
BBM 413 ���
Fundamentals of ���
Image Processing���
Nov. 6, 2012	

Erkut Erdem���
Dept. of Computer Engineering���

Hacettepe University���
���
	

Frequency Domain	

Techniques	

Review - Point Operations	

•  Smallest possible neighborhood is of size 1x1	

•  Process each point independently of the others	

•  Output image g depends only on the value of f ���
at a single point (x,y)	

•  Transformation function T remaps the sample’s value: 	

	

s = T(r) 	

 where 	

–  r is the value at the point in question 	

–  s is the new value in the processed result 	

–  T is a intensity transformation function 	

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

],[],[],[
,

lnkmflkgnmh
lk

++=∑

[.,.]h[.,.]f
1	

1	

1	

1	

1	

1	

1	

1	

1	

],[g ⋅⋅

Slide credit: S. Seitz

Review – Spatial Filtering	

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f
1	

1	

1	

1	

1	

1	

1	

1	

1	

],[g ⋅⋅

],[],[],[
,

lnkmflkgnmh
lk

++=∑
Slide credit: S. Seitz

Review – Spatial Filtering	

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f
1	

1	

1	

1	

1	

1	

1	

1	

1	

],[g ⋅⋅

],[],[],[
,

lnkmflkgnmh
lk

++=∑
Slide credit: S. Seitz

Review – Spatial Filtering	

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f
1	

1	

1	

1	

1	

1	

1	

1	

1	

],[g ⋅⋅

],[],[],[
,

lnkmflkgnmh
lk

++=∑
Slide credit: S. Seitz

Review – Spatial Filtering	

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f
1	

1	

1	

1	

1	

1	

1	

1	

1	

],[g ⋅⋅

],[],[],[
,

lnkmflkgnmh
lk

++=∑
Slide credit: S. Seitz

Review – Spatial Filtering	

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]f

],[],[],[
,

lnkmflkgnmh
lk

++=∑

1	

1	

1	

1	

1	

1	

1	

1	

1	

],[g ⋅⋅

Slide credit: S. Seitz

Review – Spatial Filtering	

-1	

0	

1	

-2	

0	

2	

-1	

0	

1	

Sobel	

Slide credit: J. Hays

Review – Spatial Filtering	

Why does the Gaussian give a nice smooth image, but the square
filter give edgy artifacts?	

Gaussian	

 Box filter	

Slide credit: D. Hoiem

Why does a lower resolution image still make sense
to us? What do we lose?	

Image: http://www.flickr.com/photos/igorms/136916757/ 	

 Slide credit: D. Hoiem

Jean Baptiste Joseph Fourier (1768-1830)	

had crazy idea (1807):	

	

Any univariate function can be
rewritten as a weighted sum of
sines and cosines of different
frequencies. 	

•  Don’t believe it? 	

–  Neither did Lagrange,

Laplace, Poisson and
other big wigs	

–  Not translated into
English until 1878!	

•  But it’s (mostly) true!	

–  called Fourier Series	

–  there are some subtle

restrictions	

Slide credit: A. Efros

A sum of sines	

Our building block:	

	

	

Add enough of them to get
any signal f(x) you want!	

	

)+φωxAsin(

Slide credit: A. Efros

Fourier Transform	

• We want to understand the frequency w of our signal. So, let’s
reparametrize the signal by w instead of x:	

)+φωxAsin(

f(x) F(w) Fourier 	

Transform	

F(w) f(x) Inverse Fourier 	

Transform	

For every w from 0 to inf, F(w) holds the amplitude A and
phase f of the corresponding sine

•  How can F hold both? Complex number trick!

)()()(ωωω iIRF +=
22)()(ωω IRA +±=

)(
)(tan 1

ω
ω

φ
R
I−=

We can always go back:

Slide credit: A. Efros

Frequency Spectra	

•  example: g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)

= +

Slide credit: A. Efros

Frequency Spectra	

Slide credit: A. Efros

= +

=

Frequency Spectra	

Slide credit: A. Efros

= +

=

Frequency Spectra	

Slide credit: A. Efros

= +

=

Frequency Spectra	

Slide credit: A. Efros

= +

=

Frequency Spectra	

Slide credit: A. Efros

= +

=

Frequency Spectra	

Slide credit: A. Efros

=
1

1 sin(2)
k
A kt

k
π

∞

=
∑

Frequency Spectra	

Slide credit: A. Efros

Example: Music	

•  We think of music in terms of frequencies at different
magnitudes	

Slide credit: D . Hoeim

Slide credit: B. Freeman and A. Torralba

The Discrete Fourier transform

�

f [k,l] 1
MN

F[m,n]e
i km

M

ln
N









l0

N1


k0

M 1



Inverse transform

�

F[m,n] f [k,l]e
i km

M

ln
N









l0

N1


k 0

M 1



Forward transform

The Discrete Fourier transform	

•  Forward transform	

	

•  Inverse transform	

The Discrete Fourier transform

�

f [k,l] 1
MN

F[m,n]e
i km

M

ln
N









l0

N1


k0

M 1



Inverse transform

�

F[m,n] f [k,l]e
i km

M

ln
N









l0

N1


k 0

M 1



Forward transform

How to interpret a 2-d Fourier
Spectrum

Horizontal
orientation

Vertical orientation

45 deg.

0 fmax

0

fx in cycles/image

Low spatial frequencies

High
spatial
frequencies

Log power spectrum

Slide credit: B. Freeman and A. Torralba

How to interpret 2D Fourier
Spectrum	

Log power spectrum

Some important Fourier Transforms	

Im

ag
e

M
ag

ni
tu

de
 F

T

Slide credit: B. Freeman and A. Torralba

Some important Fourier Transforms	

Im

ag
e

M
ag

ni
tu

de
 F

T

Slide credit: B. Freeman and A. Torralba

The Fourier Transform of some
important images

Im
ag

e
Lo

g(
1+

M
ag

ni
tu

de
 F

T)

Slide credit: B. Freeman and A. Torralba

A B C

1 2 3

fx(cycles/image pixel size) fx(cycles/image pixel size) fx(cycles/image pixel size)

Slide credit: B. Freeman and A. Torralba

Fourier Amplitude Spectrum	

Fourier transform magnitude	

Slide credit: B. Freeman and A. Torralba

Masking out the fundamental and
harmonics from periodic pillars	

Slide credit: B. Freeman and A. Torralba

Signals can be composed	

+	

 =	

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering	

More: http://www.cs.unm.edu/~brayer/vision/fourier.html	

Slide credit: A. Efros

The Convolution Theorem	

•  The Fourier transform of the convolution of two
functions is the product of their Fourier transforms	

•  The inverse Fourier transform of the product of two
Fourier transforms is the convolution of the two inverse
Fourier transforms	

•  Convolution in spatial domain is equivalent to
multiplication in frequency domain!	

]F[]F[]F[hghg =∗

][F][F][F 111 hggh −−− ∗=

Slide credit: A. Efros

Filtering in spatial domain	

-1	

0	

1	

-2	

0	

2	

-1	

0	

1	

*	

 =	

Slide credit: D. Hoiem

Filtering in frequency domain	

FFT	

FFT	

Inverse FFT	

=	

Slide credit: D. Hoiem

2D convolution theorem example	

*	

f(x,y)	

h(x,y)	

g(x,y)	

|F(sx,sy)|	

|H(sx,sy)|	

|G(sx,sy)|	

Slide credit: A. Efros

Why does the Gaussian give a nice smooth image, but
the square filter give edgy artifacts?	

Gaussian Box filter

Filtering	

Slide credit: A. Efros

Gaussian	

Filtering	

Slide credit: A. Efros

Box Filter	

Filtering	

Slide credit: A. Efros

Fourier Transform pairs	

The
image
cannot

Slide credit: A. Efros

Low-pass, Band-pass, High-pass
filters	

 low-pass:

High-pass / band-pass:

Slide credit: A. Efros

Edges in images	

Slide credit: A. Efros

FFT in Matlab	

•  Filtering with fft	

•  Displaying with fft	

im = ... % “im” should be a gray-scale floating point image!
[imh, imw] = size(im);!
fftsize = 1024; % should be order of 2 (for speed) and include padding!
im_fft = fft2(im, fftsize, fftsize); % 1) fft im with padding!
hs = 50; % filter half-size!
fil = fspecial('gaussian', hs*2+1, 10); !
fil_fft = fft2(fil, fftsize, fftsize); % 2) fft fil, pad to same size as
image!
im_fil_fft = im_fft .* fil_fft; % 3) multiply fft images!
im_fil = ifft2(im_fil_fft); % 4) inverse fft2!
im_fil = im_fil(1+hs:size(im,1)+hs, 1+hs:size(im, 2)+hs); % 5) remove padding!

figure(1), imagesc(log(abs(fftshift(im_fft)))), axis image, colormap jet!

Slide credit: D. Hoiem

Phase and Magnitude	

•  Curious fact	

–  all natural images have about the same
magnitude transform	

–  hence, phase seems to matter, but
magnitude largely doesn’t	

•  Demonstration	

–  Take two pictures, swap the phase

transforms, compute the inverse - what
does the result look like?	

Phase and Magnitude

Computer Vision - A Modern Approach - Set: Pyramids and Texture - Slides by D.A. Forsyth

Image with cheetah phase
(and zebra magnitude)

Image with zebra phase
(and cheetah magnitude)

Phase and Magnitude

Computer Vision - A Modern Approach - Set: Pyramids and Texture - Slides by D.A. Forsyth

Image with cheetah phase
(and zebra magnitude)

Image with zebra phase
(and cheetah magnitude)

Phase and Magnitude

Computer Vision - A Modern Approach - Set: Pyramids and Texture - Slides by D.A. Forsyth

Image with cheetah phase
(and zebra magnitude)

Image with zebra phase
(and cheetah magnitude)

Slide credit: B. Freeman and A. Torralba

Image with cheetah phase
(and zebra magnitude)	

Image with zebra phase
(and cheetah magnitude)	

Slide credit: B. Freeman and A. Torralba

This is the
magnitude
transform of
the cheetah
picture	

Slide credit: B. Freeman and A. Torralba

Slide credit: B. Freeman and A. Torralba

This is the
magnitude
transform of
the zebra
picture	

Slide credit: B. Freeman and A. Torralba

Reconstruction
with zebra
phase, cheetah
magnitude	

Slide credit: B. Freeman and A. Torralba

Reconstruction
with cheetah
phase, zebra
magnitude	

Slide credit: B. Freeman and A. Torralba

What is a good representation for
image analysis?	

•  Fourier transform domain tells you “what” (textural
properties), but not “where”.	

•  Pixel domain representation tells you “where” (pixel
location), but not “what”.	

•  Want an image representation that gives you a local
description of image events—what is happening where.	

Slide credit: B. Freeman and A. Torralba

Why does a lower resolution image still make sense to us?
What do we lose?	

Image: http://www.flickr.com/photos/igorms/136916757/ 	

Sampling	

Slide credit: D. Hoiem

Sampled representations	

•  How to store and compute with continuous functions?	

•  Common scheme for representation: samples	

–  write down the function’s values at many points	

Slide credit: S. Marschner

Reconstruction	

•  Making samples back into a continuous function	

–  for output (need realizable method)	

–  for analysis or processing (need mathematical method)	

–  amounts to “guessing” what the function did in between	

Slide credit: S. Marschner

Sampling in digital audio	

•  Recording: sound to analog to samples to disc	

•  Playback: disc to samples to analog to sound again	

–  how can we be sure we are filling in the gaps correctly?	

Slide credit: S. Marschner

Throw away every other row and
column to create a 1/2 size image	

	

Slide credit: D. Hoiem

Subsampling by a factor of 2	

Undersampling	

•  What if we “missed” things between the samples?	

•  Simple example: undersampling a sine wave	

–  unsurprising result: information is lost	

–  surprising result: indistinguishable from lower frequency	

–  also was always indistinguishable from higher frequencies	

–  aliasing: signals “traveling in disguise” as other frequencies	

Slide credit: S. Marschner

Aliasing in video	

Slide credit: S. Seitz

Aliasing in graphics	

Slide credit: A. Efros

Sampling and aliasing	

 	

Slide credit: D. Hoiem

•  When sampling a signal at discrete intervals, the
sampling frequency must be ≥ 2 × fmax	

•  fmax = max frequency of the input signal	

•  This will allows to reconstruct the original perfectly
from the sampled version	

good	

bad	

v	

 v	

 v	

Nyquist-Shannon Sampling Theorem	

Slide credit: D. Hoiem

Anti-aliasing	

	

Solutions:	

•  Sample more often	

•  Get rid of all frequencies that are greater than half the new
sampling frequency	

–  Will lose information	

–  But it’s better than aliasing	

–  Apply a smoothing filter	

	

Slide credit: D. Hoiem

Preventing aliasing	

•  Introduce lowpass filters:	

–  remove high frequencies leaving only safe, low frequencies	

–  choose lowest frequency in reconstruction (disambiguate)	

Slide credit: S. Marschner

Algorithm for downsampling by
factor of 2	

1.  Start with image(h, w)	

2.  Apply low-pass filter	

	

im_blur = imfilter(image, fspecial(‘gaussian’, 7, 1))	

3.  Sample every other pixel	

	

im_small = im_blur(1:2:end, 1:2:end);	

	

Slide credit: D. Hoiem

Anti-aliasing	

Slide credit: Forsyth and Ponce

Subsampling without pre-filtering	

1/4 (2x zoom)	

 1/8 (4x zoom)	

1/2	

Slide credit: S. Seitz

G 1/4 	

 G 1/8	

Gaussian 1/2	

Subsampling with Gaussian pre-filtering	

Slide credit: S. Seitz

1000 pixel width [Philip Greenspun]	

Slide credit: S. Marschner

250 pixel width

by dropping pixels gaussian !lter

[Philip Greenspun]	

Slide credit: S. Marschner

Analyzing local image structures	

Analyzing local image structures

Too much

Too little

Too much	

	

	

	

	

	

	

	

	

	

Too little	

Slide credit: B. Freeman and A. Torralba

The image through the Gaussian
window

Too much

Too little

Probably still too little…
…but hard enough for now

�

h(x,y)  e

x 2 y 2

2 2

1

The image through the Gaussian
window	

Too much

Too little

Analyzing local image structures

Too much

Too little
Probably still too little...
...but hard enough for now

Slide credit: B. Freeman and A. Torralba

Analysis of local frequency

�

h(x,y;x0,y0)  e

xxo 2  yyo 2

2 2

(x0, y0)

�

e j2u0x
Fourier basis:

Gabor wavelet:

�

(x,y)  e

x 2 y 2

2 2 e j2u0x

�

c (x,y)  e

x 2 y 2

2 2 cos 2u0x 

�

s(x,y)  e

x 2 y 2

2 2 sin 2u0x 

We can look at the real and imaginary parts:

Analysis of local frequency 	

Fourier basis: 	

	

Gabor wavelet: 	

	

	

We can look at the real and imaginary
parts: 	

Analysis of local frequency

�

h(x,y;x0,y0)  e

xxo 2  yyo 2

2 2

(x0, y0)

�

e j2u0x
Fourier basis:

Gabor wavelet:

�

(x,y)  e

x 2 y 2

2 2 e j2u0x

�

c (x,y)  e

x 2 y 2

2 2 cos 2u0x 

�

s(x,y)  e

x 2 y 2

2 2 sin 2u0x 

We can look at the real and imaginary parts:

Analysis of local frequency

�

h(x,y;x0,y0)  e

xxo 2  yyo 2

2 2

(x0, y0)

�

e j2u0x
Fourier basis:

Gabor wavelet:

�

(x,y)  e

x 2 y 2

2 2 e j2u0x

�

c (x,y)  e

x 2 y 2

2 2 cos 2u0x 

�

s(x,y)  e

x 2 y 2

2 2 sin 2u0x 

We can look at the real and imaginary parts:

Analysis of local frequency

�

h(x,y;x0,y0)  e

xxo 2  yyo 2

2 2

(x0, y0)

�

e j2u0x
Fourier basis:

Gabor wavelet:

�

(x,y)  e

x 2 y 2

2 2 e j2u0x

�

c (x,y)  e

x 2 y 2

2 2 cos 2u0x 

�

s(x,y)  e

x 2 y 2

2 2 sin 2u0x 

We can look at the real and imaginary parts:

Slide credit: B. Freeman and A. Torralba

Gabor wavelets

�

c (x,y)  e

x 2 y 2

2 2 cos 2u0x 

u0=0

�

s(x,y)  e

x 2 y 2

2 2 sin 2u0x 

U0=0.1 U0=0.2

Gabor wavelets	

Slide credit: B. Freeman and A. Torralba

Gabor filters at different	

scales and spatial frequencies	

	

	

	

	

Top row shows anti-symmetric 	

(or odd) filters; these are good for detecting
odd-phase structures like edges. 	

Bottom row shows the	

symmetric (or even) filters, good for
detecting line phase contours.	

Gabor filters	

Slide credit: B. Freeman and A. Torralba

75	

 75	

Jo
hn

 D
au

gm
an

, 1
98

8

Slide credit: B. Freeman and A. Torralba

Slide credit: B. Freeman and A. Torralba

	

+	

(.)2

(.)2

Quadrature filter pairs 	

•  A quadrature filter is a complex filter whose real part is related to its

imaginary part via a Hilbert transform along a particular axis through the
origin 	

Gabor wavelet:

Quadrature filter pairs

+

(.)2

(.)2

A quadrature filter is a complex filter whose real part is related to its imaginary part
via a Hilbert transform along a particular axis through the origin

Gabor wavelet:

�

(x,y)  e

x 2 y 2

2 2 e j2u0x

Quadrature filter pairs

+

(.)2

(.)2

A quadrature filter is a complex filter whose real part is related to its imaginary part
via a Hilbert transform along a particular axis through the origin

Gabor wavelet:

�

(x,y)  e

x 2 y 2

2 2 e j2u0x

Slide credit:
B. Freeman & A. Torralba

Quadrature filter pairs 	

+

(.)2

(.)2

Contrast invariance! (same energy response for white
dot on black background as for a black dot on a white
background).

Contrast invariance! (same energy response for white dot on
black background as for a black dot on a white background).	

Slide credit: B. Freeman and A. Torralba

edge	

energy response

to an edge	

Slide credit: B. Freeman and A. Torralba

Quadrature filter pairs 	

line	

 energy response to
a line	

Quadrature filter pairs 	

Slide credit: B. Freeman and A. Torralba

How quadrature pair filters work	

Slide credit: B. Freeman and A. Torralba

How quadrature pair filters work	

	

+

(.)2

(.)2

Slide credit: B. Freeman and A. Torralba

Gabor wavelet:

�

(x,y)  e

x 2 y 2

2 2 e j2u0x

Tuning filter orientation:

�

x' cos()x  sin()y
y' sin()x  cos()y

Space

Fourier domain

Real

Imag

Real

Imag

Oriented Filters	

•  Gabor wavelet: 	

•  Tuning filter orientation:	

Quadrature filter pairs

+

(.)2

(.)2

A quadrature filter is a complex filter whose real part is related to its imaginary part
via a Hilbert transform along a particular axis through the origin

Gabor wavelet:

�

(x,y)  e

x 2 y 2

2 2 e j2u0x

Quadrature filter pairs

+

(.)2

(.)2

A quadrature filter is a complex filter whose real part is related to its imaginary part
via a Hilbert transform along a particular axis through the origin

Gabor wavelet:

�

(x,y)  e

x 2 y 2

2 2 e j2u0x

Gabor wavelet:

�

(x,y)  e

x 2 y 2

2 2 e j2u0x

Tuning filter orientation:

�

x' cos()x  sin()y
y' sin()x  cos()y

Space

Fourier domain

Real

Imag

Real

Imag

Real	

	

Imag	

	

	

Real	

	

Imag	

Space	

	

	

	

Fourier	

Domain	

Slide credit: B. Freeman and A. Torralba

Simple example	

 “Steerability”-- the ability to synthesize a filter of any orientation
from a linear combination of filters at fixed orientations.	

Filter Set:
0o 90o Synthesized 30o

Response:
Raw Image

Taken from:

W. Freeman, T. Adelson,
“The Design and Use of
Sterrable Filters”, IEEE
Trans. Patt, Anal. and
Machine Intell., vol 13, #9,
pp 891-900, Sept 1991

Slide credit: B. Freeman and A. Torralba

Steerable filters	

Derivatives of a Gaussian:	

	

	

	

	

An arbitrary orientation can be computed as a linear combination of those
two basis functions:	

	

The representation is “shiftable” on orientation: We can interpolate any
other orientation from a finite set of basis functions.	

Steerable filters

�

hx (x,y) 
h(x,y)
x


x
2 4 e


x 2 y 2

2 2

�

hy (x,y) 
h(x,y)
y


y
2 4 e


x 2 y 2

2 2

Derivatives of a Gaussian:

cos() +sin() =

Freeman & Adelson 92

An arbitrary orientation can be computed as a linear combination of those two
basis functions:

�

h (x,y)  cos()hx(x,y) sin()hy(x,y)

The representation is “shiftable” on orientation: We can interpolate any other
orientation from a finite set of basis functions.

Steerable filters

�

hx (x,y) 
h(x,y)
x


x
2 4 e


x 2 y 2

2 2

�

hy (x,y) 
h(x,y)
y


y
2 4 e


x 2 y 2

2 2

Derivatives of a Gaussian:

cos() +sin() =

Freeman & Adelson 92

An arbitrary orientation can be computed as a linear combination of those two
basis functions:

�

h (x,y)  cos()hx(x,y) sin()hy(x,y)

The representation is “shiftable” on orientation: We can interpolate any other
orientation from a finite set of basis functions.

Steerable filters

�

hx (x,y) 
h(x,y)
x


x
2 4 e


x 2 y 2

2 2

�

hy (x,y) 
h(x,y)
y


y
2 4 e


x 2 y 2

2 2

Derivatives of a Gaussian:

cos() +sin() =

Freeman & Adelson 92

An arbitrary orientation can be computed as a linear combination of those two
basis functions:

�

h (x,y)  cos()hx(x,y) sin()hy(x,y)

The representation is “shiftable” on orientation: We can interpolate any other
orientation from a finite set of basis functions.

Steerable filters

�

hx (x,y) 
h(x,y)
x


x
2 4 e


x 2 y 2

2 2

�

hy (x,y) 
h(x,y)
y


y
2 4 e


x 2 y 2

2 2

Derivatives of a Gaussian:

cos() +sin() =

Freeman & Adelson 92

An arbitrary orientation can be computed as a linear combination of those two
basis functions:

�

h (x,y)  cos()hx(x,y) sin()hy(x,y)

The representation is “shiftable” on orientation: We can interpolate any other
orientation from a finite set of basis functions.

Slide credit: B. Freeman and A. Torralba Freeman & Adelson, 1992

Steerable filters	

Slide credit: B. Freeman and A. Torralba

