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Review - Point Operations

* Smallest possible neighborhood is of size |xI

* Process each point independently of the others

* Output image g depends only on the value of f
at a single point (x,y)

* Transformation function T remaps the sample’s value:
s = T(r)

where

— ris the value at the point in question

— s is the new value in the processed result
— T is a intensity transformation function
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Review - Spatial Filtering
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Why does the Gaussian give a nice smooth image, but the square
filter give edgy artifacts?

Gaussian Box filter n




Why does a lower resolution image still make sense
to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ Shide credit: D. Holem




Jean Baptiste Joseph Fourier (1768-1830)
had crazy idea (1807):

Any univariate function can be
rewritten as a weighted sum of
sines and cosines of different
frequencies.

Don’t believe it?

— Neither did Lagrange,
Laplace, Poisson and
other big wigs

— Not translated into
English until 1878!

But it’s (mostly) true!
— called Fourier Series

— there are some subtle
restrictions

Slide credit: A. Efros



A sum of sines
Our building block:

Asin(ax + @)

Add enough of them to get
any signal f(x) you want!

f :

f(target)=

f] + f2+ f3...+ fn+...

Slide credit: A. Efros



Fourier Transform

*We want to understand the frequency w of our signal. So, let’s
reparametrize the signal by w instead of x:

flxy —— Fourier —— F(w)
Transform

For every wirom 0 to inf, F(w) holds the amplitude A and

phase fof the corresponding sine Asin( ax + ¢)
* How can Fhold both? Complex number trick!

F(w)=R(w)+il(w)

I(w
A= i\/R(a))2 + I(w) ¢ =tan” )
R(w)
We can always go back:
Fov) — Inverse Fourier — f{x)
Transform Shide credit: A. Efros




Frequency Spectra

* example: g(?) = sin(2xf 1) + (1/3)sin(2x(3f) 1)
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Frequency Spectra

Slide credit: A. Efros



Frequency Spectra
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Frequency Spectra
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Frequency Spectra

Slide credit: A. Efros



Frequency Spectra

Slide credit: A. Efros



Frequency Spectra

Slide credit: A. Efros



Frequency Spectra

AZ 1 sin(27rkt)
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Slide credit: A. Efros



Example: Music

* We think of music in terms of frequencies at different
magnitudes

Spectrum of a voice signal (15 seconds)

voice waveform example
T T T T 70

decibels

05}

9 95 10 105 1 115
seconds hentz

Shlide credit: D . Hoeim



The Discrete Fourier transform

e Forward transform

Fm, n]—MZINZ_f[k e by

* |nverse transform

Sk 1= —ENZIF[W! nle i

Slide credit; B. Freeman and A. Torralba



How to interpret 2D Fourier
Spectrum

Vertical orientation Low spatial frequencies

High
spatial
fx in cycles/image frequencies

Log power spectrum

Slide credit: B. Freeman and A. Torralba



Image

Magnitude FT

Some important Fourier Transforms

Slide credit; B. Freeman and A. Torralba




Image

Magnitude FT

Some important Fourier Transforms

Slide credit; B. Freeman and A. Torralba




The Fourier Transform of some

Log(1+Magnitude FT)

Slide credit: B. Freeman and A. Torralba
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B. Freeman and A. Torralba

1t:

Shlide cred



Fourier transform magnitude

Range [0, 3.46e+005]
Dims [256, 256]

Slide credit: B. Freeman and A. Torralba



Masking out the fundamental and
harmonics from periodic pillars

Slide credit: B. Freeman and A. Torralba



Signhals can be composed

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

Slide credit: A. Efros More: http://www.cs.unm.edu/~brayer/vision/fourier.html




The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg=h]=F[g]F[A]
* The inverse Fourier transform of the product of two

Fourier transforms is the convolution of the two inverse
Fourier transforms

F'[gh]=F '[g]=F'[A]

* Convolution in spatial domain is equivalent to
multiplication in frequency domain!

Slide credit: A. Efros



Filtering in spatial domain 1] o]

intensity image

Slide credit: D. Hoiem



Filtering in frequency domain

FFT

intensity image

log fit magnitude

Inverse FFT

LA (e

Shlide credit: D. Hoiem



2D convolutlon theorem example

Slide credit: A. Efros

[F(8,.8,)!




Filtering

Why does the Gaussian give a nice smooth image, but
the square filter give edgy artifacts!?

Gaussian

Box filter n




Filtering

Gaussian

intensity image filter: gaussian filtered image
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filter: gaussian log fit magnitude of filtered image

Slide credit: A. Efros



intensity image

iew Insert Tools Desktop Window Help
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log fit magnitude of image

Filterin

Box Filter

filter: box

filtered image

B Figure 4

File Edit View Insert Tools Desktop Window Help
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filter: box

”
Figure 6
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log fit magnitude of filtered image

Slide credit: A.



Fourier Transform pairs

Spatial domain

®
sbox(x)
X
4 gauss(x; o)
X
b sinc(s)

)

Frequency domain

oo

F(s) = /_

b sinc(s)

f(x)e—i27rsxdx
00

s

» gauss(s; 1/o)

.S

A

Lbox(x)

Vx

Slide credit: A. Efros



Low-pass, Band-pass, High-pass
filters

low-pass:

] l;

Ill-‘%"

Slide credit: A. Efros



Edges in images
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Slide credit: A. Efros



FFT in Matlab

* Filtering with fft

im = ... % “im” should be a gray-scale floating point image

[imh, imw] = size(im);

fftsize = 1024; % should be order of 2 (for speed) and include padding
im fft = £ft2(im, fftsize, fftsize); % 1) fft im with padding

hs = 50; % filter half-size

fil = fspecial('gaussian', hs*2+1, 10);

fil fft = f£ft2(£f1l1, fftsize, fftsize); % 2) fft fil, pad to same size as
image

im fil fft = im fft .* fil fft; % 3) multiply fft images

im fil = ifft2(im fil fft); % 4) inverse fft2

im f£fil = im fil(l+hs:size(im,1l)+hs, l+hs:size(im, 2)+hs); % 5) remove padding

* Displaying with fft

figure(l), imagesc(log(abs(fftshift(im fft)))), axis image, colormap jet

Slide credit: D. Holem



Phase and Magnitude

: Image with cheetah phase
Curious fact (and zebra magnitude)

— all natural images have about the same
magnitude transform

— hence, phase seems to matter, but
magnitude largely doesn't

Demonstration

— Take two pictures, swap the phase :
transforms, compute the inverse - what Image with zebra phase
does the result look like?

- (and cheetah magnitude) .

Slide credit: B. Freeman and A. Torralba






This is the
magnitude
transform of
the cheetah
picture

Slide credit: B. Freeman and A. Torralba




. A 4
Slide credit: B. Freeman and A. Torralba



This is the
magnitude
transform of
the zebra
picture

Slide credit: B. Freeman and A. Torralba




Reconstructio
with zebra
phase, cheetah
magnitude

Side credit: B. Freeman and A. Torralba




Reconstruction
with cheetah
phase, zebra
magnitude

Slide credit: B. Freeman and A. Torralba




What is a good representation for
image analysis?
* Fourier transform domain tells you “what” (textural

properties), but not “where".

* Pixel domain representation tells you “where” (pixel
location), but not “what”.

* Want an image representation that gives you a local
description of image events—what is happening where.

Slide credit; B. Freeman and A. Torralba



Sampling

Why does a lower resolution image still make sense to us?
What do we lose!?

Image: http://www.flickr.com/photos/igorms/136916757/ Shide credit: D. Holem




Sampled representations

* How to store and compute with continuous functions!?

 Common scheme for representation: samples
— write down the function’s values at many points

o

l Sampling

Slide credit: S. Marschner



Reconstruction

* Making samples back into a continuous function
— for output (need realizable method)

— for analysis or processing (need mathematical method)

— amounts to "guessing” what the function did in between

l Reconstruction

Slide credit: S. Marschner



Sampling in digital audio

* Recording: sound to analog to samples to disc

* Playback: disc to samples to analog to sound again

— how can we be sure we are filling in the gaps correctly?
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Slide credit: S. Marschner



Subsampling by a factor of 2

o
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Throw away every other row and

column to create a |/2 size image

Slide credit: D. Hoiem



Undersampling

* What if we "missed” things between the samples?

* Simple example: undersampling a sine wave
unsurprising result: information is lost

surprising result: indistinguishable from lower frequency

also was always indistinguishable from higher frequencies
aliasing: signals “traveling in disguise” as other frequencies

AAANAA VAN AN

TRVATAAY

VUVUVVV

Slide credit: S. Marschner



Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[f camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDDROB

frame 0 frame 1 frame 2 frame 3 frame 4
01 ] n L,
shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Shlide credit: S. Seitz



Aliasing in graphics

Disintegrating textures

Slide credit: A. Efros



Sampling and aliasing

256Xx256 [28x128 64x64 32x32 [6x16
- lllllll - B BRI I|II|I a4 i ik

Slide credit: D. Hoiem



Nyquist-Shannon Sampling Theorem

When sampling a signal at discrete intervals, the
sampling frequency must be = 2 x f___

f .. = max frequency of the input signal

This will allows to reconstruct the original perfectly
from the sampled version

fo 8 [ 8 o b
TR TR T
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\_/ \ bad

Slide credit: D. Holem




Anti-aliasing

Solutions:

* Sample more often

* Get rid of all frequencies that are greater than half the new
sampling frequency
—  Will lose information
— But it’s better than aliasing
— Apply a smoothing filter

Slide credit: D. Holem



Preventing aliasing

* Introduce lowpass filters:
— remove high frequencies leaving only safe, low frequencies
— choose lowest frequency in reconstruction (disambiguate)

; lowpass filter

,__I \{\\ /\ ﬂﬂ N J —>» |A/D conv.| — || || .|| || | L @
AV yAiY - S il

+— lowpass filter

@ = |I'|I'|III|||||"|II|I||| L. — 3 |D/A conv. —1—I \J\U/\Uﬂuﬂuﬁu_f —l—ﬂ))))

Slide credit: S. Marschner



Algorithm for downsampling by
factor of 2

|. Start with image(h, w)
2. Apply low-pass filter

im_ blur = imfilter(image, fspecial(‘gaussian’, 7, 1))
3. Sample every other pixel

im_small = im_blur(l:2:end, |:2:end);

Slide credit: D. Holem



Anti-aliasing

256x256 128x128 64x64 32x32 16x16
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Shide credit: Forsyth and Ponce



Subsampling without pre-filtering

/2 | /4 (2x zoom) /8 (4x zoom)

Shlide credit: S. Seitz



Subsampling with Gaussian pre-filtering

Gaussian 1/2 G /4 G 1/8

Shlide credit: S. Seitz



[Philip Greenspun]

1000 pixel width

Slide credit: S. Marschner




ilip Greenspun

by dropping pixels gaussian filter

250 pixel width
Shlide credit: S. Marschner



Analyzing local image structures

B Too much

Too little

Slide credit: B. Freeman and A. Torralba



The image through the Gaussian

x2+y2

h(x,y)=e 20°

= T'oo much

Probably stll too little...
...but hard enough for now

Too little

Slide credit: B. Freeman and A. Torralba



Analysis of local frequency

(x=x,)" +0-,)’

h(x:y;xoayo) =e 20° i i

Fourier basis:

J 2 muyx

e

Gabor wavelet:

x2+y2

p(x,y)=e > e/

We can look at the real and imaginary

parts:

x2+y2

w.(x,y)=e 2 cos(27mu,x)

.X2 +y2

w(x,y)=e 2 sin(27m,x)

Slide credit; B. Freeman and A. Torralba



Gabor wavelets

2+y2

X

cos(27myx)

2

y)=e

w.(x

Slide credit; B. Freeman and A. Torralba



Gabor filters
l] m Gabor filters at different
scales and spatial frequencies

n n m Top row shows anti-symmetric
(or odd) filters; these are good for detecting
n n odd-phase structures like edges.

Bottom row shows the
symmetric (or even) filters, good for
detecting line phase contours.

Slide credit: B. Freeman and A. Torralba



36. NO. 7, JULY 1988

VOL..

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING,

2D Receptive Field

2D Gabor Function
Difference

9861 ‘uewbneq uyor

illustrations of empirical 2-D receptive field profiles

measured by J. P. Jones and L.. A. Palmer (personal communication) in
simple cells of the cat visual cortex. Middle row: best-fitting 2-D Gabor
elementary function for each neuron, described by (10). Bottom row:

Fig. 5. Top row:

residual error of the fit, indistinguishable from random error in the Chi-

squared sense for 97 percent of the cells studied.

/D

Slide credit: B. Freeman and A. Torralba
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Slide credit: B. Freeman and A. Torralba



Quadrature filter pairs

* A quadrature filter is a complex filter whose real part is related to its
imaginary part via a Hilbert transform along a particular axis through the
origin

Gabor wavelet:

X2+y2

pxy)=e e/

e

Slide credit:
. Freeman & A. Torralba




Quadrature filter pairs

Contrast invariance! (same energy response for white dot on
black background as for a black dot on a white background).

Slide credit; B. Freeman and A. Torralba



Quadrature filter pairs

energy response
to an edge

Slide credit: B. Freeman and A. Torralba



Quadrature filter pairs

energy response to
a line

Slide credit: B. Freeman and A. Torralba



How quadrature pair filters work

N\ 7N\
—|+}— ++—
/|

(a) Frequency response of even filter, G
(real)

f,
/N /\
—{' l— ++—t
/| U/

(b) Frequency response of odd filter, H
(imaginary)

f

Figure 3-5: Frequency content ol two bandpass hlters in quadrature. (a) even
phase hlter, called ¢ in text, and (b odd phase ilter, . Plus and minus sign
lustrate relative sign ol regions o the Trequency domain, See Fig, 36 Tor

calculation ol the frequency content of the energy measure derived Trom these

two filters. Slide credit: B. Freeman and A. Torralba



How quadrature pair filters work
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(a) Fourier transform of G*G

1f‘ ——
7\ / N

.'l' I"- { ‘."| [ “'.
I - ' ‘ + ' - ‘ Figure 3-6: Derivation ol energy measure frequency content for the filters
'. "l \ | ‘.| "' ol Fig. 3-5. (a) Fourier transform of (= (7. (b) Fourier transform ol H =
\ \ H. Each squared response has 3 lobes in the [requency domain. arising {rom
\ / \ / \ / convolution of the frequency domain responses. The center lobe is modulated
= . T rra down in frequency while the two outer lobes are modulated up. (There are
(b) Fourier transform of H*H two sign changes which combine to give the signs shown in (b). To convolve

H with itsell. we flip it in [, and [,. which interchanges the + and — lobes of

Fig. 3-5 (b). Then we slide it over an unflipped version of itsell, and integrate

b g
,/ \ the product of the two. That operation will give positive outer lobes. and

/ \ a negative inner lobe. However, fI has an imaginary [requency response, so
|‘ + || multiplyving it by itsell gives an extra factor of 1. which vields the signs
". l.I I, shown in (b)), (¢) Fourier transform of the energy measure, (7« (¢ + H + .
' / I'he high frequency lobes cancel. leaving only the baseband spectrum. which

T spectrum is proportional to the sum of the auto-correlation functions of either
i * + * lobe of Fie. 3-5 (a) and ei ofohie of Fig:3-5(b
(c) Fourler transform of G*G + H™H obe of Fie. 3-5 () and cithegiohe i B Freeman and A. Torralba

has been demodulated in frequency from the original bandpass response. This
| ) y | |



Oriented Filters

x2 +y2

 Gabor wavelet: w(x,y)ze 207 pJ2mox

X

e Tuning filter orientation:
y
Real
Space
Imag

Fourier Real
Domain

'=cos(a)x +sin(x)y
=—sin(a)x + cos(a)y

08 N i B i
e [ L [l / / ’y
S e e A "o "o -

Slide credit: B. Freeman and A. Torralba



Simple example

“Steerability” -- the ability to synthesize a filter of any orientation
from a linear combination of filters at fixed orientations.

G, = cos(0)G, +sin(0)G,,

Q° Synthesized 30°
o . .
Res ponse. Taken from:
W. Freeman, T. Adelson,
Raw Image “The Design and Use of

Sterrable Filters”, IEEE
Trans. Patt, Anal. and
Machine Intell., vol 13, #9,
pp 891-900, Sept 1991

Slide credit: B. Freeman and A. Torralba




Steerable filters

Derivatives of a Gaussian:

xy? o

dlx, - 2
O ELLC .
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h.(x,y)=

An arbitrary orientation can be computed as a linear combination of those

two basis functions:
h,(x,y) =cos(a)h, (x,y)+sin(a)h,(x,y)

The representation is “shiftable” on orientation:We can interpolate any
other orientation from a finite set of basis functions.

Freeman & Adelson, 1992 Shide credit; B. Freeman and A. Torralba



Steerable filters
[heojcas

Summing Adaptively
junction  filtered image

Basis
filter
bank

Input
image

—@——
S

X / \\x// \\x/ﬁ

Fig. 3. Steerable filter system block diagram. A bank of dedicated filters
process the image. Their outputs are multiplied by a set of gain maps that
adaptively control the orientation of the synthesized filter.

Slide credit: B. Freeman and A. Torralba



