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Filtering

* The name “filter” is borrowed from frequency domain
processing (next week’s topic)

* Accept or reject certain frequency components

* Fourier (1807):
Periodic functions
could be represented
as a weighted sum of
sines and cosines

Image courtesy of Technology Review



Signals

* A ssignal is composed of low and high frequency
components

low frequency components: smooth /
piecewise smooth

Neighboring pixels have similar brightness values

You’re within a region

high frequency components: oscillatory

Neighboring pixels have different brightness values

You're either at the edges or noise points




Signhals — Examples
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Motivation: noise reduction

* Assume image is degraded with an additive model.

e Then,

Observation = True signal + noise

Observed image = Actual image + noise

low-pass high-pass
filters filters

|

smooth the image



Common types of noise

— Salt and pepper noise:
random occurrences of
black and white pixels

— Impulse noise:
random occurrences of
white pixels

— Gaussian noise:
variations in intensity drawn
from a Gaussian normal
distribution
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Salt and pepper noise

Gaussian noise

Shlide credit: S. Seitz



Gaussian noise

rq/w ﬁ ;Vﬂd/ﬂ
An‘ 'W" j “ﬁh W

lde_‘_" Image  Noise process Gaussian i.i.d. (“white" ) noise:
f(x,y) = f(z,y) + n(z,y) n(z,y) ~N(p,o)
>> noise = randn(size(im)) .*sigma;
>> output = im + noise;

What is the impact of the sigma!?

Slide credit: M. Hebert



Motivation: noise reduction

* Make multiple observations of the same static scene

* Take the average

* Even multiple images of the same static scene will not be
identical.

Adapted from: K. Grauman



Motivation: noise reduction

Image noise in row 250
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* Make multiple observations of the same static scene
* Take the average

* Even multiple images of the same static scene will not be
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Adapted from: K. Grauman
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Motivation: noise reduction

* Make multiple observations of the same static scene

* Take the average

* Even multiple images of the same static scene will not be
identical.

* What if we can’t make multiple observations!?

o ’ i ?
What if there’s O“IY one Image° Adapted from: K. Grauman



Image Filtering

* ldea: Use the information coming from the neighboring
pixels for processing

* Design a transformation function of the local
neighborhood at each pixel in the image

— Function specified by a “filter” or mask saying how to
combine values from neighbors.

* Various uses of filtering:
— Enhance an image (denoise, resize, etc)
— Extract information (texture, edges, etc)
— Detect patterns (template matching)

Adapted from: K. Grauman



Filtering

* Processing done on a function

— can be executed in continuous form (e.g. analog circuit)
— but can also be executed using sampled representation

* Simple example: smoothing by averaging

continuous smoothing filter

\M/W
1 1 I
X-r X X+r

discrete smoothing filter
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Slide credit: S. Marschner



Linear filtering

Filtered value is the linear combination of neighboring pixel
values.

* Key properties
— linearity: filter(f + g) = filter(f) + filter(g)

— shift invariance: behavior invariant to shifting the input
* delaying an audio signal
* sliding an image around

* Can be modeled mathematically by convolution

Adapted from: S. Marschner



First attempt at a solution

* Let’s replace each pixel with an average of all the values in its
neighborhood

* Assumptions:
— Expect pixels to be like their neighbors (spatial regularity in images)
— Expect noise processes to be independent from pixel to pixel

Shide credit: S. Marschner, K. Grauman



First attempt at a solution

* Let’s replace each pixel with an average of all the values in its
neighborhood

* Moving average in |D:

original

smoothed

Slide credit: S. Marschner
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First attempt at a solution
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First attempt at a solution
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First attempt at a solution

* Let’s replace each pixel with an average of all the values in its
neighborhood

* Moving average in |D:

original

smoothed

Slide credit: S. Marschner



Convolution warm-up

* Same moving average operation, expressed mathematically:

; | :
bsmouth[’] p— o + 1 Z b[]]

Slide credit: S. Marschner



Discrete convolution

* Simple averaging:

L+7

" I = sy
b.\'lll()(_)lll[}_ — 21+1 L b[]}

j=i—r

— every sample gets the same weight

* Convolution: same idea but with weighted average

(axb)[i] = ) _ alj]bli - j]

J

— each sample gets its own weight (normally zero far away)

* This is all convolution is: it is a moving weighted average

Slide credit: S. Marschner



Filters

* Sequence of weights a[j] is called a filter

* Filter is nonzero over its region of support
— usually centered on zero: support radius r

* Filter is normalized so that it sums to 1.0

— this makes for a weighted average, not just any
old weighted sum

— since for images we usually want to treat

* Most filters are symmetric about 0 5 { { { o ¢
left and right the same oo -

|

o 0 r
a box filter

Slide credit: S. Marschner



Convolution and filtering

* Can express sliding average as convolution with a box filter

¢« a =[..0, 1,1, 1,1,1,0,..]
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Slide credit: S. Marschner



Example: box and step
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Slide credit: S. Marschner



Example: box and step
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Example: box and step
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Example: box and step
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Slide credit: S. Marschner



Example: box and step
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Slide credit: S. Marschner



Convolution and filtering

* Convolution applies with any sequence of weights

* Example: bell curve (gaussian-like) [..., 1,4,6,4,1,...]/16

«+001111100---

L L .
4 .
ooooooooooooooo
.
00000

Slide credit: S. Marschner



Convolution and filtering

* Convolution applies with any sequence of weights

* Example: bell curve (gaussian-like) [..., 1,4,6,4,1,...]/16

+++001464100---

Slide credit: S. Marschner



And in pseudocode...

function convolve(sequence a, sequence b, int r, int 7 )
g=+{)
for ) = —r tor
s = s+ alj|bli — j]

return s

Slide credit: S. Marschner



Key properties

e Linearity: filter(f, + f,) = filter(f,) + filter(f,)
e Shift invariance: filter(shift(f)) = shift(filter(f))

* same behavior regardless of pixel location, i.e. the value of the output
depends on the pattern in the image neighborhood, not the position of the
neighborhood.

* Theoretical result: any linear shift-invariant operator can be
represented as a convolution

Slide credit: S. Lazebnik



Properties in more detail

 Commutative:a*b=b*a
— Conceptually no difference between filter and signal

» Associative:a * (b* c) = (a*b) *c
— Often apply several filters one after another: (((a * b,) * b,) * b,)
— This is equivalent to applying one filter:a * (b, * b, * b;)

 Distributes over addition:a * (b + ¢) = (a * b) + (a * ¢)
* Scalars factor out:ka * b = a * kb = k (a * b)

* lIdentity: unit impulsee =[...,0,0, I,0,0, ...],
a*e=a

Slide credit: S. Lazebnik



A gallery of filters

* Box filter
— Simple and cheap

* Tent filter
— Linear interpolation

* Gaussian filter
— Very smooth antialiasing filter

Slide credit: S. Marschner



Box filter
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Shide credit: S. Marschner



Tent filter
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Shide credit: S. Marschner



Gaussian filter

Slide credit: S. Marschner



Discrete filtering in 2D

* Same equation, one more index

(axb)li,j] = ali’,j'1bli —4',j — 5

.]'/ -J.,

— now the filter is a rectangle you slide around over a grid of numbers

Usefulness of associativity
— often apply several filters one after another: (((a * b,) * b,) * b;)

— this is equivalent to applying one filter:a * (b, * b, * b,)

Slide credit: S. Marschner



And in pseudocode...

function convolve2d(filter2d a, filter2d b, int 7, int j)
S ()

r = a.radius

for i/ rtordo
for ;' rtor do
o = & + ali'l[i'Ibli — 11 — 7

return s

Slide credit: S. Marschner



Moving Average In 2D

Flz, y] Gla, y]

Shide credit: S. Seitz



Moving Average In 2D
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Moving Average In 2D
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Shide credit: S. Seitz



Moving Average In 2D

Flx, y]

Glz; yl
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Shide credit: S. Seitz



Moving Average In 2D

Flx, y]

Glz; yl

10

20

30 “ 30

Shide credit: S. Seitz



Moving Average In 2D

Flx, y]

Shide credit: S. Seitz



Correlation filtering

Say the averaging window size is 2k+| x 2k+1:

Gli, 7] = (2/ +1)2 Z Z F[1—|—u 7+ v]

Uu=—k v=-—k
;\ J

Attrlbute umform Loop over all pixels in neighborhood
weight to each pixel  around image pixel F[ij]

Now generalize to allow different weights depending on
neighboring pixel’s relative position'

Gli, j] = Z Z H[u v] ['z',—|—-u,..j-|-«1,~]

u=—k v=-—-=%

Non umform weights

Slide credit: K. Grauman



Correlation filtering
G| Z Z H[zzz]F[z+11/+z]
u=—kv=-—k

This is called cross-correlation, denoted G=HQXRE

Filtering an image: replace each pixel with a linear combination of
its neighbors.

The filter “kernel” or “mask’ H[u,v] is the prescription for the
weights in the linear combination.

Slide credit: K. Grauman



Correlation filtering

3

3

Template (mask)

h

Scene



Correlation filtering

4
A

Detected template Correlation map



Cross correlation example

Left Right

scanline

Norm. corr

Shide credit: Fei-Fei Li



Averaging filter

* What values belong in the kernel H for the moving average

example!?
Flz, y] ®  Hlu,v] Glz, y]
0|10 20 3{3]
?
G=HQ®PF

Slide credit: K. Grauman



Averaging filter

* What values belong in the kernel H for the moving average

example!?
Flz, y] ®  Hlu,v] G|z, y]
1 1 1 0|10 20 30i$.i
1 | " =—"]
—| 1|11
9
1|11

“box filter”

G=HQF

Slide credit: K. Grauman



Smoothing by averaging

depicts box filter:
white = high value, black = low value

original filtered

Slide credit: K. Grauman



Smoothing by averaging

depicts box filter:
white = high value, black = low value

original filtered

What if the filter size was 5 x 5 instead of 3 x 3?
Slide credit: K. Grauman



Boundary issues

* What is the size of the output?

 MATLAB: output size / “shape” options
— shape = ‘full’: output size is sum of sizes of fand g
— shape = ‘same’: output size is same as f
— shape = ‘valid’: output size is difference of sizes of fand g

full same valid

_ 8 | _

Slide credit: S. Lazebnik



Boundary issues

* What about near the edge?

— the filter window falls off the edge of the image
— need to extrapolate
— methods:

* clip filter (black)

* wrap around

* copy edge

* reflect across edge

Slide credit: S. Marschner
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Boundary issues

* What about near the edge?

— the filter window falls off the edge of the image
— need to extrapolate

* clip filter (black) . 4

* wrap around
* copy edge
* reflect across edge

Shide credit: S. Marschner
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Boundary issues

* What about near the edge?

— the filter window falls off the edge of the image
— need to extrapolate

)

— methods:

clip filter (black)

* wrap around

copy edge

reflect across edge

Slide credit: S. Marschner



Boundary issues

* What about near the edge?

— the filter window falls off the edge of the image
— need to extrapolate

~ ¥ L
~ methods ..-
* clip filter (black) .

* wrap around
* copy edge
* reflect across edge

Slide credit: S. Marschner



Boundary issues

* What about near the edge?

— the filter window falls off the edge of the image
— need to extrapolate

— methods: 4"
* clip filter (black)

* wrap around
* copy edge
* reflect across edge

Slide credit: S. Marschner



Boundary issues
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Boundary issues
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— the filter window falls off the edge of the image
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~ methods “
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Boundary issues

* What about near the edge?

— the filter window falls off the edge of the image
— need to extrapolate
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* clip filter (black)
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Boundary issues

* What about near the edge?

— the filter window falls off the edge of the image
— need to extrapolate
— methods (MATLAB):

 clip filter (black): imfilter (f, g, 0)

* wrap around: imfilter (£, g, ‘circular’)
* copy edge: imfilter(f, g, ‘replicate’)
 reflect across edge: imfilter (£, g, ‘symmetric’)

Slide credit: S. Marschner



Gaussian filter

* What if we want nearest neighboring pixels to have the
most influence on the output?

This kernel is an
approximation of a 2d

Gaussian function:
1121 5 R
1 h{u,v) = e o2
21412 B
16
121
H[u, v]

Flz,y]

Shide credit: S. Seitz



Smoothing with a Gaussian

Slide credit: K. Grauman



Gaussian filters

* What parameters matter here!

e Size of kernel or mask

— Note, Gaussian function has infinite support, but discrete filters
use finite kernels

o = 5 with g = 5 with
|10 x 10 kernel 30 x 30 kernel

Slide credit: K. Grauman



Gaussian filters

* What parameters matter here?

e Variance of Gaussian: determines extent of
smoothing

O = 2 with O = 5 with
30 x 30 kernel 30 x 30 kernel

Slide credit: K. Grauman



Choosing kernel width

Effectof o

Rule of thumb: set filter half-width to about 30

Slide credit: S. Lazebnik



>>

>>

>>

>>

>>

>>
>>

Matlab

hsize = 10;

sigma = 5;
h = fspecial (‘gaussian’ hsize, sigma);
mesh (h) ; P

py S—_

imagesc (h) ;

outim = imfilter (im, h); % correlation
imshow (outim) ;

outim

Slide credit: K. Grauman



Smoothing with a Gaussian

Parameter O is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

10 10

. N

el .

n d 30 .
0 10 20 30

for sigma=1:3:10

h = fspecial ('gaussian', fsize, sigma);
out = imfilter (im, h);
imshow (out) ;
pause;
end

Slide credit: K. Grauman



Separability

* In some cases, filter is separable, and we can factor into two
steps:
— Convolve all rows
— Convolve all columns

Slide credit: K. Grauman



Separability of the Gaussian filter

e
exp  20°

1
2702

1 X° : Y 22
= —— exp 20 _—___ exp 20
Vero P V2ro P

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

Gs(X,y)

In this case, the two functions are the (identical) 1D Gaussian

Slide credit: D. Lowe



Separability example

2D convolution |2 |4 |2 3 |5
(center location only) [ 12111 [, .

n

1 12 |1 1 X 112 |1
The filter factors
. 7 F9 P =
into a product of ID :
11211 1
filters:
W EIE 11
Perform convolution [ T>T71* 5 15 |5 k= P
along rows: -
5 4 |4 |6 18

Followed by convolution
along the remaining column:

Slide credit: K. Grauman



Why is separability useful?

* What is the complexity of filtering an nxn image with an mxm
kernel?

— O(n? m?)
* What if the kernel is separable!?

— O(n?m)

Slide credit: S. Lazebnik



Properties of smoothing filters

* Smoothing
— Values positive

— Sum to | = constant regions same as input
— Amount of smoothing proportional to mask size
— Remove “high-frequency” components;“low-pass” filter

Slide credit: K. Grauman



Filtering an impulse signal

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Flz,y] Glz, y|

Slide credit: K. Grauman



Convolution

e Convolution:

— Flip the filter in both dimensions (bottom to top, right to left)
— Then apply cross-correlation

k k
Gli, ] = Z Z Hlu,v]|F|i —u,j — v]

u=—k v=-=%

G=HxF 4

|

Notation for
convolution
operator

Slide credit: K. Grauman



Convolution vs. Correlation

* A convolution is an integral that expresses the amount of
overlap of one function as it is shifted over another function.

— convolution is a filtering operation

* Correlation compares the similarity of two sets of data.
Correlation computes a measure of similarity of two input
signals as they are shifted by one another. The correlation result
reaches a maximum at the time when the two signals match
best .

— correlation is a measure of relatedness of two signals

Slide credit: Fei-Fei 1L



Convolution vs. correlation

Convolution

k k
Gli, 7] = Z Zj Hu,v]F[i —u,j — v]

u=—kv=-=k
G=HxF

Cross-correlation

k k
Gli.jl= Y Y H[uv]F[i+ u,j+ v]
u:—l\‘ l‘=—/1'
G=HXF

For a Gaussian or box filter, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ?

Slide credit: K. Grauman



Predict the outputs using correlation
filtering

Slide credit: K. Grauman



Practice with linear filters

Original

Slide credit: D. Lowe



Practice with linear filters

-
ok
-

Original Filtered
(no change)

Slide credit: D. Lowe



Practice with linear filters

Original

Slide credit: D. Lowe



Practice with linear filters

0(0(0
0(0|1
0(0(0
Original Shifted left
by | pixel with
correlation

Slide credit: D. Lowe



Practice with linear filters

111
3111 ?
111

Original

Slide credit: D. Lowe



Practice with linear filters

O|

Original Blur (with a
box filter)

Slide credit: D. Lowe



Practice with linear filters

0]o]o 1171
1

ol2]o] - <[1[1]1 )

ofofo 1]t

Original

Slide credit: D. Lowe



Practice with linear filters

0[0]0 . 1]1]1
0[2]0] = 5 1]1]1
0/0]0 111]1

Original

Sharpening filter:
accentuates differences with
local average

B

Slide credit: D. Lowe



Filtering examples: sharpening

before after

Slide credit: K. Grauman



Sharpening

* What does blurring take away?

-\

«é‘ '

/

detail

\ \" Jsharp@he
Shide credit: S. Lazebnik




Unsharp mask filter
fro(f-fxg)=>1+a)f-a fxg=[f*(1+a)e-g)

i

image blurred unit impulse
image (identity)

unit impulse

Gaussian Laplacian of Gaussian

Slide credit: S. Lazebnik



Other filters

1 |0 -1

210 |-2

1 |0 -1
Sobel

Vertical Edge
(absolute value)

Shde credit: J. Hays



Other filters

1 1211

O[]0 O

-1 (-2 -1
Sobel

Horizontal Edge
(absolute value)

Shde credit: J. Hays



Median filters

* A Median Filter operates over a window by selecting the
median intensity in the window.

* What advantage does a median filter have over a mean filter?

* |s a median filter a kind of convolution?

adapted from: S. Seitz



Median filter

10| 1520 * No new pixel values
23 (90|27 introduced
SIETRE l Sort
Median value L Bl « Removes spikes: good for
10 15 20 23 |27]30 31 33 90 impulse, salt & pepper noise

10115]20 l Replace * Non-linear filter

9
o
o
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>J
o
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—
o
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Slide credit: K. Grauman



Median filter

Salt andﬁ | _ Median
Irz:ceali)speer ) filtered

§ W J, | { : "] ‘M\w

4 101 .‘l ”.l w\

Iy o]
A s OO

Plots of a row of the image
Matlab: output im = medfilt2 (im, [h w]);
Shide credit: M. Hebert



Median filter

* What advantage does median filtering have over Gaussian
filtering?
— Robustness to outliers
— Median filter is edge preserving

filters have width 5 :

s 0 v LR BN .. lxl)l'l~
o MEDIAN
o MEAN

Slide credit: K. Grauman



