysis

slide by Tamara Broderick

Datum: a binary vector specifying whether a person has each interest

Similarity: the number of common interests of two people

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (<u>unknown</u>, changing too quickly, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Topic Analysis

arst Foundation will give \$1.25 million to Lincoln Center, Metropolik Philharmonic and Juilliard School. "Our board felt that we had a a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education Hearst Foundation President Randolph A. Hearst said Monday in incoln Center's share will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

[Blei 2003]

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Topic Analysis

arst Foundation will give \$1.25 million to Lincoln Center, Metropolik Philharmonic and Juilliard School. "Our board felt that we had a a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education Hearst Foundation President Randolph A. Hearst said Monday in incoln Center's share will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

[Blei 2003]

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

"Arts"	"Budgets"	"Children"	"Education"	Topic Analysis
NEW FILM SHOW MUSIC MOVIE	MILLION TAX PROGRAM BUDGET BILLION	CHILDREN WOMEN PEOPLE CHILD YEARS	SCHOOL STUDENTS SCHOOLS EDUCATION TEACHERS	Datum: word
PLAY MUSICAL BEST ACTOR FIRST	FEDERAL YEAR SPENDING NEW STATE	FAMILIES WORK PARENTS SAYS FAMILY	HIGH PUBLIC TEACHER BENNETT MANIGAT	Similarity: how many documents exist where two
YORK OPERA THEATER ACTRESS LOVE	PLAN MONEY PROGRAMS GOVERNMENT CONGRESS	WELFARE MEN PERCENT CARE LIFE	NAMPHY STATE PRESIDENT ELEMENTARY HAITI	H WORDS CO-OCCUR income Center's snare will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School where music and

the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

[Blei 2003]

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

"Arts"	"Budgets"	"Children	" "Education"	Topic Analysis
NEW	MILLION	CHILDREN	SCHOOL	Detumu binery vector
FILM	TAX	WOMEN	STUDENTS	Datum . Dinary vector
SHOW	PROGRAM	PEOPLE	SCHOOLS	
MUSIC	BUDGET	CHILD	EDUCATION	lindicating document
MOVIE	BILLION	YEARS	TEACHERS	
PLAY	FEDERAL	FAMILIES	HIGH	
MUSICAL	YEAR	WORK	PUBLIC	
BEST	SPENDING	PARENTS	TEACHER	a
ACTOR	NEW	SAYS	BENNETT	k
FIRST	STATE	FAMILY	MANIGAT	8
YORK	PLAN	WELFARE	NAMPHY	Similarity: how many
OPERA	MONEY	MEN	STATE	Simally. Now many
THEATER	PROGRAMS	PERCENT	PRESIDENT	
ACTRESS	GOVERNMENT	CARE	ELEMENTARY	accuments exist where two
LOVE	CONGRESS	LIFE	HAITI	an
	Second Contraction of the			wwords co-occur
		the	performing arts are ta	
of the Lincoln Center Consolidated Corporate Fund, will make its usual annu			Consolidated Corporate Fund, will make its usual annual \$100,000	

donation, too.

slide by

Tamara Brod

- Exploratory data analysis
- Classes are unspecified (unknown, <u>changing too</u> <u>quickly</u>, expensive to label data, etc)

Exploratory data analysis

slide by Tamara Broderick

 Classes are unspecified (unknown, <u>changing too</u> <u>quickly</u>, expensive to label data, etc)

@ 2002-2006 Stanislaw Osinski, Dawid Wels

Document clustering

- Exploratory data analysis
- Classes are unspecified (unknown, <u>changing too</u> <u>quickly</u>, expensive to label data, etc)

tiger	Search Stow	Datum: document
All results (100) Mac OS (9) Tiger Woods (5) Tiger Cubs (4) Computer (4) Onitsuka Tiger by Asics (4) Information on the Tiger (6) Security Tool (3) Technology Tiger Attack Helicopter (3)	 5 Official Website for Tiger Woods Official site for pro golfer Tiger Woods, complete with interviews, photos, stats, and features. http://www.tigerwoods.com/ 34 tiger Encyclopædia Britannica tiger Woods, Tiger tiger beetle http://www.britannica.com/eb/article-9072439/tiger 66 Abilene Reporter News: Tiger Woods 	Dissimilarity: distance between topic distributions of two documents
 <u>Sign (3)</u> <u>Siberian Tiger (3)</u> <u>Geographic (2)</u> 	Tiger Woods Haunted by Tears, Failure. Bulk of Master by Final Rank Tiger Finishes the Season in Style. Els African Open by 3 Strokes http://www.reporternews.com/abil/sp_tiger_woods/0	rs Field Set s Wins South),1874,ABIL_:

© 2002-2006 Stanislaw Osinski, Dawid Weiss

Exploratory data analysis

slide by

Tamara Broderick

 Classes are unspecified (unknown, <u>changing too</u> <u>quickly</u>, expensive to label data, etc)

AB VI Vahaal	About More demos Download Carrot2@sf.net	Document clusterin
C tiger	Search Stow	Datum: vector of topic
All results (100) Mac OS (9) Tiger Woods (5)	5 Official Website for Tiger Woods Official site for pro golfer Tiger Woods, complete with interviews, photos, stats, and features.	occurrences
 <u>Itger Cubs (4)</u> <u>Computer (4)</u> <u>Onitsuka Tiger by Asics (4)</u> <u>Information on the Tiger (6)</u> <u>Security Tool (3)</u> <u>Technology Tiger Attack</u> <u>Helicopter (3)</u> Size (2) 	 34 <u>tiger Encyclopædia Britannica</u> tiger Woods, Tiger tiger beetle http://www.britannica.com/eb/article-9072439/tiger 66 <u>Abilene Reporter News: Tiger Woods</u> Tiger Woods Haunted by Tears, Failure. Bulk of Master 	Dissimilarity: distance between topic distributions of two documents
Sign (3) Siberian Tiger (3) Geographic (2) Ordered List has Sterm Smith (2) Guery: tiger input: Yahoo! (400 results) Clusterer: 1	by Final Rank Tiger Finishes the Season in Style. Els M African Open by 3 Strokes http://www.reporternews.com/abil/sp_tiger_woods/0,18	I74,ABIL:

© 2002-2006 Stanislaw Osinski, Dawid Weiss

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, <u>expensive to label data</u>, etc)

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, <u>expensive to label data</u>, etc)

Image segmentation

Fei-Fei 201

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, <u>expensive to label data</u>, etc)

Image segmentation

Dissimilarity: difference in color + difference in location
Why use clustering... ...instead of classification

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, <u>expensive to label data</u>, etc)

Image segmentation

Datum: pixel RGB values and pixel horizontal and vertical locations

Dissimilarity: difference in color + difference in location

Clustering algorithms

Partitioning algorithms

- Construct various partitions and then evaluate them by SO

Clustering a

- Hie - Cr of
 - cri Bc

- To

- Hierarchical algorithms
 - Bottom up agglomerative
 - Top down divisive

Partition algorithms (Flat) K-moone

Desirable Properties of a Clustering Algorithm

- Scalability (in terms of both time and space)
- Ability to deal with different data types
- Minimal requirements for domain knowledge to determine input parameters
- Ability to deal with noisy data
- Interpretability and usability
- Optional
 - Incorporation of user-specified constraints

K-Means Clustering

K-Means Clustering

Benefits

- Fast
- Conceptually straightforward
- Popular

K-Means: Preliminaries

K-Means: Preliminaries

Datum: Vector of continuous values

K-Means: Preliminaries

N

55

K-Means: Preliminaries

Dissimilarity: Squared Euclidean distance

K-Means: Preliminaries Dissimilarity

K-Means: Preliminaries Dissimilarity

slide by Tamara Broderick

Initialize K cluster centers

- Repeat until convergence:
 Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points

- Initialize K cluster centers
- Repeat until convergence:
 Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1,..., K
 - Randomly draw n from
 1,...,N without replacement
 - $\bullet \, \mu_k \leftarrow x_n$
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1,..., K
 Randomly draw n from
 - **1**,...,**N** without replacement $\star \mu_k \leftarrow x_n^{\mu_k} \leftarrow x_n$
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points

- For k = 1,..., K
 Randomly draw
 - ◆ Randomly draw n from
 1,...,N without replacement
 ↓ $\mu_k \leftarrow x_n$
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1,..., K • Randomly draw n from 1,...,N without replacement • $\mu_k \leftarrow x_n$
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1,..., K • Randomly draw n from 1,...,N without replacement • $\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 - center to be the mean of its cluster's data points

- For k = 1,..., K • Randomly draw n from 1,...,N without replacement • $\mu_k \mu_k x_n x_n$
- Repeat until S₁,...,S_k don't change:
 - Assign each data point to the cluster with the closest center.
 - + Assign each cluster
 - center to be the mean of its cluster's data points

- For k = 1,..., K • Randomly draw n from 1,...,N without replacement • $\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1,..., K
 * Randomly draw n from
 1,...,N without replacement
 * µk ⇐ 𝔅_R
- Repeat until S₁,...,S_k don't change:
 - ✦ For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_j)
 - Assign each cluster center to be the mean of its
 cluster's data points

For k = 1,..., K
* Randomly draw n from
1,...,N without replacement
* µk ← 𝔅n
* µk ← 𝔅n

• Repeat until S₁,...,S_k don't change:

- ✦ For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ * Put $x_n \in S_k$ (and no
 - * Put $x_n \in S_k \in S_k$ (and no other S_j)

Assign each cluster
 center to be the mean of its
 cluster's data points

- For k = 1,..., K • Randomly draw n from 1,...,N without replacement • $\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - ✦ For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ * Put $x_n \in S_k$ (and no
 - * Put $x_n \in S_k \subset S_k$ (and no other S_j)
 - Assign each cluster
 center to be the mean of its
 cluster's data points

- For k = 1,..., K
 Randomly draw n from 1,..., N without replacement
 ↓ μ_k ← 𝔅_n
 Repeat until S₁,..., S_k don't change:
 For n = 1,...N
 Find k with smallest dis(𝔅_n, μ_k)
 - * Find k with smallest $dis(x_n, \mu_k) \in S_k$ * Put $x_m \in S_k$ (and no other S_j)
 - Assign each cluster center to be the mean of its
 cluster's data points

• For k = 1,..., K Randomly draw n from 1,...,N without replacement $\star \underset{k \not = k \not = k$ • Repeat until S₁,...,S_k don't change: ✦ For n = 1,...N * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$ * Put $x_n \in S_k$ (and no other S_i) + For $\mathbf{k} = 1, \dots, \mathbf{K}_{k} = \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} x_{k}$

- For k = 1,..., K • Randomly draw n from 1,...,N without replacement • $\mu_k \leftarrow x_n$ • $\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - ✦ For n = 1,....N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_j)
 - * Assign each $S_k | S_k | \sum_{\substack{n:n \in S_k}} x_n$ center to be the measure of its cluster's data points

- For k = 1,..., K • Randomly draw n from 1,...,N without replacement • $\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - ✦ For n = 1,....N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k) \in S_k$ * Put $x_n \in S_k$ (and no
 - ♦ Put $x_n \in S_k \in S_k$ (and no other S_j)
 - + Assign each S_k S_k \mathcal{T}_{γ} center to be the mean of its n:n \in S_k cluster's data points

- For k = 1,..., K • Randomly draw n from 1,...,N without replacement • $\mu_k \leftarrow \mathcal{X}_n$
- Repeat until S₁,...,S_k don't change:
 - ✦ For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ * Put $x_n \in S_k$ (and no
 - * Put $x_n \in S_k \in S_k$ (and no other S_j)
 - + Assign each cluster $\sum_{\substack{\mu_k \\ \mu_k}} x_{\eta}$ center to be the mean of its cluster's data points

• For k = 1,..., K Randomly draw n from 1,...,N without replacement $\star \underset{k \not = k \not = k$ • Repeat until S₁,...,S_k don't change: ✦ For n = 1,...N * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$ * Put $x_n \in S_k$ (and no other S_i) + For $\mathbf{k} = 1, \dots, \mathbf{k}_{k} \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} x_{k}$

• For k = 1,..., K

- For k = 1,..., K
 * Randomly draw n from
 1,...,N without replacement
 * ↓↓↓ ← 𝔅n
- Repeat until S₁,...,S_k don't change:
 - For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$ * Put $x_m \in S_{k}$ (and no
 - Put me Sk (and no other Si)

 $\mu_k \leftarrow x_n$

• Will it terminate? $\mu_k \leftarrow x_n$ Yes. Always.

slide by Tamara Broderick

- Guaranteed to converge in a finite number of iterations
- Running time per iteration:
 - Assign data points to closest cluster center O(KN) time
 - Change the cluster center to the average of its assigned points
 O(N) time

Objective $\min_{\mu} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$

1. Fix μ , optimize C:

$$\min_{C} \sum_{i=1}^{k} \sum_{\substack{x \in C_i \\ \mu: c}} |x - \mu_i|^2 = \min_{C} \sum_{i=1}^{n} |x_i - \mu_{x_i}|^2$$

Fix C, optimize $\mu:$

$$\min_{\mu} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$

– Take partial derivative of μ_i and set to zero, we have

$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

Step 2 of kmeans

K-Means takes an alternating optimization approach, each step is guaranteed to decrease the objective – thus guaranteed to converge

2.

Demo time...

K-Means Algorithm: Some Issues

- How to set k?
- Sensitive to initial centers
 - Multiple initializations
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed
 - It requires continuous, numerical features

(A): Two natural clusters

(B): k-means clusters

Next Lecture: K-Means Applications, Spectral clustering, Hierarchical clustering and What is a good clustering?