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L ast time..

- An Iterative

clustering algorithm
- Initialize: Pick K

random points as
cluster centers (means)

- Alternate:

- Assign data instances
to closest mean

-+ Assign each mean to
the average of its
assigned points

- Stop when no points’
assignments change

. K-Means




Today

- K-Means Example Applications
- Spectral clustering
- Hierarchical clustering



K-Means
Example Applications



Example: K-Means for Segmentation

K=2 Original
| Goal of Segmentation F A
is to partition an image n
Into regions each of
which has reasonably
homogenous visual
appearance.

Bejuog pineq Aq apis



Example: K-Means for Segmentation

K=2 K=3 Original

\ ‘\ 3
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Example: K-Means for Segmentation
Original

K=2 K=3
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Example: Vector quantization

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe maxrimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left s a 1024 x 1024 grayscale
image at 8 bits per pixel. The center image 1s the result of 2 X 2 block V(), using
200 code wvectors, with a compression rate of 1.9 bits/pixel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pixel

[Figure from Hastie et al. book]



Example: Simple Linear lterative
Chlusterin (SLIC) superpixels

¥(x,y) =

| I(x,y)

\. spatial regularization parameter

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk SLIC Superpixels Compared to
State-of-the-art Superpixel Methods, IEEE T-PAMI, 2012
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p All About The Company

Bag of Words model

Global Activities
Corporate Structure
TOTAL's Story
Upstream Strategy
Downstream Strategy
Chemicals Strategy
TOTAL Foundation
Homepage

all about the
company

Qur energy exploration, production, and distnibution
operations span the globe, with activities i more than 100
countries.

At TOTAL, we draw our greatest strength from our
fast-growing o1l and gas reserves. Our strategic emphasts
on natural gas provides a strong posttion i a rapidly

expanding market.

Qur expanding refining and marketing operations in Asia
and the Mediterranean Rim complement already solid
posttions in Europe, Africa, and the U5,

Our growing specialty chemicals sector adds balance and
profit to the core energy business.

aardvark

about

all
Africa

apple
anxious
gas

oil

Zaire

O N O
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Bag of ‘words’

12

slide by Fei Fei Li



Interest Point Features

SIFT Normalize
descriptor patch
[Lowe’ 99]

Detect patches
[Mikojaczyk and Schmid '02]
[Matas et al. '02]

[Sivic et al. '03]

OINIS Josor Aq apl|s
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Patch Features
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Dictionary Formation
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Clustering (usually K-means)
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Clustered Image Patches
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Visual synonyms and polysemy

ceccdeTio™

Visual Polysemy. Single visual word occurring on different (but locally
similar) parts on different object categories.

Visual Synonyms. Two different visual words representing a similar
part of an object (wheel of a motorbike).

uewIBSSIZ Maipuy AQ apl|s
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frequency

Image Representation
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codewords

am—
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Spectral clustering



Graph-Theoretic Clustering

Goal: Given data points X, ..., X, and similarities W(X;, X)),

partition the data into groups so that points in a group

are similar and points in different groups are dissimilar.

Similarity Graph: G(V,E,W) V — Vertices (Data points)

E — Edge if similarity > 0
W - Edge weights (similarities)

eeoe00000
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o o °
@ !
® O
O
:
e

Data Similarities Similarity graph

Partition the graph so that edges within a group have large weights and
edges across groups have small weights.

ybuig ey Aqg epls
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Graphs Representations

a b ¢ d e
a0 1 0 0 17
b b 11 0 0 0 O
O
c10 0 0 O 1
e d 10 0 0 0 1
d‘ e {1 0110

Adjacency Matrix

22



A Weighted Graph and its

Representation
Affinity Matrix
1 .1 3 0 0
d 1 4 0 2
wo |34 1 60T
0 0 6 1 1
0o 2 7 1 1

W, . probability that1 &
belong to the same

cluster

23



Similarity graph construction

* Similarity Graphs: Model local neighborhood relations
between data points

E.g. epSIIOP_NN />Controls size of neighborhood
1z — ]| < e

Wij = : /
| 0 otherwise
or mutual k-NN graph (W, = 1 if x; or x; is k nearest neighbor

of the other)

. v .
TR
S NI
” ) ( ‘*
g s oW ¢
% g —
& o :
i e :
" e B ..
N\C?e “.o

G={V,E}

ybuis ey Aq epis
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Similarity graph construction

* Similarity Graphs: Model local neighborhood relations
between data points

* E.g. Gaussian kernel similarity function
2

s — ]

Wij — e 202 > Controls size of neighborhood

G={V,E}

ybuis ey Aq epis
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Scale affects affinity

- Small o: group only nearby points
- Large o: group far-away points

L]

v
[}
L
2

0 10 20 30 40 50 60 70 80 a0 100

distance?

20



Feature grouping by “relocalisation” of eigenvectors of the
proximity matrix

British Machine Vision Conference, pp. 103-108, 1990

H. Christopher Longuet-Higgins
[University of Sussex
Falmer

Guy L. Scott

Robotics Research Group
Department of Engineering Science

University of Oxford Brighton

Wi = exp(-|| z; - Zi |2 / s2)

BQ[elJ0] Oluoluy pue uewsaaid ||ig Aq apiis

& B With an appropriate s
& A |B |C
] A 1.00 [0.63] 0.03
A e W= | B [063]1.00]0.0
C|003]0.0 1.00
The eigenvectors of W are:
£y Lig L
Figenvalues | 1.63 | 1.00 | 0.37
L A “0.71 | -0.01 [J0.71
Three points in feature space B T T 005 1071
C -U.U)¢ : -0.03

The first 2 eigenvectors group the points

as desired...
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Example eigenvector

14

« | points

0.4&5

04

0.35

0235

0.05

eigenvector

40
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14

Example eigenvector

12p

« | points

Affinity matrix

0.&5

04

0.35

eigenvector
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Graph cut

* Set of edges whose removal makes a
graph disconnected
* Cost of a cut: sum of weights of cut edges

* A graph cut gives us a partition (clustering)

- What is a “good” graph cut and how do we find
one?

30
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Minimum cut

* A cut of agraph G is the set of edges S such
that removal of S from G disconnects G.

Cut: sum of the weight of the cut edges:

CU(AB) = Y W(LV),

UEA,veEB

withANB = J

31
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Minimum cut

* We can do clustering by finding the
minimum cut In a graph
- Efficient algorithms exist for doing this

Minimum cut example

32
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Minimum cut

* We can do segmentation by finding the
minimum cut In a graph
- Efficient algorithms exist for doing this

Minimum cut example

33
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Drawbacks of Minimum cut

Weight of cut is directly proportional to the
number of edges in the cut.

0oo0 0 o .
Cuts with
o060 @ ® lesser weight
000 than the
/' ® | ® | ideal cut
|deal Cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003 34
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Normalized cuts

Write graph as V, one cluster as A and the other as B

cut(A,B) cut(A,B)
Ncut(A,B) = +

assoc(A,V) assoc(B,V)

cut(A,B) is sum of weights with one end in A and one end in B
Cut(A,B) = Y W(uv),

UcA,veEB

withANB = O
assoc(A,V) is sum of all edges with one end in A.
ass0c(AB) = Y W(uV)

UcA,vEB

A and B not necessarily disjoint

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

35


http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

l18AS Aqg eplls

Normalized cut

* Let W be the adjacency matrix of the graph
* Let D be the diagonal matrix with diagonal entries
D(i, i) = 2; W(i, j)
* Then the normalized cut cost can be written as
y (D-W)y
y Dy
where y Is an indicator vector whose value should

be 1 In the j-th position if the i-th feature point

belongs to A and a negative constant otherwise
J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

D-W: Graph Laplacian



http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

yiugaze] euelong Aq apl|s

Normalized cut

* Finding the exact minimum of the normalized cut cost is
NP-complete, but if we relax y to take on arbitrary values,

then we can minimize the relaxed cost by solving the
generalized eigenvalue problem (D — W)y = ADy
* The solution y is given by the generalized eigenvector

corresponding to the second smallest eigenvalue, aka the
Fiedler vector

* Intuitively, the i-th entry of y can be viewed as a “soft”
indication of the component membership of the i-th feature

- Can use 0 or median value of the entries as the splitting point
(threshold), or find threshold that minimizes the Ncut cost

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000 37



http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf
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Normalized cut algorithm

. Given an 1mage or image sequence, set up a weighted graph G = (V. E). and set the
weight on the edge connecting two nodes being a measure of the similarity between

the two nodes.

(N

. Solve (D — WHa = ADax for eigenvectors with the smallest eigenvalues.
3. Use the eigenvector with second smallest eigenvalue to bipartition the graph.

4. Decide if the current partition should be sub-divided. and recursively repartition the

segmented parts if necessary.

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

38


http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

K-Means vs. Spectral Clustering

+ Applying k-means to Laplacian
eigenvectors allows us to find cluster with
non-convex boundaries.

Points of two clusters Points of two clusters
30 - - - - ' 30
20} 20t %%3@6@8@8
.:‘-'..".r"\ O C@O
10} RO : 10F @@D -
0 O
O o or g® &8 B -
Q O
O
_10} - TS B -
o &
-20t 20} @8 & '
oo @&
_30 1 1 1 1 1 _30 1 1 1 1 1
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

Both perform same Spectral clustering is superior

ybuis ey Aq epis
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K-Means vs. Spectral Clustering

+ Applying k-means to Laplacian
eigenvectors allows us to find cluster with
non-convex boundaries.

Points of two clusters Points of two clusters
30 ' - - ' : 30
20 B . e o .’ . * 0. | 20 I
* e ¢ . :t‘ > :3' s
10t " .2, “ 10} ' . 2,
Or b 0‘ ..:.o’, * .‘. | Of ' o‘
~10f  *. . . -10}
N s .
2
201 SN oo ¥ - 20} S LY
_30 1 1 1 L L _30 ] ] ] ] ]
2 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
; .
3 k-means output Spectral clustering output
wn
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K-Means vs. Spectral Clustering

+ Applying k-means to Laplacian
eigenvectors allows us to find cluster with
non-convex boundaries.

Similarity matrix

Fe slers
<
® oao 8D°
: o
o] Q
W °& ° Second eigenvector of graph Laplacian
e é’ - i 0.s T T .l T T . T - T T T
L
&%
o W
°®
L Y
© Qo
| SO e S
o 2 2 2 22

ybuis ey Aq epis
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Examples

squiggles, 4 clusters
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Some Issues

- Choice of number of clusters k
- Most stable clustering is usually given by the value of k that

maximizes the eigengap (difference between consecutive

eigenvalues)

Ak - M _Ak—l‘

Histogram of the sample

o N O @

0

2

didi

4 6 8 10

Eigenva|UeS
0.8f * B F *
06}
04;¢
02}

JI

2 3 4 5 6 7 8 910
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Some Issues

- Choice of number of clusters k

+ Choice of similarity
- Choice of kernel

for Gaussian kernels, choice of o

input affinity matrix affinity matrix reordered according to solution vector

0.04 T T T T T T

0.02 o

_OAO2~)— WW“‘*‘*W

-0.04 1 1 1 | | |

Good similarity measure

70

input affinity matrix affinity matrix reordered according to solution vector

0.04

002

Dk

-0.02

0,042

T T T

o
L 2
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e

-
"..n.
"
Ex
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| 1 A A
10 20 30 40
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680

Poor similarity measure

70
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Some Issues

- Choice of number of clusters k

+ Choice of similarity
- Choice of kernel
for Gaussian kernels, choice of o

» Choice of clustering method
- k-way vs. recursive 2-way

ybuig ey Aqg epls

45



Hierarchical clustering

46



Hierarchical Clustering

- Bottom-Up (agglomerative): Starting with each item in
its own cluster, find the best pair to merge into a new
cluster. Repeat until all clusters are fused together.

* The number of dendrograms
with
n leafs = (2n -3)//[(2(n -2)) (n -2)!]

Number Number of possible
of leafs Dendrongrams

2 1
’ 5 105

2100\ Mmaipuy AQ apI|s

- =T 10 34,459,425
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We begin with a distance
matrix which contains the
distances between every
pair of objects in our dataset
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¢Consider all 1_1 I—$ 1_1 I_l |

>poss1ble
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Bottom-Up (agglomerative):

Start with each item in its own cluster,
find the best pair to merge into a new
cluster. Repeat until all clusters are
fused together.

B

‘ "~ » .
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i _i "aw

Choose
the best



Bottom-Up (agglomerative):

Start with each item in its own cluster,
find the best pair to merge into a new
cluster. Repeat until all clusters are
fused together.

Consider all l_rl_l I 1 I 1

ol s Choose
ossible & &

P o the best
merges... @ ﬁ a “es

2Consider all I 1 & 3 I 1 I 1 Choose
fPpossible @Y _ EB @ e £ the best
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Bottom-Up (agglomerative):

Start with each item in its own cluster,
find the best pair to merge into a new
cluster. Repeat until all clusters are
fused together.

Consider all [ i ;I'z I i Choose

possible ; 8 Q.
merges... 3 ‘g E i “ E the best
Consider all l—i—l_l I 1 I 1
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Bottom-Up (agglomerative):
Start with each item in its own cluster,
find the best pair to merge into a new

cluster. Repeat until all clusters are
fused together.

1bl s am (; Choose

meES But how do we compute ¢ &

distances between clusters
Consider all ]

Consider all ﬂ I E 3 I i ; .1

o rather than objects’?
merges. .. “ q i ‘.‘, L P ; é
¢Consider all I 1 & 3 I 1 I - l Choose I , I
~§>poss1b1e ; ) (,j ' the best fg b %
“merges... E 4 L,i E ‘i:“.’;\’l {r:f 552



Computing distance between clusters:

Single Link

- Cluster distance = distance of two closest
members In each class

- Potentially long

° and skinny
o clusters

® O

e ®e
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Computing distance between clusters:
Complete Link

- Cluster distance = distance of two farthest
members In each class

- Tight clusters

o ©®
o0 o0
e
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Computing distance between clusters:

Average Link

+ Cluster distance = average distance of all
pairs

 The most widely
used measure
([ ® o) _—_ + Robust against

955



Agglomerative Clustering

Good
- Simple to implement, widespread application

+ Clusters have adaptive shapes
+ Provides a hierarchy of clusters

Bad

- May have imbalanced clusters

- Still have to choose number of clusters or threshold
— silhouette coefficient

+ Need to use an “ultrametric” to get a meaningful
hierarchy

56



