BBM 413 Fundamentals of Image Processing Dec. 4, 2012

Erkut Erdem Dept. of Computer Engineering Hacettepe University

Edge Preserving Image Smoothing

Acknowledgement: The slides are adapted from the course "A Gentle Introduction to Bilateral Filtering and its Applications" given by Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Durand (http://people.csail.mit.edu/sparis/bf_course/)

Review - Smoothing and Edge Detection

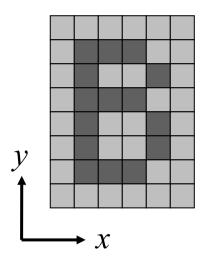
- While eliminating noise via smoothing, we also lose some of the (important) image details.
 - Fine details
 - Image edges
 - etc.
- What can we do to preserve such details?
 - Use edge information during denoising!
 - This requires a definition for image edges.

Chicken-and-egg dilemma!

• Edge preserving image smoothing

Notation and Definitions

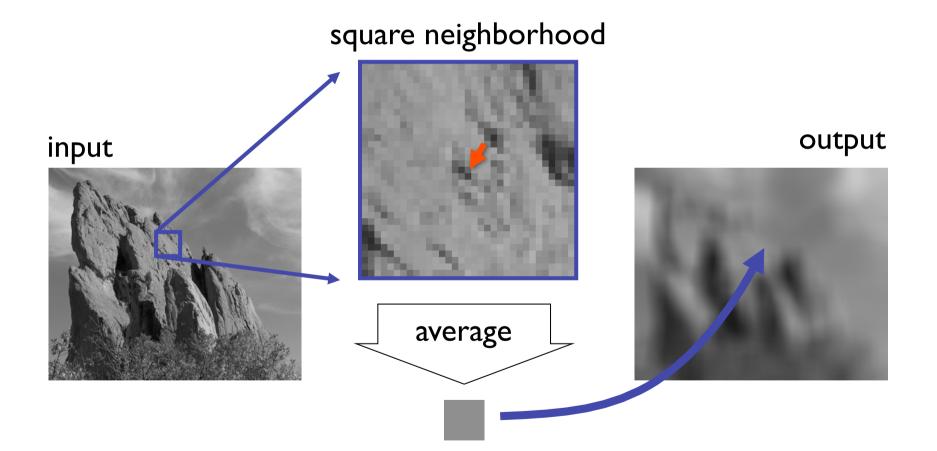
- Image = 2D array of pixels
- Pixel = intensity (scalar) or color (3D vector)
- $I_{\mathbf{p}}$ = value of image *I* at position: $\mathbf{p} = (p_x, p_y)$
- F[I] = output of filter F applied to image I



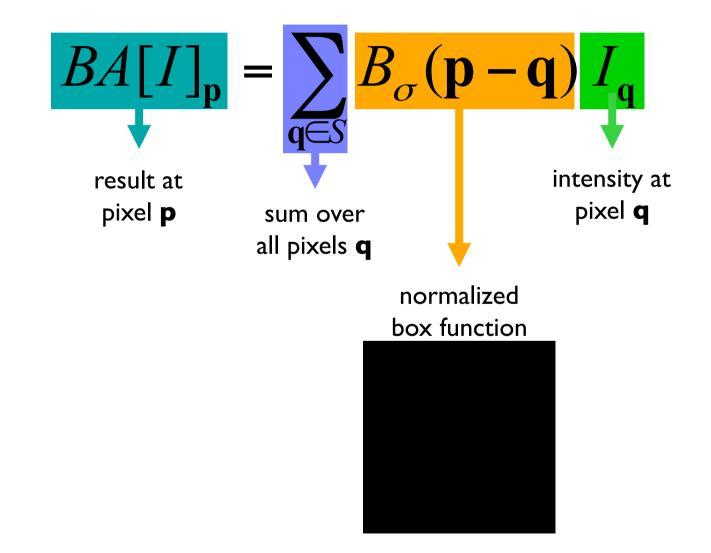
Strategy for Smoothing Images

- Images are not smooth because adjacent pixels are different.
- Smoothing = making adjacent pixels look more similar.
- Smoothing strategy pixel → average of its neighbors

Box Average



Equation of Box Average



Square Box Generates Defects

- Axis-aligned streaks
- Blocky results

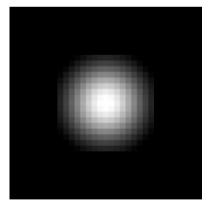
output

input

Strategy to Solve these Problems

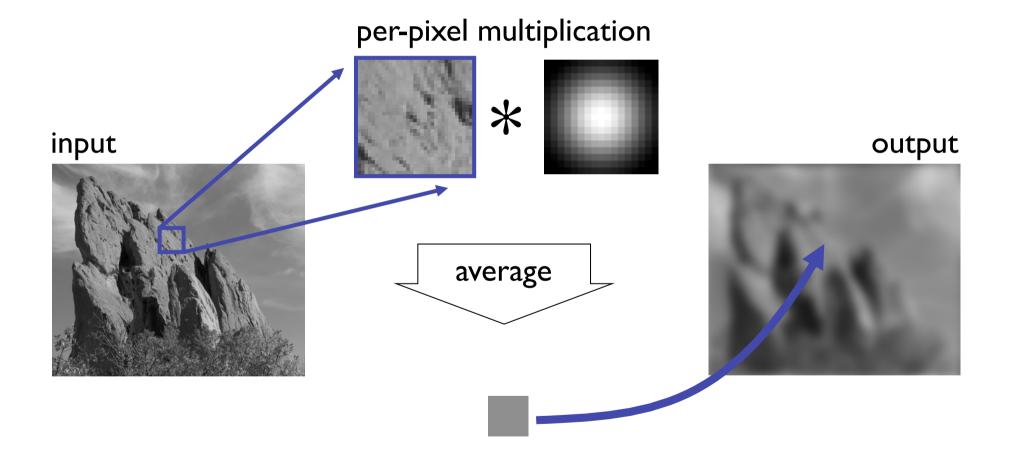
- Use an isotropic (*i.e.* circular) window.
- Use a window with a smooth falloff.

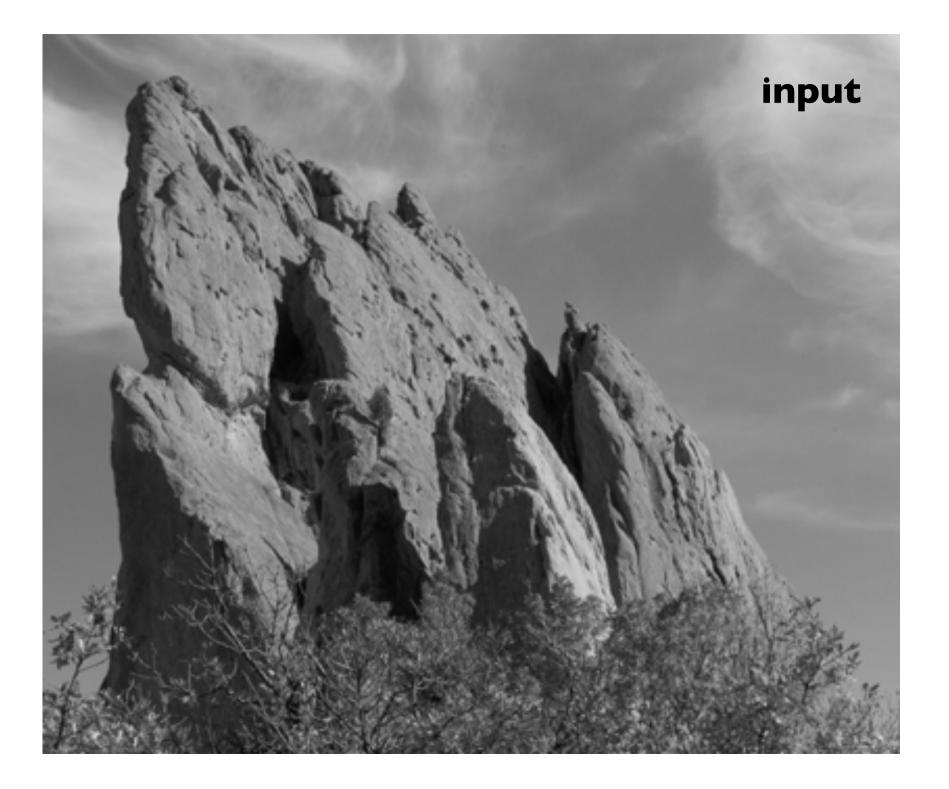
box window



Gaussian window

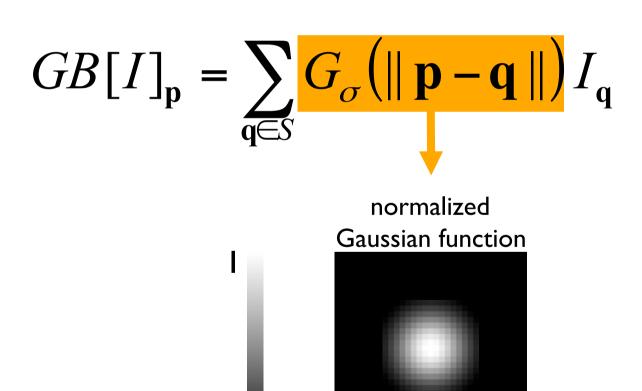
Gaussian Blur

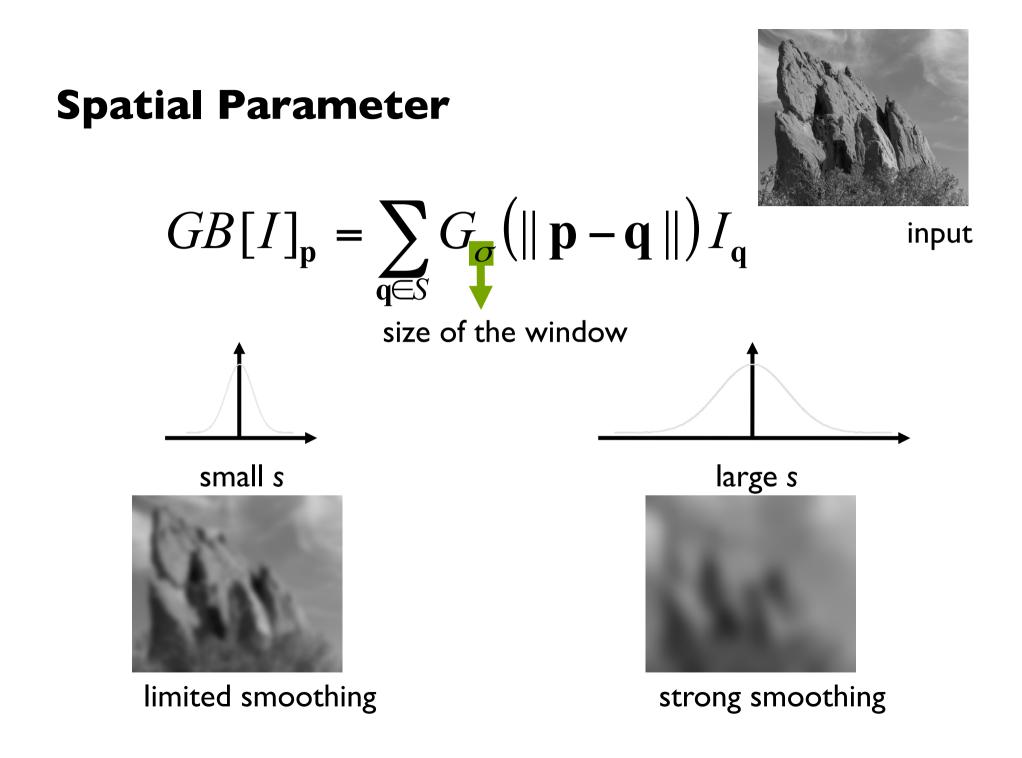




Equation of Gaussian Blur

Same idea: weighted average of pixels.





How to set σ

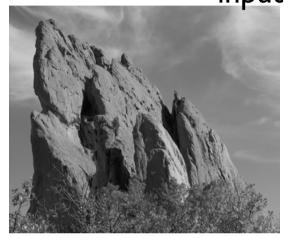
- Depends on the application.
- Common strategy: proportional to image size
 - e.g. 2% of the image diagonal
 - property: independent of image resolution

Properties of Gaussian Blur

- Weights independent of spatial location
 - linear convolution
 - well-known operation
 - efficient computation (recursive algorithm, FFT...)

Properties of Gaussian Blur

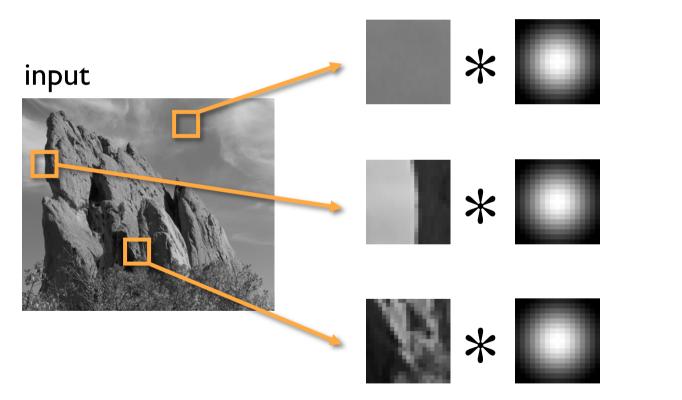
- Does smooth images
- But smoothes too much: edges are blurred.
 - Only spatial distance matters
 - No edge term



$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} \frac{G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|)}{Space} I_{\mathbf{q}}$$

input

Blur Comes from Averaging across Edges

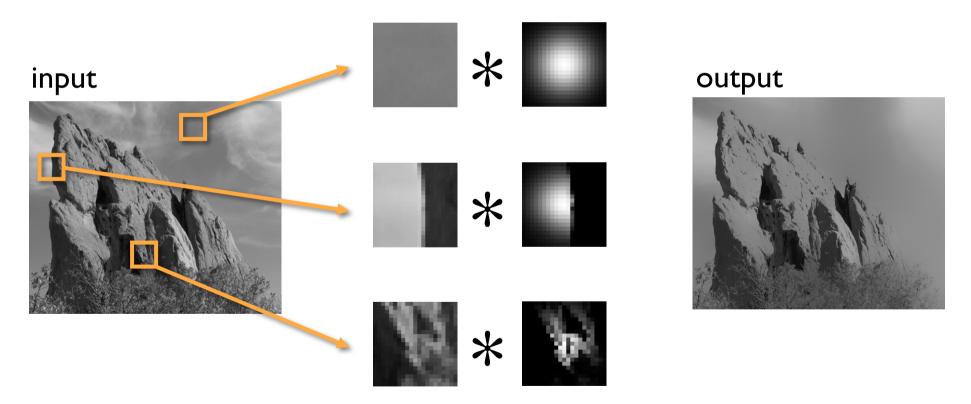


output

Same Gaussian kernel everywhere.

[Aurich 95, Smith 97, Tomasi 98]

Bilateral Filter No Averaging across Edges



The kernel shape depends on the image content.

Bilateral Filter Definition: an Additional Edge Term

Same idea: weighted average of pixels.

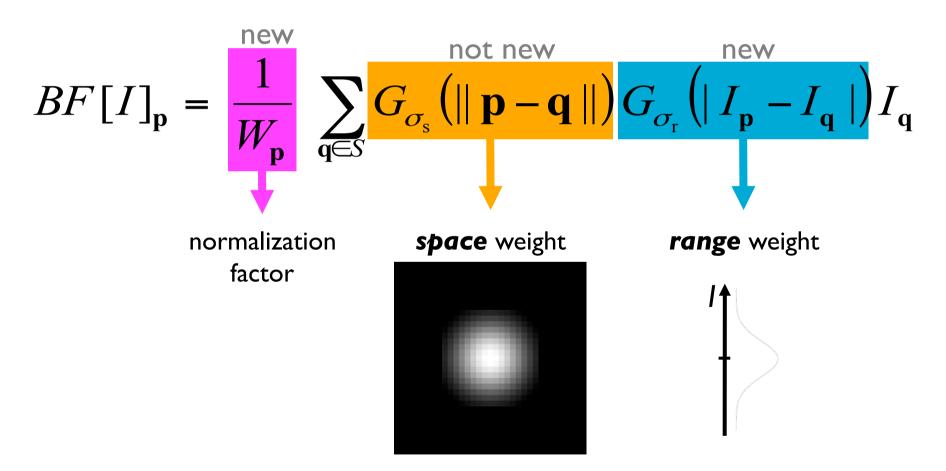
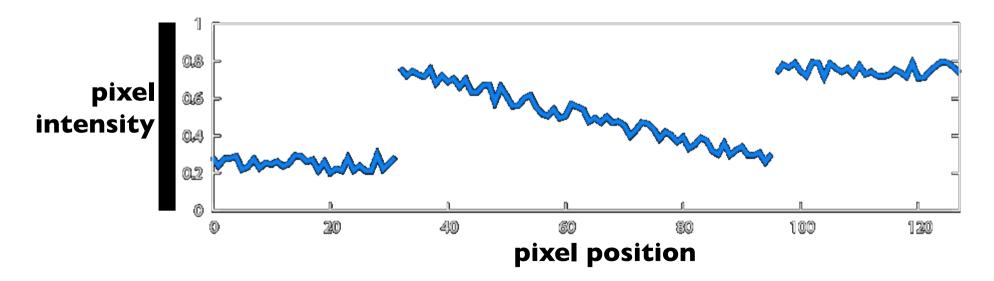


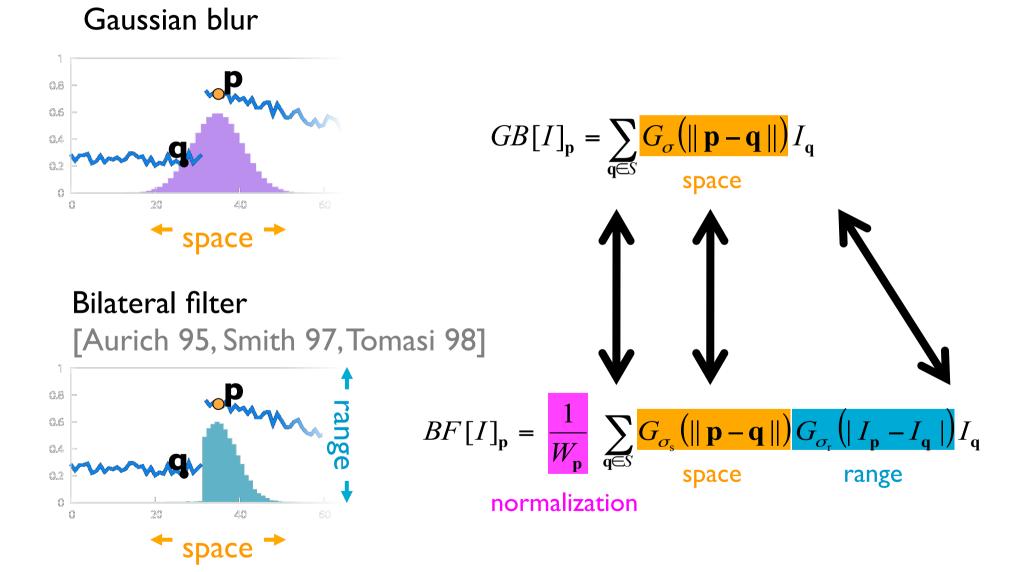
Illustration a ID Image

• ID image = line of pixels

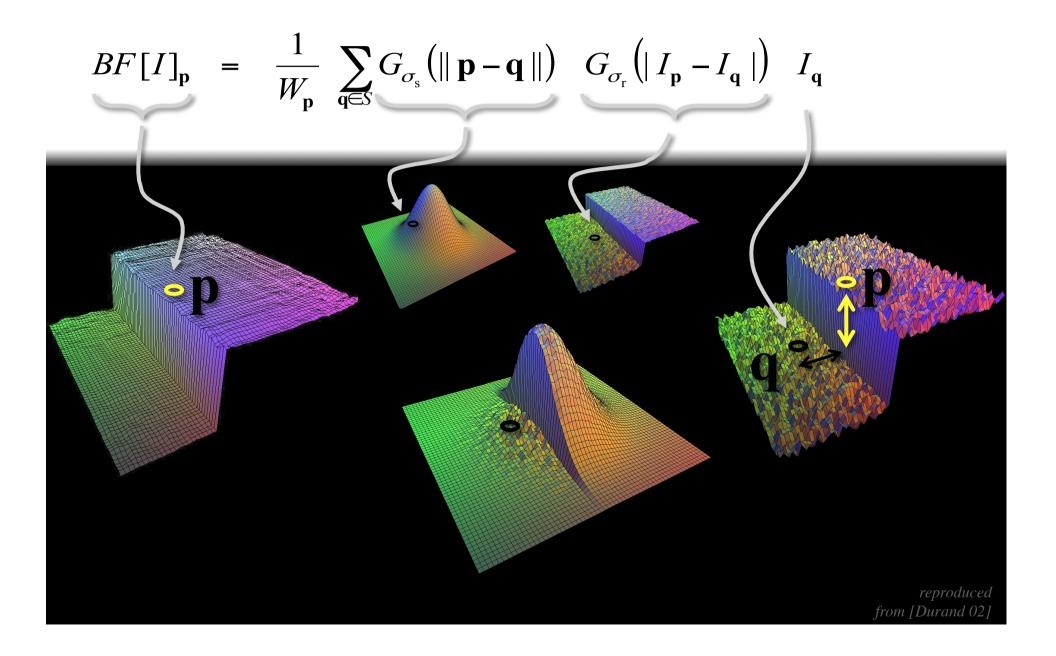
• Better visualized as a plot



Gaussian Blur and Bilateral Filter



Bilateral Filter on a Height Field



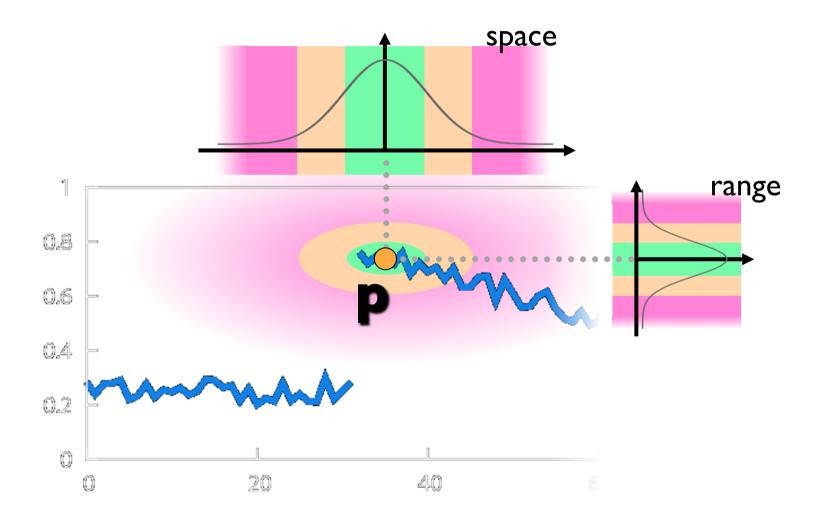
Space and Range Parameters

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- space $\sigma_{\rm s}$: spatial extent of the kernel, size of the considered neighborhood.
- range $\sigma_{\rm r}$: "minimum" amplitude of an edge

Influence of Pixels

Only pixels close in space and in range are considered.



input

Exploring the Parameter Space

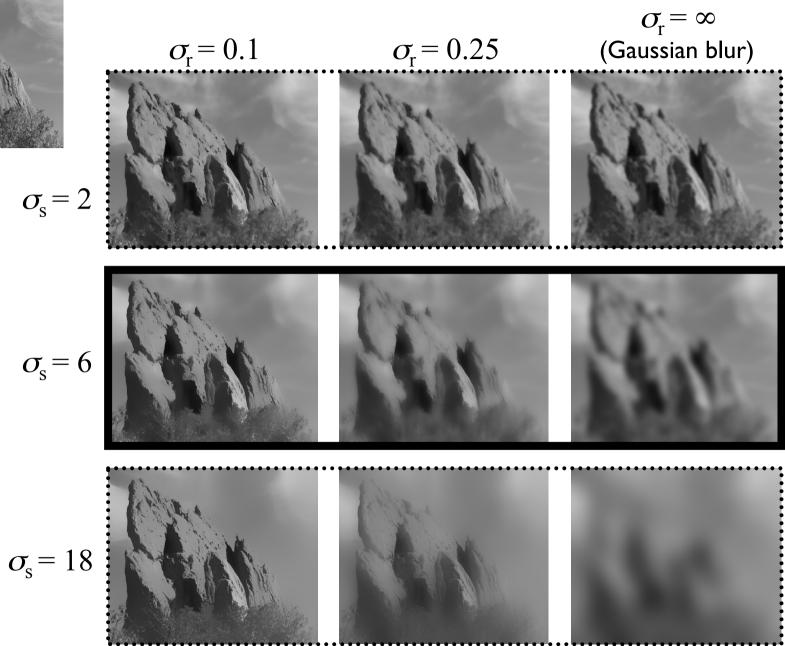
 $s_r = \infty$ $s_r = 0.1$ $s_r = 0.25$ (Gaussian blur) $s_s = 2$

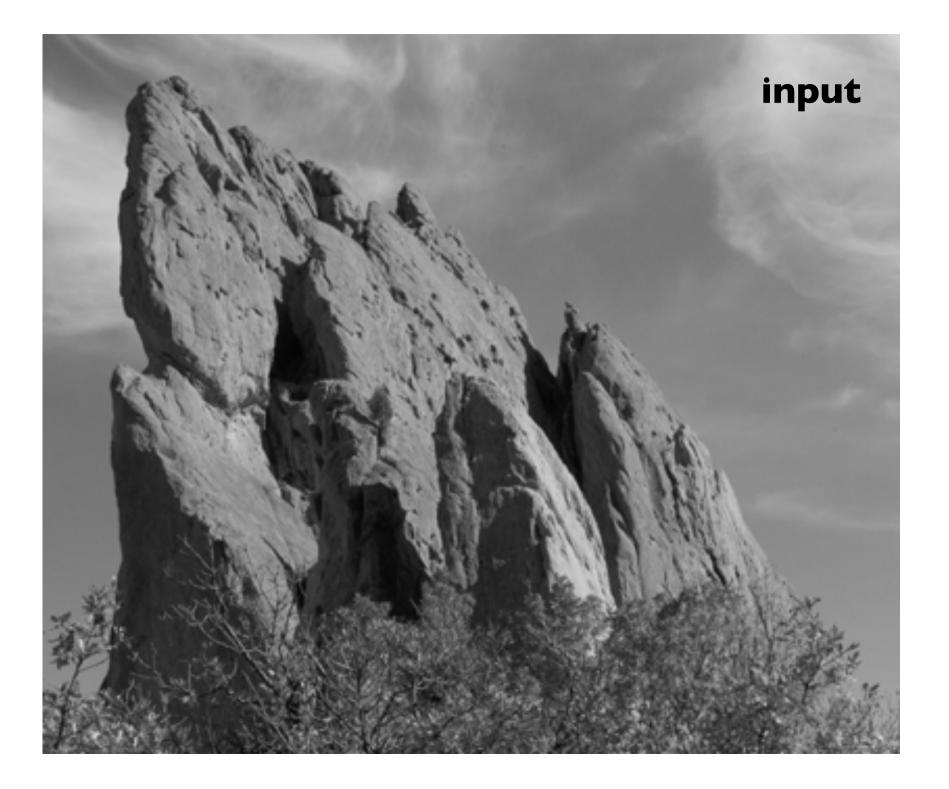
 $s_{s} = 6$

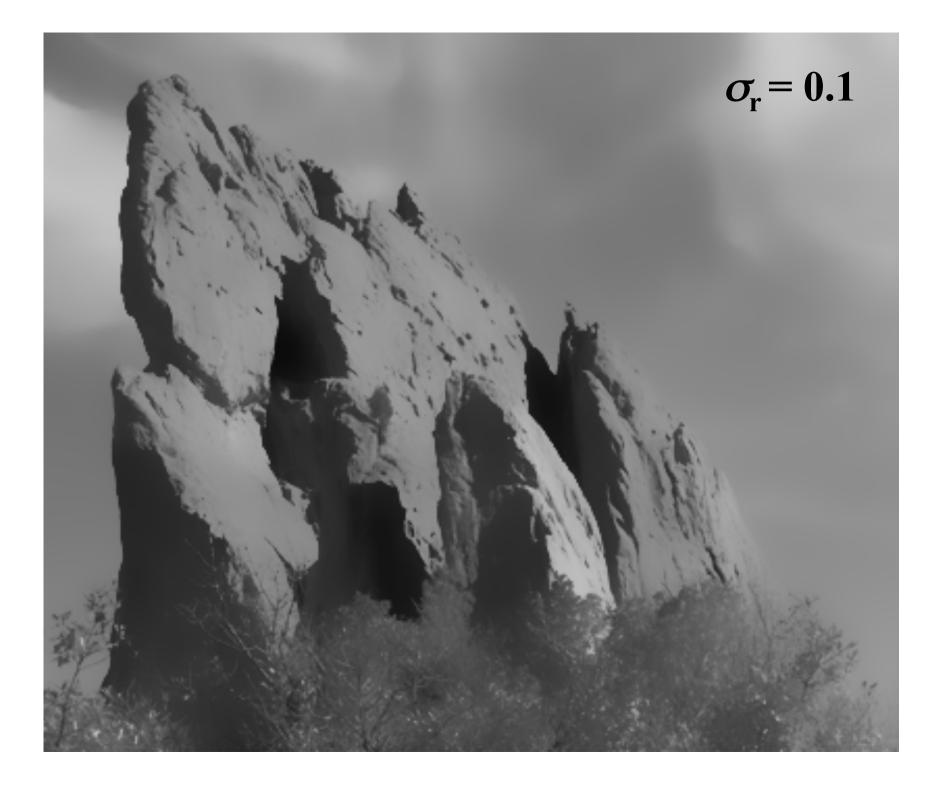
 $s_s = 18$

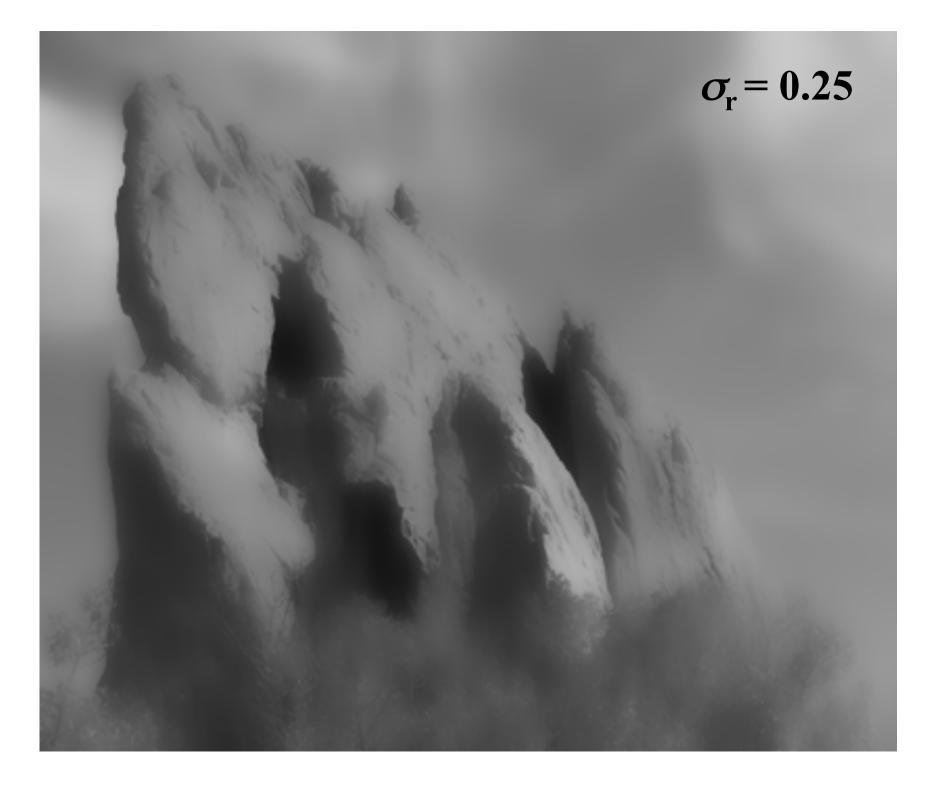
input

Varying the Range Parameter



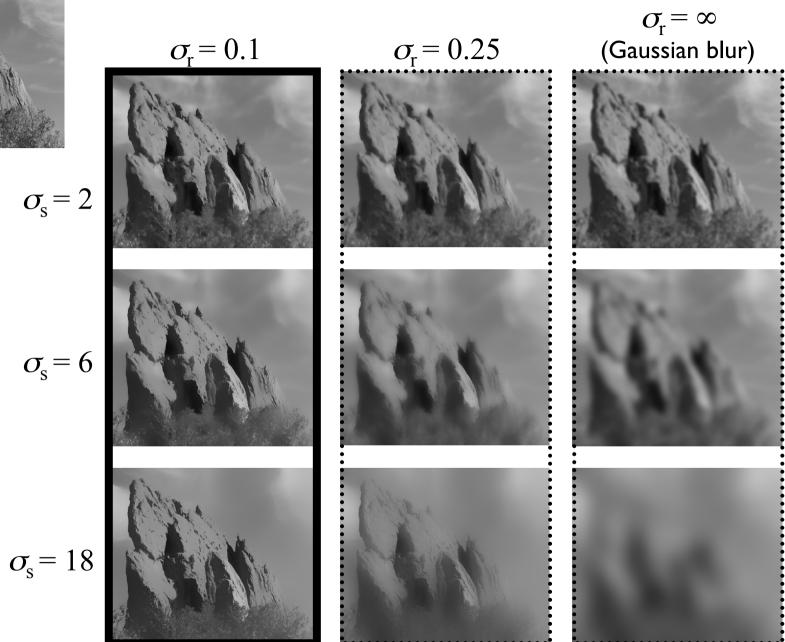


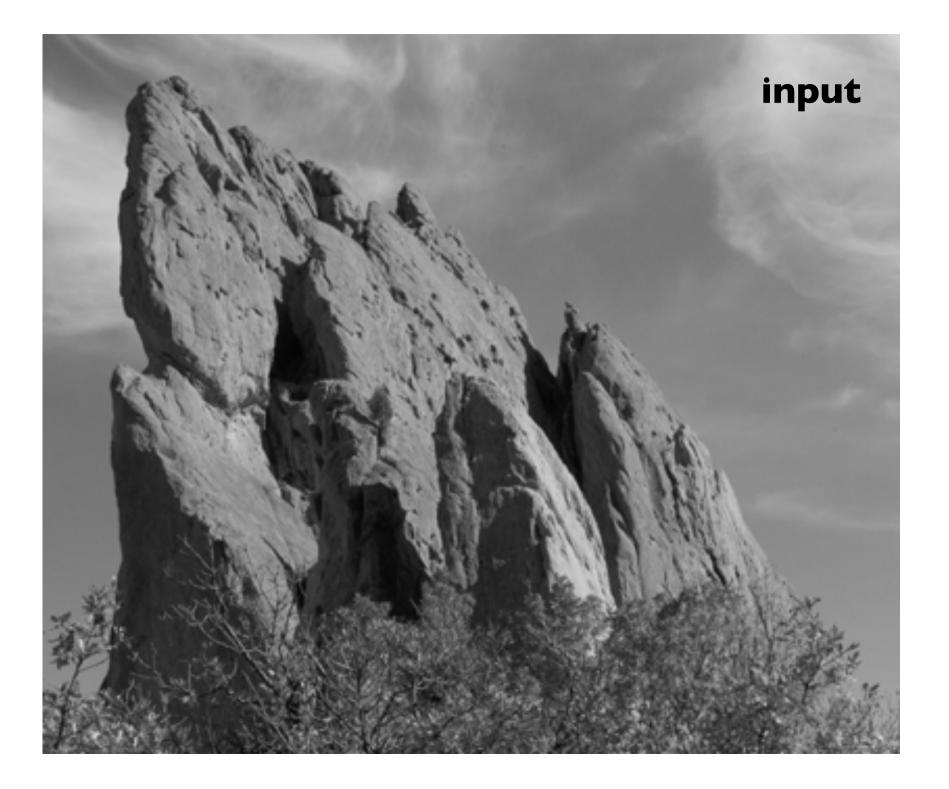




input

Varying the Space Parameter





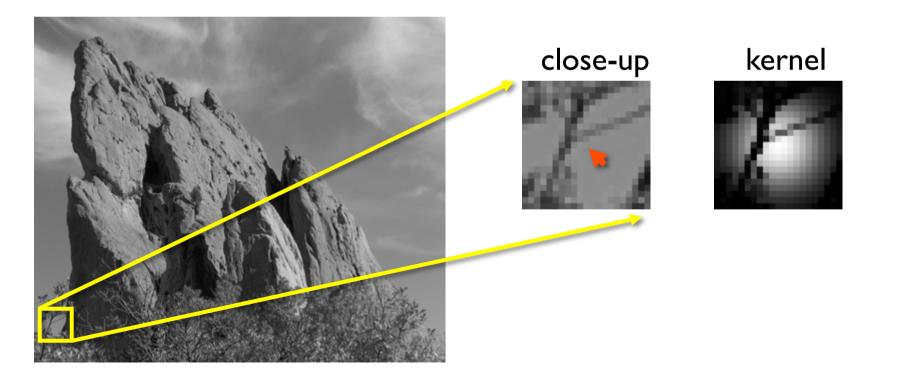
How to Set the Parameters

Depends on the application. For instance:

- space parameter: proportional to image size
 e.g., 2% of image diagonal
- range parameter: proportional to edge amplitude
 e.g., mean or median of image gradients
- independent of resolution and exposure

Bilateral Filter Crosses Thin Lines

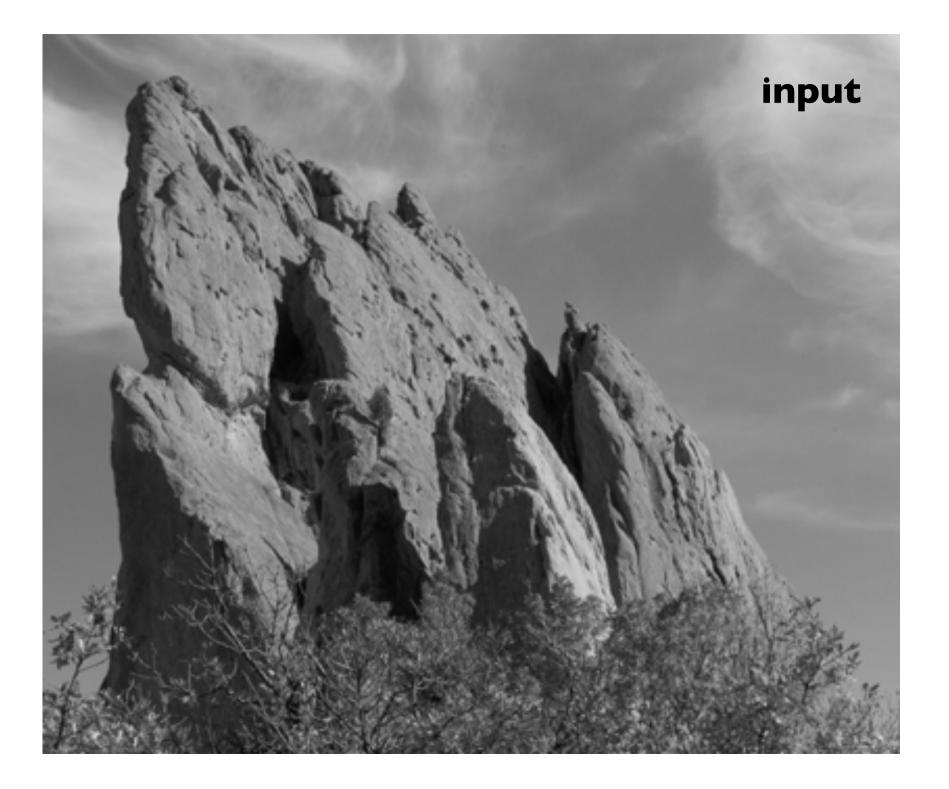
- Bilateral filter averages across features thinner than ~2s_s
- Desirable for smoothing: more pixels = more robust
- Different from diffusion that stops at thin lines

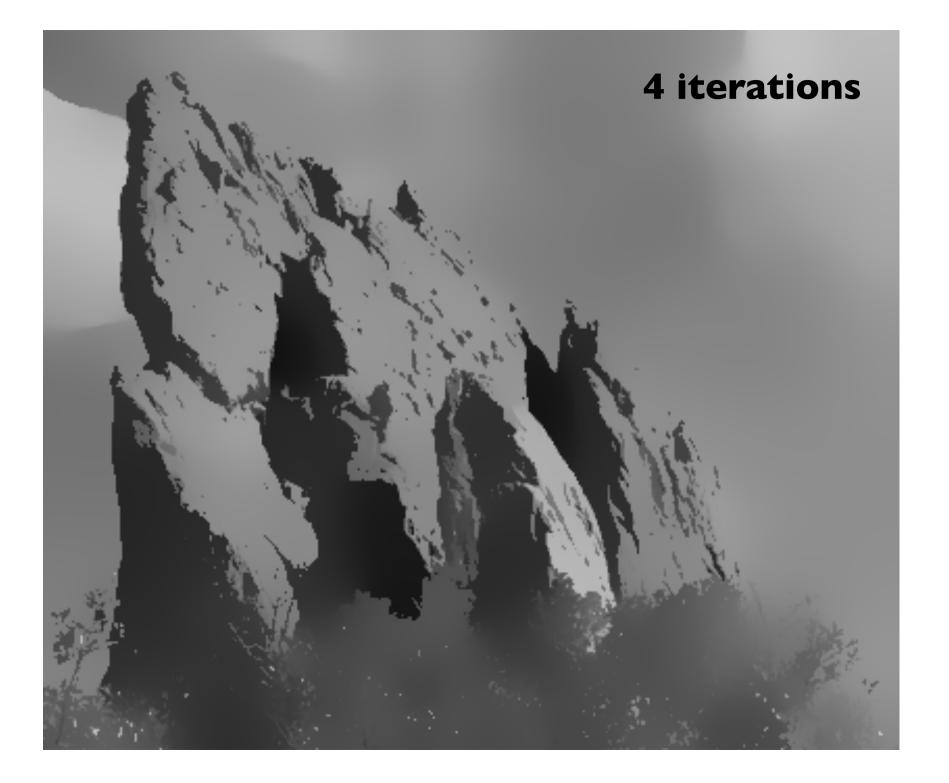


Iterating the Bilateral Filter

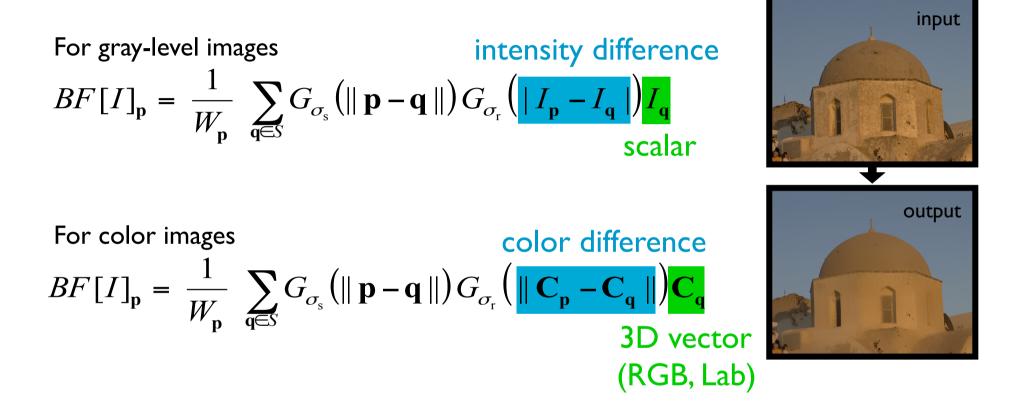
$$I_{(n+1)} = BF[I_{(n)}]$$

- Generate more piecewise-flat images
- Often not needed in computational photo.





Bilateral Filtering Color Images



Hard to Compute

• Nonlinear

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- Complex, spatially varying kernels
 - Cannot be precomputed, no FFT...

• Brute-force implementation is slow > 10min

Noisy input

Bilateral filter 7x7 window

Bilateral filter

Median 3x3

Bilateral filter

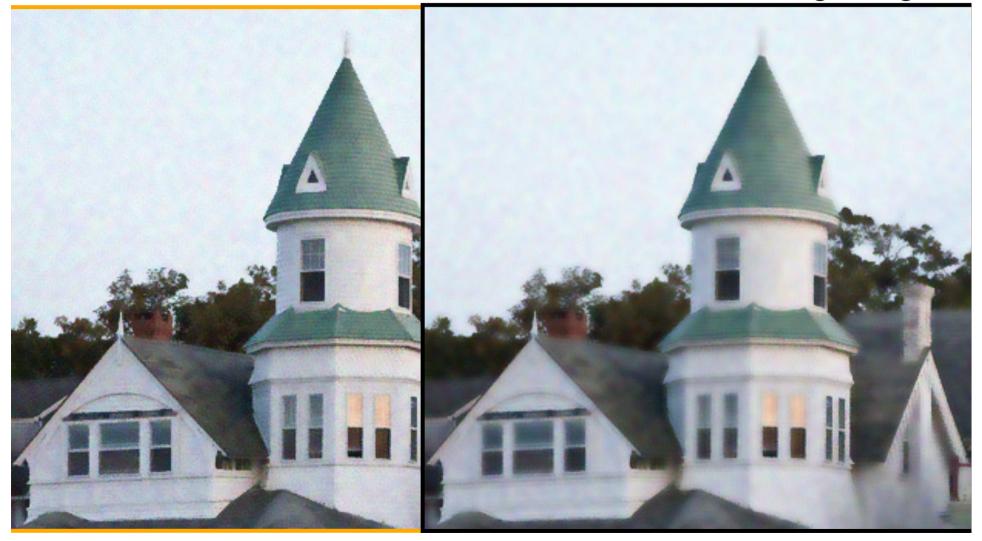
Median 5x5

Bilateral filter

Bilateral filter – lower sigma

Bilateral filter

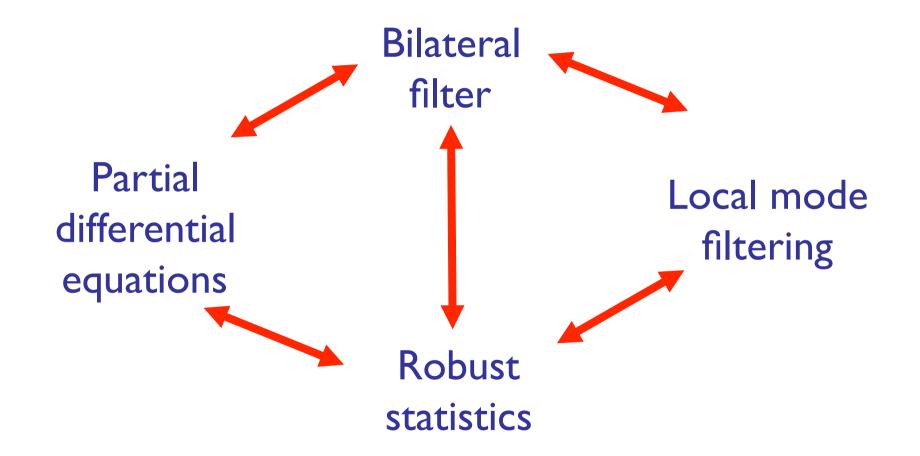
Bilateral filter – higher sigma



Denoising

- Small spatial sigma (e.g. 7x7 window)
- Adapt range sigma to noise level
- Maybe not best denoising method, but best simplicity/quality tradeoff
 - No need for acceleration (small kernel)
 - But the denoising feature in e.g. Photoshop is better

Goal: Understand how does bilateral filter relates with other methods



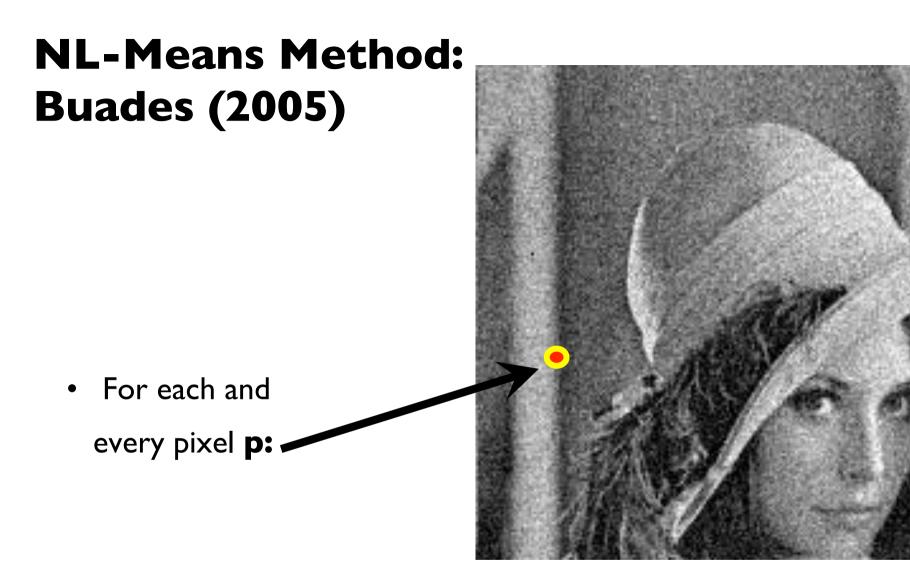
New Idea: NL-Means Filter (Buades 2005)

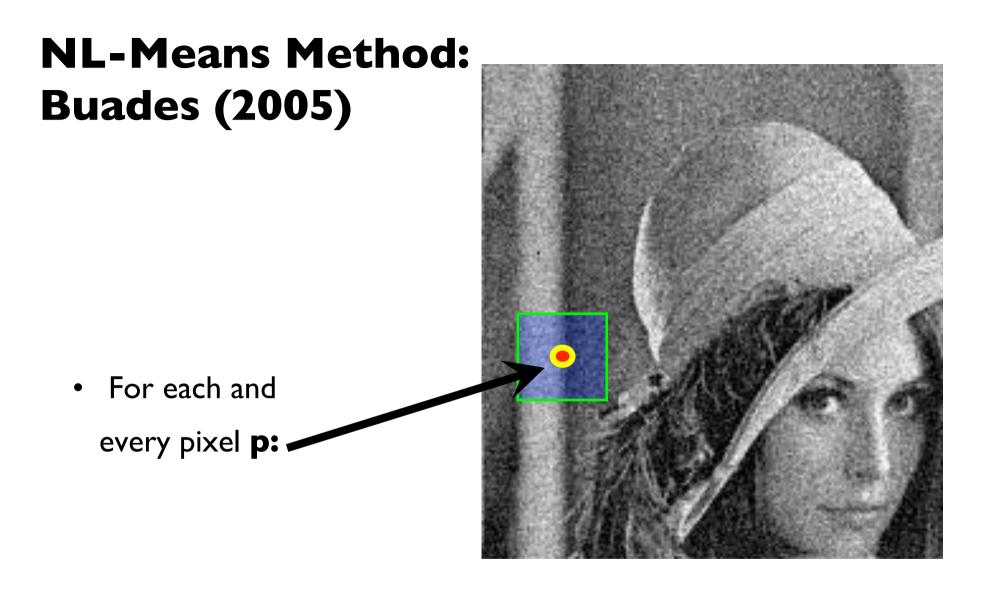
- Same goals: 'Smooth within Similar Regions'
- **KEY INSIGHT**: Generalize, extend'Similarity'
 - Bilateral:

Averages neighbors with **similar intensities**;

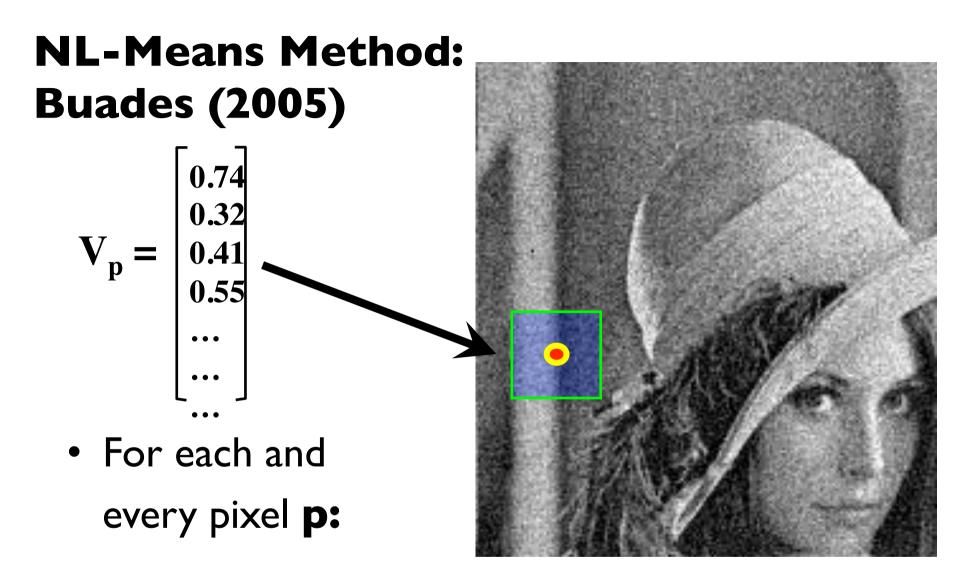
- NL-Means:

Averages neighbors with **similar neighborhoods!**





- Define a small, simple fixed size neighborhood;



- Define a small, simple fixed size neighborhood;
- Define vector $\mathbf{V}_{\mathbf{p}}$: a list of neighboring pixel values.

<u>'Similar'</u> pixels **p, q**

\rightarrow SMALL

vector distance;

$$|| \mathbf{V}_{\mathbf{p}} - \mathbf{V}_{\mathbf{q}} ||^2$$

<u>'Dissimilar'</u> pixels **p**, **q**

\rightarrow LARGE

vector distance;

$$|| \mathbf{V}_{\mathbf{p}} - \mathbf{V}_{\mathbf{q}} ||^2$$

<u>'Dissimilar'</u> pixels **p, q**

\rightarrow LARGE

vector distance;

$$|| \mathbf{V}_{\mathbf{p}} - \mathbf{V}_{\mathbf{q}} ||^2$$

Filter with this!



- **p**, **q** neighbor
- a vector distar

Filter with

$$|| \mathbf{V}_{\mathbf{p}} - \mathbf{V}_{\mathbf{q}} ||^2$$

No spatial to

Buades (2005)
p, q neighbors define
a vector distance;
Filter with this:

$$|| \nabla_{p} - \nabla_{q} ||^{2}$$
No spatial term!

$$NLMF[I]_{p} = \frac{1}{W_{p}} \sum_{q \in S} G_{q} (|| \vec{p} - \vec{V}_{q} ||^{2}) I_{q}$$

pixels **p**, **q** neighbors Set a vector distance;

$$|| \mathbf{V_p} - \mathbf{V_q} ||^2$$

Vector Distance to p sets weight for each pixel q

$$NLMF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{r}}} \left(\|\vec{V}_{\mathbf{p}} - \vec{V}_{\mathbf{q}}\|^2 \right) I_{\mathbf{q}}$$

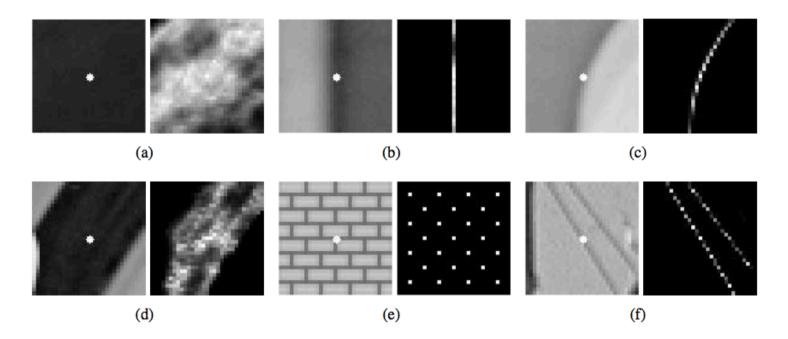


Figure 2. Display of the NL-means weight distribution used to estimate the central pixel of every image. The weights go from 1(white) to zero(black).

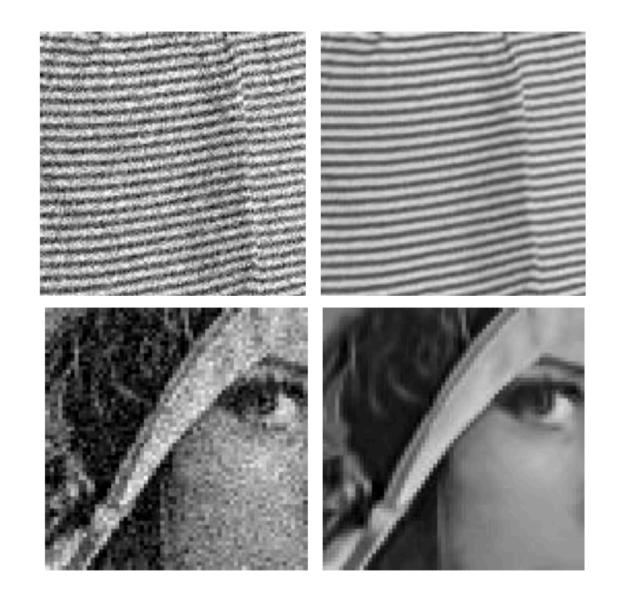


FIG. 9. NL-means denoising experiment with a natural image. Left: Noisy image with standard deviation 20. Right: Restored image.

 Noisy source image:

• Gaussian Filter

Low noise, Low detail

• Anisotropic Diffusion

(Note 'stairsteps': ~ piecewise constant)

• Bilateral Filter

(better, but similar 'stairsteps':

• NL-Means:

Sharp, Low noise, Few artifacts.

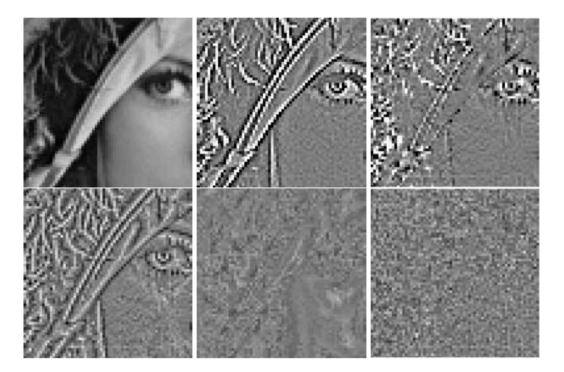
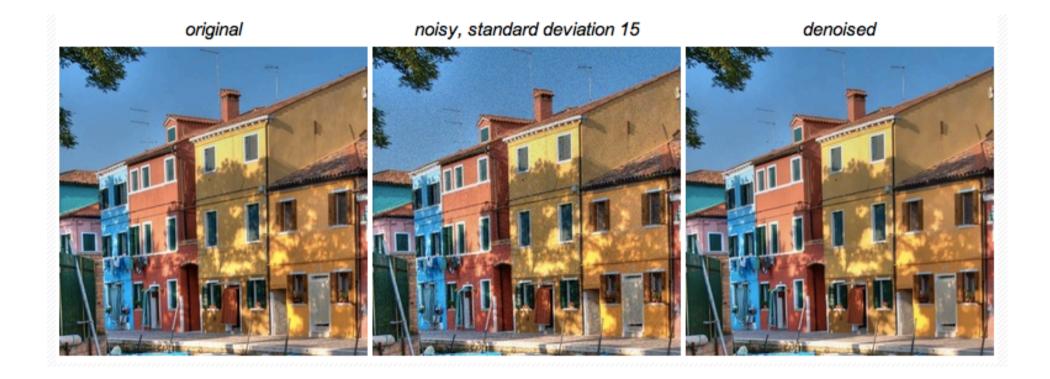
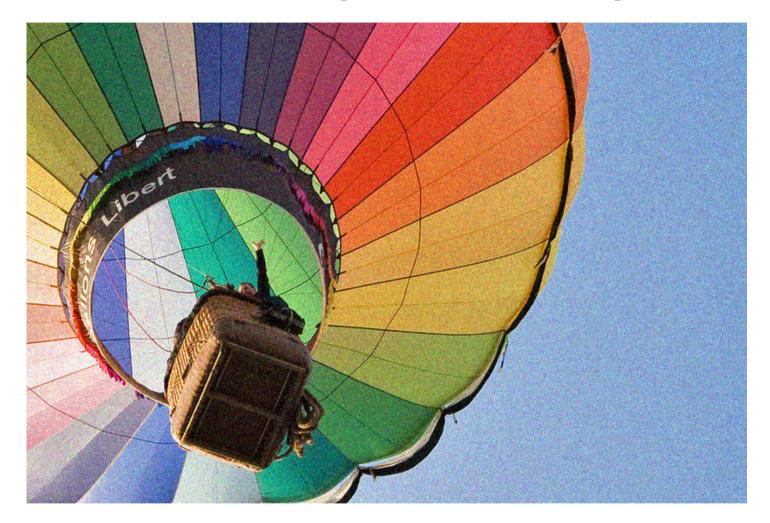


Figure 4. Method noise experience on a natural image. Displaying of the image difference $u - D_h(u)$. From left to right and from top to bottom: original image, Gauss filtering, anisotropic filtering, Total variation minimization, Neighborhood filtering and NL-means algorithm. The visual experiments corroborate the formulas of section 2.



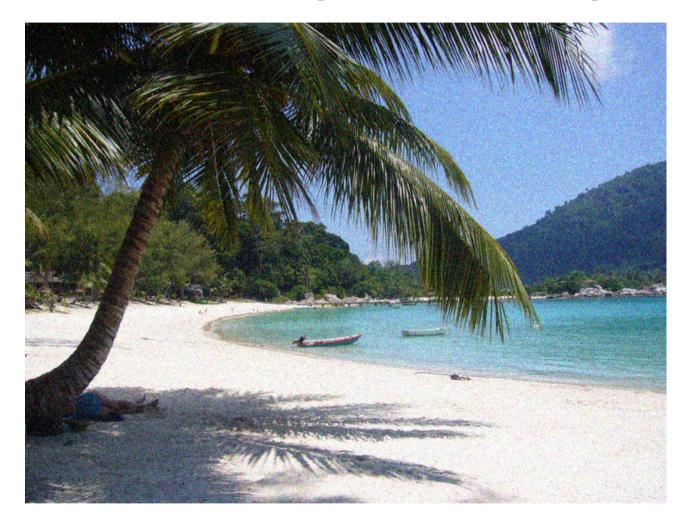
original



noisy

denoised

original



noisy

denoised