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" Probability Review (cont’d.)
Maximum Likelihood Estimation (MLE)
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Administrative

* Project proposal due March 31

» A half page description
- problem to be investigated,
- why It Is interesting,
- what data you will use,
- related work.






Today

- Probabilities
- Dependence, Independence, Conditional

Independence

- Parameter estimation
- Maximum Likelihood Estimation (MLE)

- Maximum a Posteriori (MAP)



Last time... Sample space

Examples:
- () may be the set of all possible outcomes of a

dice roll (1,2,3,4,5,6) e

- Real numbers for temperature, location, time, etc

+ Pages of a book opened randomly. (1-157)
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Last time... Events
' Def: Event A is a subset of the sample space Q'

Examples:

What is the probability of
- the book is open at an odd number
- rolling a dice the number <4
- arandom person’s height X : a<X<b
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Last time... Probability

outcomes in which A is false

sample space (2

Example:

What is the probability that the
number on the dice is 2 or 47

1,3,9,6 outcomesin

which A is
true

2,4

P(A) is the volume of the area.



Last time... Kolmogorov Axioms




Last time... Venn Diagram

P(A U B) = P(A) + P(B) - P(AN B)
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Last time... Random Variables

Def: Real valued random variable is a function of the
outcome of a randomized experiment

X 92— R

Pla< X <b)=Plw:a< X(w)<b)
P(X=a)=Plw: X(w)=a)

Examples:

- Discrete random variable examples (Q2 is discrete):

* X(w) = Trueif arandomly drawn person (®») from our
class () isfemale

* X(w) = The hometown X(») of arandomly drawn person
(o) from our class (Q2)
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Last time... Discrete Distributions

* Bernoulli distribution: Ber(p)
2 = {head, tail} X(head) =1, X(tail) = 0.
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Last time... Discrete Distributions

 Bernoulli distribution: Be

r(P)

2 = {head, tail} X(head) =1, X(tail) = 0.

P( X =a)=Pw: X(w) =a) =«

.
P,

kl_p)

fora=1
for a =20
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Last time... Discrete Distributions

* Bernoulli distribution: Ber(p)
2 = {head, tail} X(head) =1, X(tail) = 0.

.Il

fr 0.

f A

" i

{ i “,..-";"' 4 |
L, ':.'
- r

¥ |'Ilr|l'lrh l"f
i Irll'l"
I

» Binomial distribution: Bin(n,p)
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Last time... Discrete Distributions

* Bernoulli distribution: Ber(p)
2 = {head, tail} X(head) =1, X(tail) = 0.
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» Binomial distribution: Bin(n,p)
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Last time... Conditional Probability

P(X]Y) = Fraction of worlds in which X event is true given Y event is true.
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Last time... Conditional Probability

P(X]Y) = Fraction of worlds in which X event is true given Y event is true.

P(flu, headache) 1/80
P(headache) 1/80 + 7/80

P(flulheadache) =

16
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Independence

Y and X don’t contain information about each other.
Observing Y doesn’t help predicting X.
Observing X doesn’t help predicting Y.

Examples:
Independent: Winning on roulette this week and next week.
Dependent: Russian roulette

17
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Dependent / Independent

Independent X,Y Dependent X,Y
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Conditionally Independent

Examples:
Dependent: shoe size of children and reading skills
Conditionally independent: shoe size of children and reading

skills given age

Stork deliver babies:
Highly statistically significant correlation
exists between stork populations and
human birth rates across Europe.
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Conditionally Independent

- London taxi drivers: A survey has pointed out a positive

and significant correlation between the number of
accidents and wearing coats. They concluded that coats
could hinder movements of drivers and be the cause of

accidents. A new law was prepared to prohibit drivers
from wearing coats when driving.

Finally, another study pointed out that people wear
coats when it rains...
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Correlation # Causation

Number people who drowned by falling into a swimming-pool
correlates with
Number of films Nicolas Cage appeared in

Swimming pool drownings

140 drownings

120 drownings

100 drownings

80 drownings

1999 2000 2001
®
1999 2000 2001

2002

2002

-8~ Nicholas Cage

2003

2003

2004 2005 2006

2004 2005 2006

-+~ Swimming pool drownings

2007

2007

2008 2009
6 films
4fims <
0
o
)
w
e
W
2 films %
0 films
2008 2009

Correlation: 0.666004
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Conditional Independence

Formally: X is conditionally independent of Y given Z

P(Accidents, Coats|Rain) = P(Accidents | Rain)P(Coats| Rain)
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Conditional Independence

Formally: X is conditionally independent of Y given Z

P(Accidents, Coats | Rain) = P(Accidents| Rain) P(Coats | Rain)

Q
-
]
Q
(o}
Q-
(%)
uv)
O~
o
N
(o]
7]
o
>
L)
x
7]
3
Q
Q

23



Conditional Independence

Formally: X is conditionally independent of Y given Z

P(Accidents, Coats | Rain) = P(Accidents | Rain)P(Coats| Rain)

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

o
@
(3
<
99)
Q
=
-
Q
O
m\
(2}
_U
O\

Note: does NOT mean Thunder is independent of Rain
But given Lightning knowing Rain doesn’t give more info about Thunder
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Parameter estimation:
MLE, MAP

Estimating Probabillities
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Flipping a Coin

20
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Flipping a Coin

Let us flip it a few times to estimate the probability:
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Flipping a Coin

Let us flip it a few times to estimate the probability:
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Flipping a Coin

Let us flip it a few times to estimate the probability:
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Questions:

(1) Why frequency of heads???

(2) How good is this estimation???

(3) Why is this a machine learning problem?7??

We are going to answer these questions

30



Question (1)

Why frequency of heads???

Frequency of heads is exactly the
maximum likelihood estimator for this problem

+ MLE has nice properties
(interpretation, statistical guarantees, simple)
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Maximum Likelihood Estimation
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Istribution

MLE for Bernoull

n
1=

{Xi}]

D

1-6

P(Tails)

P(Heads) = 6,
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MLE for Bernoulli distribution

D= {X}

X, € {H, T}

=1

P(Heads) = 68, P(Tails) =

34



Istribution

MLE for Bernoull

n
1=

{Xi}]

D

1-6

P(Tails)

P(Heads) = 6,
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tribution
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MLE for Bernoull

n
1=

{Xi}]

D

1-6

P(Tails)

P(Heads) = 6,
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Maximum Likelihood Estimation

OMLE = arg max P(D|0)
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Maximum Likelihood Estimation

aMLE — argmg,x P(D|0)

= arg max H P(X;|0) independent draws
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Maximum Likelihood Estimation

é\MLE — argmg,x P(D|0)

= argmax | | P(X;|0) independent draws
0
=1
— arg max 0 H (1 . 9) identically
0 distributed
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Maximum Likelihood Estimation

é\MLE — argmg,x P(D|0)

n
= argmax | | P(X;|0) independent draws
0
=1
— arg max 0 (1 . 9) identically
0 . distributed

= arg max O*H (1 — 6)°7

od seqeuteg Aq eplis

B|OWS X3y ¥ SO0Z0

40



Maximum Likelihood Estimation

é\MLE — argmg,x P(D|0)

n
= argmax | | P(X;|0) independent draws
0
=1
— arg max 0 (1 . 9) identically
0 . distributed

= arg max O (1 — 6)*T
| ) l
v

7 (6)
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Maximum Likelihood Estimation

OMLE = argmg,xP(D\H)

= arg max 0 (1 — 6)*T
| ) l

J(6)
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Maximum Likelihood Estimation

OMLE = argmg,xP(D\H)

= arg max 0 (1 — 6)*T
| ) l

43



Maximum Likelihood Estimation

Ov e = argmax P(D|6)

0
= arg max 0 (1 — 6)*T
\ ) J
!
J(0)
aJ(e) OAH—]. aoT o H OéT—l
5 = ayt (1 —6)*T — apf*H (1 — 0) ‘QZéMLE:O

ag(l—0)—arb |,_5 =0
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Question (2)

- How good is this MLE estimation???

032
Qg + ap

OviLE =

45



How many flips do | need?

| flipped the coins 5 times: 3 heads, 2 tails

~ 3
OMLE = :
What if | flipped 30 heads and 20 tails?
O = o0
MLE — 50)

{ - Which estimator should we trust more?
- The more the merrier???

46
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Let 0" be the true parameter.

~ 87
For n = an+ar, and Oy g = ——

g + Qr
For any £>0:

Hoeffding’s inequality:

P(|§—0"|>¢) < 2e2n€
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Probably Approximate Correct
(PAC) Learning

| want to know the coin parameter 0, within € = 0.1
error with probability at least 1-6 = 0.95.

How many flips do | need?
P(|§—0"[>e) < 2e 2

. Sample complexity:
; In(2/6)
n >

— 2€?
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Question (3)

Why is this a machine learning problem???

- improve their performance (accuracy of the
predicted prob. )

- at some task (predicting the probability of heads)

- with experience (the more coins we flip the better
we are)
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What about continuous
features”?

50
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MLE for Gaus_sian mean
and variance

Choose 0= (u,062%) that maximizes the probability of observed data

§MLE = 4arg max P(D‘Q)

6
n
= arg max H P(X;|6) Independent draws
¢ 1=1
"1 (X )2 207 Identically
arg HleaX £[1 972 € distributed

— arg Imax Le_ Z?:l(Xi—M)Q/QUQ
0=(u,02) 207
J

J(0)
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MLE for Gaugsian mean
and variance

. Note: MLE for the variance of a Gaussian is biased
[Expected result of estimation is not the true parameter!]

| | . " IR ~
Unbiased variance estimator: 02,.4;,s0q = — ) (z; — 1)’

1—=1
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Next Class:

MAP estimation
Naive Bayes Classifier
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