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Review - Point Operations	



•  Smallest possible neighborhood is of size 1x1	



•  Process each point independently of the others	



•  Output image g depends only on the value of f ���
at a single point (x,y)	



•  Transformation function T remaps the sample’s value: 	



	

s = T(r) 	



     where 	


–  r is the value at the point in question 	


–  s is the new value in the processed result 	


–  T is a intensity transformation function 	
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Slide credit: S. Seitz 

Review – Spatial Filtering	
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Review – Spatial Filtering	
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Review – Spatial Filtering	
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Review – Spatial Filtering	
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Slide credit: J. Hays 

Review – Spatial Filtering	





Why does the Gaussian give a nice smooth image, but the square 
filter give edgy artifacts?	



Gaussian	

 Box filter	



Slide credit: D. Hoiem 



Why does a lower resolution image still make sense 
to us?  What do we lose?	



Image: http://www.flickr.com/photos/igorms/136916757/ 	

 Slide credit: D. Hoiem 



Jean Baptiste Joseph Fourier (1768-1830)	



had crazy idea (1807):	


	

Any univariate function can be 
rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 	



•  Don’t believe it?  	


–  Neither did Lagrange, 

Laplace, Poisson and 
other big wigs	



–  Not translated into 
English until 1878!	



•   But it’s (mostly) true!	


–  called Fourier Series	


–  there are some subtle 

restrictions	


Slide credit: A. Efros 



A sum of sines	


Our building block:	



	

	



Add enough of them to get 
any signal f(x) you want!	



	



)+φωxAsin(

Slide credit: A. Efros 



Fourier Transform	


• We want to understand the frequency w of our signal.  So, let’s 
reparametrize the signal by w instead of x:	



)+φωxAsin(

f(x) F(w) Fourier 	


Transform	



F(w) f(x) Inverse Fourier 	


Transform	



For every w from 0 to inf, F(w) holds the amplitude A and 
phase f of the corresponding sine   

•  How can F hold both?  Complex number trick! 
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ω
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φ
R
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We can always go back: 

Slide credit: A. Efros 



Frequency Spectra	



•  example:  g(t) = sin(2πf t) + (1/3)sin(2π(3f) t) 

=  + 

Slide credit: A. Efros 



Frequency Spectra	



Slide credit: A. Efros 
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Frequency Spectra	



Slide credit: A. Efros 
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Frequency Spectra	



Slide credit: A. Efros 
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Frequency Spectra	



Slide credit: A. Efros 
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Frequency Spectra	



Slide credit: A. Efros 
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Frequency Spectra	



Slide credit: A. Efros 
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Slide credit: A. Efros 



Example: Music	



•  We think of music in terms of frequencies at different 
magnitudes	



Slide credit: D . Hoeim 



Slide credit: B. Freeman and A. Torralba 

The Discrete Fourier transform 
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The Discrete Fourier transform	



•  Forward transform	



	



•  Inverse transform	
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How to interpret a 2-d Fourier 
Spectrum 

Horizontal 
orientation 

Vertical orientation 

45 deg. 

0 fmax 

0 

fx in cycles/image 

Low spatial frequencies 

High  
spatial  
frequencies 

Log power spectrum 

Slide credit: B. Freeman and A. Torralba 

How to interpret 2D Fourier 
Spectrum	



Log power spectrum 



Some important Fourier Transforms	
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Slide credit: B. Freeman and A. Torralba 



Some important Fourier Transforms	
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Slide credit: B. Freeman and A. Torralba 



The Fourier Transform of some 
important images 
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Slide credit: B. Freeman and A. Torralba 



A B C 

1 2 3 

fx(cycles/image pixel size) fx(cycles/image pixel size) fx(cycles/image pixel size) 

Slide credit: B. Freeman and A. Torralba 

Fourier Amplitude Spectrum	





Fourier transform magnitude	



Slide credit: B. Freeman and A. Torralba 



Masking out the fundamental and 
harmonics from periodic pillars	



Slide credit: B. Freeman and A. Torralba 



Signals can be composed	



+	

 =	



http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering	


More: http://www.cs.unm.edu/~brayer/vision/fourier.html	

Slide credit: A. Efros 



The Convolution Theorem	



•  The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms	



•  The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two inverse 
Fourier transforms	



•  Convolution in spatial domain is equivalent to 
multiplication in frequency domain!	



]F[]F[]F[ hghg =∗
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Slide credit: A. Efros 



Filtering in spatial domain	
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Slide credit: D. Hoiem 



Filtering in frequency domain	



FFT	



FFT	



Inverse FFT	



=	



Slide credit: D. Hoiem 



2D convolution theorem example	



*	



f(x,y)	



h(x,y)	



g(x,y)	



|F(sx,sy)|	



|H(sx,sy)|	



|G(sx,sy)|	



Slide credit: A. Efros 



Why does the Gaussian give a nice smooth image, but 
the square filter give edgy artifacts?	



Gaussian Box filter 

Filtering	



Slide credit: A. Efros 



Gaussian	



Filtering	



Slide credit: A. Efros 



Box Filter	



Filtering	



Slide credit: A. Efros 



Fourier Transform pairs	



The 
image 
cannot 

Slide credit: A. Efros 



Low-pass, Band-pass, High-pass 
filters	

 low-pass: 

High-pass / band-pass: 

Slide credit: A. Efros 



Edges in images	



Slide credit: A. Efros 



FFT in Matlab	


•  Filtering with fft	



•  Displaying with fft	



im = ... % “im” should be a gray-scale floating point image!
[imh, imw] = size(im);!
fftsize = 1024; % should be order of 2 (for speed) and include padding!
im_fft = fft2(im, fftsize, fftsize); % 1) fft im with padding!
hs = 50; % filter half-size!
fil = fspecial('gaussian', hs*2+1, 10); !
fil_fft = fft2(fil, fftsize, fftsize); % 2) fft fil, pad to same size as 
image!
im_fil_fft = im_fft .* fil_fft; % 3) multiply fft images!
im_fil = ifft2(im_fil_fft); % 4) inverse fft2!
im_fil = im_fil(1+hs:size(im,1)+hs, 1+hs:size(im, 2)+hs); % 5) remove padding!

figure(1), imagesc(log(abs(fftshift(im_fft)))), axis image, colormap jet!

Slide credit: D. Hoiem 



Phase and Magnitude	


•  Curious fact	



–  all natural images have about the same 
magnitude transform	



–  hence, phase seems to matter, but 
magnitude largely doesn’t	



•  Demonstration	


–  Take two pictures, swap the phase 

transforms, compute the inverse - what 
does the result look like?	



Phase and Magnitude 

Computer Vision - A Modern Approach - Set:  Pyramids and Texture - Slides by D.A. Forsyth 

Image with cheetah phase  
(and zebra magnitude) 

Image with zebra phase 
(and cheetah magnitude) 

Phase and Magnitude 

Computer Vision - A Modern Approach - Set:  Pyramids and Texture - Slides by D.A. Forsyth 

Image with cheetah phase  
(and zebra magnitude) 

Image with zebra phase 
(and cheetah magnitude) 

Phase and Magnitude 

Computer Vision - A Modern Approach - Set:  Pyramids and Texture - Slides by D.A. Forsyth 

Image with cheetah phase  
(and zebra magnitude) 

Image with zebra phase 
(and cheetah magnitude) 

Slide credit: B. Freeman and A. Torralba 

Image with cheetah phase 
(and zebra magnitude)	



Image with zebra phase 
(and cheetah magnitude)	





Slide credit: B. Freeman and A. Torralba 



This is the 
magnitude 
transform of 
the cheetah 
picture	



Slide credit: B. Freeman and A. Torralba 



Slide credit: B. Freeman and A. Torralba 



This is the 
magnitude 
transform of 
the zebra 
picture	



Slide credit: B. Freeman and A. Torralba 



Reconstruction 
with zebra 
phase, cheetah 
magnitude	



Slide credit: B. Freeman and A. Torralba 



Reconstruction 
with cheetah 
phase, zebra 
magnitude	



Slide credit: B. Freeman and A. Torralba 



What is a good representation for 
image analysis?	



•  Fourier transform domain tells you “what” (textural 
properties), but not “where”.	



•  Pixel domain representation tells you “where” (pixel 
location), but not “what”.	



•  Want an image representation that gives you a local 
description of image events—what is happening where.	



Slide credit: B. Freeman and A. Torralba 



Why does a lower resolution image still make sense to us?  
What do we lose?	



Image: http://www.flickr.com/photos/igorms/136916757/ 	



Sampling	



Slide credit: D. Hoiem 



Sampled representations	



•  How to store and compute with continuous functions?	



•  Common scheme for representation: samples	


–  write down the function’s values at many points	



Slide credit: S. Marschner 



Reconstruction	



•  Making samples back into a continuous function	


–  for output (need realizable method)	


–  for analysis or processing (need mathematical method)	


–  amounts to “guessing” what the function did in between	



Slide credit: S. Marschner 



Sampling in digital audio	



•  Recording: sound to analog to samples to disc	



•  Playback: disc to samples to analog to sound again	


–  how can we be sure we are filling in the gaps correctly?	



Slide credit: S. Marschner 



Throw away every other row and 
column to create a 1/2 size image	


	



Slide credit: D. Hoiem 

Subsampling by a factor of 2	





Undersampling	



•  What if we “missed” things between the samples?	



•  Simple example: undersampling a sine wave	


–  unsurprising result: information is lost	


–  surprising result: indistinguishable from lower frequency	


–  also was always indistinguishable from higher frequencies	


–  aliasing: signals “traveling in disguise” as other frequencies	



Slide credit: S. Marschner 



Aliasing in video	



Slide credit: S. Seitz 



Aliasing in graphics	



Slide credit: A. Efros 



Sampling and aliasing	



 	



Slide credit: D. Hoiem 



•  When sampling a signal at discrete intervals, the 
sampling frequency must be ≥ 2 × fmax	



•  fmax = max frequency of the input signal	



•  This will allows to reconstruct the original perfectly 
from the sampled version	



good	



bad	



v	

 v	

 v	



Nyquist-Shannon Sampling Theorem	



Slide credit: D. Hoiem 



Anti-aliasing	



	



Solutions:	



•  Sample more often	



•  Get rid of all frequencies that are greater than half the new 
sampling frequency	


–  Will lose information	


–  But it’s better than aliasing	


–  Apply a smoothing filter	



	



Slide credit: D. Hoiem 



Preventing aliasing	



•  Introduce lowpass filters:	


–  remove high frequencies leaving only safe, low frequencies	


–  choose lowest frequency in reconstruction (disambiguate)	



Slide credit: S. Marschner 



Algorithm for downsampling by 
factor of 2	



1.  Start with image(h, w)	


2.  Apply low-pass filter	



	

im_blur = imfilter(image, fspecial(‘gaussian’, 7, 1))	



3.  Sample every other pixel	


	

im_small = im_blur(1:2:end, 1:2:end);	



	



Slide credit: D. Hoiem 



Anti-aliasing	



Slide credit: Forsyth and Ponce 



Subsampling without pre-filtering	



1/4  (2x zoom)	

 1/8  (4x zoom)	

1/2	



Slide credit: S. Seitz 



G 1/4 	

 G 1/8	

Gaussian 1/2	



Subsampling with Gaussian pre-filtering	



Slide credit: S. Seitz 



1000 pixel width [Philip Greenspun]	



Slide credit: S. Marschner 



250 pixel width 

by dropping pixels gaussian !lter 

[Philip Greenspun]	



Slide credit: S. Marschner 



Analyzing local image structures	

Analyzing local image structures 

Too much 

Too little 

Too much	


	


	


	


	


	


	


	


	


	


Too little	



Slide credit: B. Freeman and A. Torralba 



The image through the Gaussian 
window 

Too much 

Too little 

Probably  still  too  little… 
…but  hard  enough  for  now 

�

h(x,y)  e

x 2 y 2

2 2

1 

The image through the Gaussian 
window	



Too much 
 
 
 
 
 
 
 
 
 
Too little 

Analyzing local image structures 

Too much 

Too little 
Probably still too little...  
...but hard enough for now 

Slide credit: B. Freeman and A. Torralba 



Analysis of local frequency  
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We can look at the real and imaginary parts: 

Analysis of local frequency 	



Fourier basis: 	



	


Gabor wavelet: 	



	



	



We can look at the real and imaginary 
parts: 	
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Slide credit: B. Freeman and A. Torralba 



Gabor wavelets 
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Gabor wavelets	



Slide credit: B. Freeman and A. Torralba 



Gabor filters at different	


scales and spatial frequencies	


	


	



	


	


Top row shows anti-symmetric 	


(or odd) filters;  these are good for detecting 
odd-phase structures like edges.  	


Bottom row shows the	


symmetric (or even) filters, good for 
detecting line phase contours.	



Gabor filters	



Slide credit: B. Freeman and A. Torralba 
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Quadrature filter pairs 	


•  A quadrature filter is a complex filter whose real part is related to its 

imaginary part via a Hilbert transform along a particular axis through the 
origin 	



Gabor wavelet: 
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Quadrature filter pairs 	
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Contrast invariance! (same energy response for white 
dot on black background as for a black dot on a white 
background). 

Contrast invariance! (same energy response for white dot on 
black background as for a black dot on a white background).	
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edge	


energy response 

to an edge	
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Quadrature filter pairs 	





line	

 energy response to 
a line	



Quadrature filter pairs 	
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How quadrature pair filters work	
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How quadrature pair filters work	
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Gabor wavelet: 

�

(x,y)  e

x 2 y 2

2 2 e j2u0x

Tuning filter orientation: 

�

x' cos()x  sin()y
y' sin()x  cos()y
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Oriented Filters	


•  Gabor wavelet: 	



•  Tuning filter orientation:	
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Simple example	


 “Steerability”-- the ability to synthesize a filter of any orientation 
from a linear combination of filters at fixed orientations.	



Filter Set: 
0o 90o Synthesized 30o 

Response: 
Raw Image 

Taken from:

W. Freeman, T. Adelson, 
“The Design and Use of 
Sterrable Filters”, IEEE 
Trans. Patt, Anal. and 
Machine Intell., vol 13, #9, 
pp 891-900, Sept 1991


Slide credit: B. Freeman and A. Torralba 



Steerable filters	


Derivatives of a Gaussian:	


	


	


	


	


An arbitrary orientation can be computed as a linear combination of those 
two basis functions:	



	


The representation is “shiftable” on orientation: We can interpolate any 
other orientation from a finite set of basis functions.	



Steerable filters 
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An arbitrary orientation can be computed as a linear combination of those two 
basis functions: 
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orientation from a finite set of basis functions. 
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Slide credit: B. Freeman and A. Torralba Freeman & Adelson, 1992
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