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Segmentation – Part 2	





Segmentation methods	


•  Segment foreground from background	



•  Histogram-based segmentation	



•  Segmentation as clustering	


–  K-means clustering	


–  Mean-shift segmentation	



•  Graph-theoretic segmentation	


–  Min cut	


–  Normalized cuts	



•  Interactive segmentation	





http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html	



Mean shift clustering and 
segmentation	


•  An advanced and versatile technique for clustering-based 

segmentation	



D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, ���
PAMI 2002. 	



Slide credit: S. Lazebnik 



Finding Modes in a Histogram	



•  How Many Modes Are There?	


–  Easy to see, hard to compute	



Slide credit: S. Seitz 



•  The mean shift algorithm seeks modes or local maxima of 
density in the feature space	



Mean shift algorithm	



image	


Feature space 	



(L*u*v* color values)	



Slide credit: S. Lazebnik 



Mean shift algorithm	


Mean Shift Algorithm	



1.  Choose a search window size.	


2.  Choose the initial location of the search window.	


3.  Compute the mean location (centroid of the data) in the search window.	


4.  Center the search window at the mean location computed in Step 3.	


5.  Repeat Steps 3 and 4 until convergence.	



The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:	



Two issues:	


(1) Kernel to interpolate density 
based on sample positions.	


(2) Gradient ascent to mode.	



Slide credit: B. Freeman and A. Torralba 
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Slide credit: Y. Ukrainitz & B. Sarel 
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Slide credit: Y. Ukrainitz & B. Sarel 
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Slide credit: Y. Ukrainitz & B. Sarel 
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Slide credit: Y. Ukrainitz & B. Sarel 



•  Cluster: all data points in the attraction basin of a mode	



•  Attraction basin: the region for which all trajectories lead to the 
same mode	



Mean shift clustering	



Slide credit: Y. Ukrainitz & B. Sarel 



•  Find features (color, gradients, texture, etc)	


•  Initialize windows at individual feature points	


•  Perform mean shift for each window until convergence	


•  Merge windows that end up near the same “peak” or mode	



Mean shift clustering/segmentation	



Slide credit: S. Lazebnik 



Apply mean shift jointly in  the image 
(left col.) and range (right col.) domains	
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Slide credit: B. Freeman and A. Torralba 



Comaniciu and Meer, IEEE PAMI vol. 24, no. 5, 2002	


Slide credit: B. Freeman and A. Torralba 



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html	



Mean shift segmentation results	



Slide credit: S. Lazebnik 



More results	



Slide credit: S. Lazebnik 



More results	



Slide credit: S. Lazebnik 



Mean shift pros and cons	



•  Pros	


–  Does not assume spherical clusters	


–  Just a single parameter (window size) 	


–  Finds variable number of modes	


–  Robust to outliers	



•  Cons	


–  Output depends on window size	


–  Computationally expensive	


–  Does not scale well with dimension of feature space	



Slide credit: S. Lazebnik 



Segmentation methods	


•  Segment foreground from background	



•  Histogram-based segmentation	



•  Segmentation as clustering	


–  K-means clustering	


–  Mean-shift segmentation	



•  Graph-theoretic segmentation	


•  Min cut	


•  Normalized cuts	



•  Interactive Segmentation	





Graph-Theoretic Image Segmentation	



Build a weighted graph G=(V,E) from image	



V:	

image pixels	



E: 	

connections between 
pairs of nearby pixels	



	



region       
 same  the tobelong       

j& iy that probabilit :ijW

Segmentation = graph partition	


Slide credit: B. Freeman and A. Torralba 



Graphs Representations	
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003	



a	

 b	

 c	

 d	

 e	



a	



b	



c	



d	



e	



Slide credit: B. Freeman and A. Torralba 



A Weighted Graph and its 
Representation	
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003	
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Slide credit: B. Freeman and A. Torralba 



Segmentation by graph partitioning	



•  Break graph into segments	


–  Delete links that cross between segments	


–  Easiest to break links that have low affinity	



•  similar pixels should be in the same segments	


•  dissimilar pixels should be in different segments	
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Slide credit: S. Seitz 



Affinity between pixels	



Similarities among pixel descriptors	


Wij = exp(-|| zi – zj ||2 / s2)	



s = Scale factor… ���
it will hunt us later	



Slide credit: B. Freeman and A. Torralba 



Affinity between pixels	



Similarities among pixel descriptors	


Wij = exp(-|| zi – zj ||2 / s2)	



s = Scale factor… ���
it will hunt us later	

Interleaving edges	



Wij = 1 - max Pb	


Line between i and j	



With Pb = probability of boundary	



Slide credit: B. Freeman and A. Torralba 



Scale affects affinity	



•  Small σ: group only nearby points	



•  Large σ: group far-away points	



Slide credit: S. Lazebnik 



Three points in feature space 

Wij = exp(-|| zi – zj ||2 / σ2)	



With an appropriate σ 

W= 

The eigenvectors of W are:	



The first 2 eigenvectors group the points���
as desired…	



British Machine Vision Conference, pp. 103-108, 1990	



Slide credit: B. Freeman and A. Torralba 



Example eigenvector	
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Slide credit: B. Freeman and A. Torralba 
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Slide credit: B. Freeman and A. Torralba 



Graph cut	



•  Set of edges whose removal makes a graph disconnected	



•  Cost of a cut: sum of weights of cut edges	



•  A graph cut gives us a segmentation	


–  What is a “good” graph cut and how do we find one?	



A	

 B	



Slide credit: S. Seitz 



Segmentation methods	


•  Segment foreground from background	



•  Histogram-based segmentation	



•  Segmentation as clustering	


–  K-means clustering	


–  Mean-shift segmentation	



•  Graph-theoretic segmentation	


•  Min cut	


•  Normalized cuts	



•  Interactive segmentation	





Minimum cut	



€ 

cut(A,B) = W(u,v),
u∈A,v∈B
∑

                     with A ∩ B = ∅

Cut: sum of the weight of the cut edges:	



A cut of a graph G is the set of edges S such that 
removal of S from G disconnects G.	



Slide credit: B. Freeman and A. Torralba 



Minimum cut	



•  We can do segmentation by finding the minimum cut in a graph	


–  Efficient algorithms exist for doing this	



Minimum cut example	



Slide credit: S. Lazebnik 



Minimum cut	



•  We can do segmentation by finding the minimum cut in a graph	


–  Efficient algorithms exist for doing this	



Slide credit: S. Lazebnik 

Minimum cut example	





Drawbacks of Minimum cut	



•  Weight of cut is directly proportional to the number of edges 
in the cut.	



Ideal Cut	



Cuts with 	


lesser weight	


than the 	


ideal cut	



* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003 Slide credit: B. Freeman and A. Torralba 



Segmentation methods	


•  Segment foreground from background	



•  Histogram-based segmentation	



•  Segmentation as clustering	


–  K-means clustering	


–  Mean-shift segmentation	



•  Graph-theoretic segmentation	


•  Min cut	


•  Normalized cuts	



•  Interactive segmentation	





Normalized cuts	



assoc(A,V) is sum of all edges with one end in A.	



cut(A,B) is sum of weights with one end in A and one end in B	



Write graph as V, one cluster as A and the other as B	



cut(A,B)	



assoc(A,V)	



cut(A,B)	



assoc(B,V)	


+	

Ncut(A,B) = 	



€ 

cut(A,B) = W(u,v),
u∈A,v∈B
∑

                     with A ∩ B = ∅

€ 

assoc(A,B) = W(u,v)
u∈A,v∈B
∑

                     A and B not necessarily disjoint

Slide credit: B. Freeman and A. Torralba	


J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000	





Normalized cut	


•  Let W be the adjacency matrix of the graph	



•  Let D be the diagonal matrix with diagonal entries ���
	

D(i, i) = Σj W(i, j) 	



•  Then the normalized cut cost can be written as���
���
���
���
where y is an indicator vector whose value should be 1 in 
the ith position if the ith feature point belongs to A and a 
negative constant otherwise	



Dyy
yWDy

T

T )( −

Slide credit: S. Lazebnik J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000	





Normalized cut	



•  Finding the exact minimum of the normalized cut cost is NP-
complete, but if we relax y to take on arbitrary values, then we 
can minimize the relaxed cost by solving the generalized 
eigenvalue problem (D − W)y = λDy 	



•  The solution y is given by the generalized eigenvector 
corresponding to the second smallest eigenvalue	



•  Intitutively, the ith entry of y can be viewed as a “soft” 
indication of the component membership of the ith feature	


–  Can use 0 or median value of the entries as the splitting point 

(threshold), or find threshold that minimizes the Ncut cost	



Slide credit: S. Lazebnik J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000	





Normalized cut algorithm	



Slide credit: B. Freeman and A. Torralba 



Global optimization	



•  In this formulation, the segmentation becomes a global process. 	



•  Decisions about what is a boundary are not local (as in Canny 
edge detector)	



Slide credit: B. Freeman and A. Torralba 



Boundaries of image regions defined 
by a number of attributes	



–  Brightness/color	


–  Texture	


–  Motion	


–  Stereoscopic depth	


–  Familiar configuration	



[Malik]	

 Slide credit: B. Freeman and A. Torralba 



N pixels = ncols * nrows	



W = 	



N	



N	



brightness	

 Location	



Affinity:	



Example	



Slide credit: B. Freeman and A. Torralba 



Slide credit: B. Freeman and A. Torralba 



Brightness Image Segmentation	



http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf	

 Slide credit: B. Freeman and A. Torralba 



Slide credit: B. Freeman and A. Torralba 

Brightness Image Segmentation	



http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf	





Slide credit: B. Freeman and A. Torralba http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf	





Results on color segmentation	



Slide credit: B. Freeman and A. Torralba http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf	





Example results	



Slide credit: S. Lazebnik 



Results: Berkeley Segmentation Engine	



http://www.cs.berkeley.edu/~fowlkes/BSE/	


Slide credit: S. Lazebnik 



•  Pros	


–  Generic framework, can be used with many different 

features and affinity formulations	



•  Cons	


–  High storage requirement and time complexity	


–  Bias towards partitioning into equal segments	



Normalized cuts: Pro and con	



Slide credit: S. Lazebnik 



Segmentation methods	


•  Segment foreground from background	



•  Histogram-based segmentation	



•  Segmentation as clustering	


–  K-means clustering	


–  Mean-shift segmentation	



•  Graph-theoretic segmentation	


•  Min cut	


•  Normalized cuts	



•  Interactive segmentation	





Intelligent Scissors [Mortensen 95]	



•  Approach answers a basic question	


–  Q:  how to find a path from seed to mouse that follows object 

boundary as closely as possible?	



Slide credit: S. Seitz 

Mortensen and Barrett, Intelligent 
Scissors for Image Composition, ���
Proc. 22nd annual conference on 
Computer graphics and interactive 
techniques, 1995	





Intelligent Scissors	



•  Basic Idea	


–  Define edge score for each pixel	



•  edge pixels have low cost	


–  Find lowest cost path from seed to mouse	



seed	



mouse	



Questions	


•  How to define costs?	



•  How to find the path?	


Slide credit: S. Seitz 



Path Search (basic idea)	



•  Graph Search Algorithm	


–  Computes minimum cost path from seed to all other pixels	



Slide credit: S. Seitz 



How does this really work?	


•  Treat the image as a graph	



Graph	


•  node for every pixel p	



•  link between every adjacent pair of pixels, p,q	


•  cost c for each link	



Note:  each link has a cost	



•  this is a little different than the figure before where each 
pixel had a cost	



p	



q	


c	



Slide credit: S. Seitz 



Defining the costs	


•  Treat the image as a graph	



Want to hug image edges:  how to define cost of a link?	



p	



q	


c	



•  the link should follow the intensity edge	


– want intensity to change rapidly ┴  to the link	



•   c ≈ - |difference of intensity ┴ to link|	



Slide credit: S. Seitz 



Defining the costs	
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The 
imag
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•  c can be computed using a cross-correlation filter	


–  assume it is centered at p	



•  Also typically scale c by its length	


–  set c = (max-|filter response|)	



•  where max = maximum |filter response| over all pixels in the image	


Slide credit: S. Seitz 



Defining the costs	
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Slide credit: S. Seitz 

•  c can be computed using a cross-correlation filter	


–  assume it is centered at p	



•  Also typically scale c by its length	


–  set c = (max-|filter response|)	



•  where max = maximum |filter response| over all pixels in the image	





Dijkstra’s shortest path algorithm	
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Algorithm	


1.  init node costs to ∞, set p = seed point, cost(p) = 0	


2.  expand p as follows:	



for each of p’s neighbors q that are not expanded	



»  set cost(q) = min( cost(p) + cpq,  cost(q) )	



link cost	



Slide credit: S. Seitz 



Dijkstra’s shortest path algorithm	
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Algorithm	


1.  init node costs to ∞, set p = seed point, cost(p) = 0	


2.  expand p as follows:	



for each of p’s neighbors q that are not expanded	



»  set cost(q) = min( cost(p) + cpq,  cost(q) )	


»  if q’s cost changed, make q point back to p	



»  put q on the ACTIVE list   (if not already there)	
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Slide credit: S. Seitz 



Dijkstra’s shortest path algorithm	


4	



1	

 0	



5	



3	



3	

 2	

 3	



9	



5	


3	

1	



3	

3	



4	


9	



2	



1	


5	



2	


3	

3	



3	


2	



4	



Algorithm	


1.  init node costs to ∞, set p = seed point, cost(p) = 0	


2.  expand p as follows:	



for each of p’s neighbors q that are not expanded	



»  set cost(q) = min( cost(p) + cpq,  cost(q) )	


»  if q’s cost changed, make q point back to p	



»  put q on the ACTIVE list   (if not already there)	



3.  set r = node with minimum cost on the ACTIVE list	



4.  repeat Step 2 for p = r	


Slide credit: S. Seitz 



Dijkstra’s shortest path algorithm	
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Slide credit: S. Seitz 

Algorithm	


1.  init node costs to ∞, set p = seed point, cost(p) = 0	


2.  expand p as follows:	



for each of p’s neighbors q that are not expanded	



»  set cost(q) = min( cost(p) + cpq,  cost(q) )	


»  if q’s cost changed, make q point back to p	



»  put q on the ACTIVE list   (if not already there)	



3.  set r = node with minimum cost on the ACTIVE list	



4.  repeat Step 2 for p = r	





Segmentation by min (s-t) cut	



•  Graph	


–  node for each pixel, link between pixels	


–  specify a few pixels as foreground and background	



•  create an infinite cost link from each bg pixel to the “t” node	


•  create an infinite cost link from each fg pixel to the “s” node	



–  compute min cut that separates s from t	


–  how to define link cost between neighboring pixels?	



t s 

min cut	



Slide credit: S. Seitz 
Y. Boykov and M-P Jolly, Interactive Graph Cuts for Optimal Boundary & 
Region Segmentation of Objects in N-D images, ICCV, 2001.	





Random Walker	



•  Compute probability that a random walker arrives at seed	



http://cns.bu.edu/~lgrady/Random_Walker_Image_Segmentation.html	



L. Grady, Random Walks for Image Segmentation, IEEE T-PAMI, 2006	





Do we need recognition to take the next step in performance?	



Slide credit: B. Freeman and A. Torralba 



Top-down segmentation	



•  E. Borenstein and S. Ullman, Class-specific, top-down segmentation, 
ECCV 2002	



•  A. Levin and Y. Weiss, Learning to Combine Bottom-Up and Top-
Down Segmentation, ECCV 2006.	



Slide credit: S. Lazebnik 



Top-down segmentation	



•  E. Borenstein and S. Ullman, Class-specific, top-down segmentation, 
ECCV 2002	



•  A. Levin and Y. Weiss, Learning to Combine Bottom-Up and Top-
Down Segmentation, ECCV 2006.	



Normalized 
cuts	



Top-down 
segmentation	



Slide credit: S. Lazebnik 



Motion segmentation	



Image Segmentation	

 Motion Segmentation	

Input sequence	



Image Segmentation	

 Motion Segmentation	

Input sequence	



A. Barbu, S.C. Zhu.  Generalizing Swendsen-Wang to sampling arbitrary 
posterior probabilities,  IEEE TPAMI, 2005.   	

 Slide credit: K. Grauman 


