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Image Pyramids

Review - Frequency Domain
Techniques

* The name “filter” is borrowed from frequency domain processing

* Accept or reject certain frequency components

* Fourier (1807):

Periodic functions
could be represented = "——m—" -
as a weighted sum of 2
sines and cosines

Image courtesy of Technology Review

Review - Fourier Transform

We want to understand the frequency w of our signal. So, let’s
reparametrize the signal by w instead of x:

fx) —— Fourier — Fw)
Transform

For every wirom 0 to inf, F(w) holds the amplitude A and
phase fof the corresponding sine Asin(ax + o)

¢ How can Fhold both? Complex number trick!
F(w)=R(w)+il(w) ;
_ 19
A=+ R(w) + (@)’ 6=tan" 12
R(w)

We can always go back:

F(w) . Inverse Fourier R f(X)
Transform

Slide credit: A. Efros

Review - The Discrete Fourier transform

¢ Forward transform

M-IN-1 _m[@+13)
Flmnl= Y>> flkle M ¥
k=01=0
* Inverse transform
1 leg +m’[@+1—nj
f[kal]:_ F[m,n]e e
MN =575

Slide credit: B. Freeman and A. Torralba




Review - The Discrete Fourier transform

Vertical orientation Low spatial frequencies
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Slide credit: B. Freeman and A. Torralba

Review - The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg*h]=F[g]F[A]
* The inverse Fourier transform of the product of two

Fourier transforms is the convolution of the two inverse
Fourier transforms

F[gh]=F"[g]*F '[A]

* Convolution in spatial domain is equivalent to
multiplication in frequency domain!

Slide credit: A. Efros

Review - Filtering in frequency
domain u

FFT

FFT

Inverse FFT

Slide credit: D. Holiem

Review - Low-pass, Band-pass, High-
pass filters

High-pass / band-pass:

Slide credit: A. Efros




Template matching
* Goal: find in image

* Main challenge: What is a good
similarity or distance measure
between two patches?

— Correlation

— Zero-mean correlation

— Sum Square Difference

— Normalized Cross Correlation

Slide: Hoiem

Matching with filters
* Goal: find in image

* Method O: filter the image with eye patch

hm,n]=> glk,l] flm+k,n+1]
k,l \

f = image
g = filter

What went wrong!?

response is stronger
for higher intensity

Input Filtered Image

Slide: Hoiem

Matching with filters
* Goal: find in image

* Method I: filter the image with zero-mean eye

hm,n) =Y (fTk,11-f) (glm~+k,n+1])

T mean of f

Matching with filters
* Goal: find in image
* Method 2: SSD

hm,n]=> (glk,l1- flm+k,n+I]y’

I- sqrt(SSD) Thresholded Image. .,




Matching with filters
* Goal: find @ inimage

¢ Method 2: SSD

him,n] =Y (glk,l]- flm+

—_—

]

£
-4

e |

Input I- sqrt(SSD)

k,n+11)*

What' s the potential
downside of SSD?

SSD sensitive to
average intensity

Matching with filters
* Goal: find @ inimage

¢ Method 3: Normalized cross-correlation

mean template mean image patch

! J
X (glk1=)(fIm=kn=11-f,,)

0.5

D (glk,11-8) > (flm=k,n=11- £,

h[m,n]=

Matlab: normxcorr2 (template, im)

Matching with filters
* Goal: find @ in image

¢ Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

Matching with filters
* Goal: find @ inimage

¢ Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image




Q: What is the best method to use?

A: Depends
» SSD: faster, sensitive to overall intensity

* Normalized cross-correlation: slower, invariant to local average
intensity and contrast

Slide: R. Pless

Q: What if we want to find larger or

smaller eyes?

A: Image Pyramid

Slide: R. Pless

Image Pyramids

Image information occurs over many different spatial scales:

Image pyramids —multi- resolution representations for images—

are a useful data structure for analyzing and manipulating images
over a range of spatial scales. :

-

Image pyramids

Image information occurs at all spatial scales

* Gaussian pyramid
* Laplacian pyramid
* Wavelet/QMF pyramid

* Steerable pyramid

Slide credit: B. Freeman and A. Torralba




Image pyramids

Gaussian pyramid

Slide credit: B. Freeman and A. Torralba

Review of Sampling

Gaussian

Filter Sample

Low-Pass Low-Res

e Filtered Image Image

The Gaussian pyramid

Smooth with Gaussians, because
— A Gaussian*Gaussian = another Gaussian

Gaussians are low pass filters, so representation
is redundant.

Gaussian pyramid creates versions of the input image
at multiple resolutions.

This is useful for analysis across different spatial scales,
but doesn’t separate the image into different frequency
bands.

Slide adapted from: B. Freeman and A. Torralba

The computational advantage of pyramids

GAUSSIAN PYRAMID
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Fig 1. A one-dimensional graphic representation of the process which
generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of a corresponding image pixel. The value
of each node in a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level
to level, while the same weighting pattern or “generating kernel” is
used to generate all levels.

[Burt and Adelson, 1983]

Slide credit: B. Freeman and A. Torralba




The Gaussian Pyramid
GAUSSIAN PYRAMID
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Fig. 4. First six levels of the Gaussian pyramid for the "Lady" image The original image, level 0, meusures 257 by 257 pixels and each
higher level array is roughly half the dimensdons of its predecessor. Thus, level 5 measures just 9 by 9 pixels.

0

[Burt and Adelson, 1983]

Slide credit: B. Freeman and A. Torralba [ Slide credit: B. Freeman and A. Torralba
o o
Convolution and subsampling as .
. . Next pyramid level
a matrix multiply (1D case)
x; =G,x,
x, = Gyx,
Gl = G2 =
X 1 4 6 4 1 0 0 0
1 4 6 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o o0 1 4 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 6 4 1 0
o o0 o0 0 1 4 6 4 1 0 0 0 0 0 0 0 0 0 0 0
i 0O 0 0 0 1 4 6 4
o o0 o0 0 0 0 1 4 6 4 1 0 0 0 0 0 0 0 0 0
o o0 o0 0 0 0 0 0 1 4 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4
o o0 o0 0 0 0 0 0 0 0 I 4 6 4 1 0 0 0 0 0
o o0 o0 0 0 0 0 0 0 0 0 0 1 4 6 4 1 0 0 0
o o0 o0 0 0 0 0 0 0 0 0 0 0 0 1 4 6 4 1 0
Slide credit: B. Freeman and A. Torralba (Normalization constant of /16 omitted for visual CIaritY-) Slide credit: B. Freeman and A. Torralba




The combined effect of the two
pyramid levels

x; =G,Gx,

1 4 10 20 31 40 44 40 31 20 10 4 1 O O O O O O O
o 0 0 0 1 4 10 20 31 40 44 40 31 20 10 4 1 0 0O O
O 0 0 0 0 0 0 0 1 4 10 20 31 40 44 40 30 16 4 0
o 0 0 0 0 0 0o 0 0 0 0 0 1 4 10 20 25 16 4 0

Slide credit: B. Freeman and A. Torralba
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Fig. 2. The equivalent weighting functions A(x) for nodes in levels 1, 2, 3,
and infinity of the Gaussian pyramid. Note that a cales have been
adjusted by factors of 2 to aid comparison Here tt rameter a of the
generating kernel is 0.4, and the resulting equivalent weighting
functions closely resemble the Gaussian probability density functions.

Slide credit: B. Freeman and A. Torralba

Gaussian pyramids used for

* up- or down- sampling images.

* Multi-resolution image analysis
— Look for an object over various spatial scales

— Coarse-to-fine image processing: form blur estimate or the
motion analysis on very low-resolution image, upsample and
repeat. Often a successful strategy for avoiding local minima
in complicated estimation tasks.

Slide credit: B. Freeman and A. Torralba

ID Gaussian pyramid matrix,
for [1 464 1] low-pass filter

full-band image,
highest resolution

lower-resolution
image

lowest resolution
image

Slide credit: B. Freeman and A. Torralba




Templ'ate Matching with Image Coarse-to-fine Image Registration
Pyramids \
I. Compute Gaussian pyramid DN

coarse y =2

\

Input: Image, Template 2. Align with coarse pyramid , .
medium / 1
3. Successively align with finer ‘@ AN

I. Match template at current scale /Y \ .
pyramids /
e el
—  Search smaller range I SIS
o o & & £\ & o 1=0

2. Downsample image i a0 W ol ol ol P 1
e ol P i i a0V

Why is this faster?
3. Repeat |-2 until image is very small

Are we guaranteed to get the same
4. Takg responses a'bove some threshold, perhaps with non- result?
maxima suppression

Image pyramids The Laplacian Pyramid

* Synthesis
— Compute the difference between upsampled
Gaussian pyramid level and Gaussian pyramid level.

— band pass filter - each level represents spatial
frequencies (largely) unrepresented at other level.

Laplacian pyramid

. * Laplacian pyramid provides an extra level of
analysis as compared to Gaussian pyramid by
breaking the image into different isotropic
spatial frequency bands.

Slide credit: B. Freeman and A. Torralba Slide adapted from: B. Freeman and A. Torralba




The Laplacian Pyramid

Slide credit: B. Freeman and A. Torralba

The Laplacian Pyramid

Slide credit: B. Freeman and A. Torralba

The Laplacian Pyramid
Gx,

Slide credit: B. Freeman and A. Torralba

The Laplacian Pyramid
Gx,

Slide credit: B. Freeman and A. Torralba




The Laplacian Pyramid

X Gx, = x,

Slide credit: B. Freeman and A. Torralba

The Laplacian Pyramid

Slide credit: B. Freeman and A. Torralba

The Laplacian Pyramid

X, Gx =x,

—Ikd

Slide credit: B. Freeman and A. Torralba

Upsampling

Vo = F3x3 Insert zeros between pixels, then
apply a low-pass filter, [| 4 6 4 1]

]-7'3 = 6 1 0 0

4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4

0 0 1 6

0 0 0 4

Slide credit: B. Freeman and A. Torralba




Showing, at full resolution, the information
captured at each level of a Gaussian (top)
and Laplacian (bottom) pyramid.

Fig § Fiest foer kevels of the Gawssian and Laphe (mn TR p—— e obeamedby expanding pyva s (Fig 4)
am.an i st arpolution. Fach vl of fh.lpl V\mv! ot i o bt macn e cenespoading and pevt h;hxld of the
CGawssaan pyraemd

Slide credit: B. Freeman and A. Torralba

Laplacian pyramid reconstruction algorithm:
recover x, fromlL, L, L; and x,

G# is the blur-and-downsample operator at pyramid level #
F# is the blur-and-upsample operator at pyramid level #

Laplacian pyramid elements:
LI =(-FI GI)xl
L2=(-F2G2)x2
L3=(1-F3G3)x3

x2 =Gl x|

x3=G2x2

x4 = G3 x3

Reconstruction of original image (x1) from Laplacian pyramid elements:
x3 =13 + F3 x4
x2=12+F2x3
x| =LI +Fl x2

Slide credit: B. Freeman and A. Torralba

Laplacian pyramid reconstruction
algorithm: recover x, fromlL,L,, L;
and g,

|

E—E “—%'
| R

Slide credit: B. Freeman and A. Torralba




512 256 128 64 32 16 8

Slide credit: B. Freeman and A. Torralba

ID Laplacian pyramid matrix,
for [1 4 6 4 1] low-pass filter

high frequencies

mid-band
frequencies

low frequencies I

Slide credit: B. Freeman and A. Torralba

Laplacian pyramid applications

» Texture synthesis
* Image compression

* Noise removal

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31,NO. 4, APRIL 1983

The Laplacian Pyramid as a Compact Image Code

PETER J. BURT, mevger, e, AND EDWARD H. ADELSON

Slide credit: B. Freeman and A. Torralba

Image blending

Slide credit: B. Freeman and A. Torralba




Image blending

* Build Laplacian pyramid for both images: LA, LB
* Build Gaussian pyramid for mask: G

¢ Build a combined Laplacian pyramid:
L() = G() LAG) + (1-G())) LB()

* Collapse L to obtain the blended image

Szeliski, Computer Vision, 2010

(0] ®)

Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) © 1983 ACM.
‘The first three rows show the high, medium, and low frequency parts of the Laplacian pyramid Slide credit:
(taken from levels 0, 2, and 4). The left and middle columns show the original apple and :

orange images weighted by the smooth interpolation functions, while the right column shows B. : r’ere m?llll% - R N
the averaeed contributions. - torraiba Slide credit: B. Freeman and A. Torralba
Image pyramids Wavelet/QMF pyramid
* Subband coding
* Wavelet or QMF (quadrature mirror filter) pyramid
. provides some splitting of the spatial frequency bands
according to orientation (although in a somewhat
* limited way).
* Wavelet/QMF pyramid * Image is decomposed into a set of band-limited
. components (subbands).

* Original image can be reconstructed without error by
reassemblying these subbands.

Slide credit: B. Freeman and A. Torralba




2D Haar transform

. 1
Basic elements:
1

Low pass

High pass
vertical

High pass
horizontal

High pass
diagonal

Slide credit: B. Freeman and A. Torralba

2D Haar transform

i & & @

5 & 8 3 & &

Sketch of the Fourier transform
|

Horizontal low pass,
Vertical low-pass

Horizontal high
pass, vertical
| low-pass

Horizontal low
pass, vertical
"high-pass

Horizontal

| high pass,
vertical high
pass

Slide crc(ht: B. Freeman and A. Torralba
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Simoncelli and Adelson,

in “Subband coding”, Kluwer, 1990.
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Pyramid cascade
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Figure 4.12: Idealized diagram of the partition of the frequency plane
resulting from a 4-level pyramid cascade of separable 2-band filters. The
top plot represents the frequency spectrum of the original image, with axes
ranging from —r to 7. This is divided into four subbands at the next

subdivided further.

level. On each subsequent level. the lowpass subband9outlined in bold) is

Slide credit: B. Freeman and A. Torralba

Same number of pixels!

Wavelet/QMF representation

Slide credit: B. Freeman and A. Torralba




Image pyramids

Steerable pyramid

Slide credit: B. Freeman and A. Torralba

Steerable Pyramid

Low pass

residual

2 Level decomposition
of white circle example:

( )) Subbands

* The Steerable pyramid provides a clean separation of the image
into different scales and orientations.

Images from: http://www.cis.upenn.edu/~eero/steerpyr.ntml Slide credit: B. Freeman and A. Torralba

Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable
Laplacian Pyramid as shown below.

Decomposition Reconstruction

Bqleo)

B

Bies)

21 |

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html Slide credit: B. Freeman and A. Torralba

Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable
Laplacian Pyramid as shown below

Decomposition Reconstruction

Byle)

B

B S Bie)
. et ue ]

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html Slide credit: B. Freeman and A. Torralba




Steerable Pyramid

But we need to get rid of
the corner regions before
starting the recursive
circular filtering

Figure 1. Idealized illustration of the spectral

decomposition performed by a steerable pyra-

mid with & = 4. Frequency axes range from

7 to . The basis functions are related by

translations, dilations and rotations (except for

the initial highpass subband and the final low-

pass subband). For example, the shaded region

Simoncelli and Freeman, corresponds to the spectral support of a single

ICIP 1995 (vertically-oriented) subband.

Slide credit: B. Freeman and A. Torralba

Filter Kernels

Coarsest scaleu

Image

’
S

Finest scale

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

There is also a high pass residual...

Slide credit: B. Freeman and A. Torralba

Image pyramids

¢ Gaussian

* Laplacian

¢ Wavelet/QMF

» Steerable pyramid

Slide credit: B. Freeman and A. Torralba

Image pyramids

Gaussian / y Progressively qu.rred and .
y subsampled versions of the image.
,' Adds scale invariance to fixed-size
2 algorithms.
Laplacian
Wavelet/QMF

Steerable pyramid

Slide credit: B. Freeman and A. Torralba




Image pyramids

7 \ =\
. y y \  Progressively blurred and
Gaussian /// . subsampled versions of the image.
- Adds scale invariance to fixed-size
algorithms.

Laplacian Shows. the lnformatlon added in
Gaussian pyramid at each spatial
scale. Useful for noise reduction &
coding.

Woavelet/ QMF

Steerable pyramid

Slide credit: B. Freeman and A. Torralba

Image pyramids

f y \ // \ Progressively blurred and
Gaussian ///// \ "’"‘ subsampled versions of the image.
7 V Adds scale invariance to fixed-size

'S algorithms.

\,,% %

Laplacian Shows. the |nforrnaﬂon added in
Gaussian pyramid at each spatial
scale. Useful for noise reduction &
coding.
Wavelet/QMF Bandpassed representation, complete, but with

aliasing and some non-oriented subbands.

Steerable pyramid

Slide credit: B. Freeman and A. Torralba

Image pyramids

/) \ // =\ Progressively blurred and
/ ‘.’ subsampled versions of the image.

Gaussian

Adds scale invariance to fixed-size

: é@ algorithms.
-
F

.
Shows the information added in
Gaussian pyramid at each spatial
scale. Useful for noise reduction &
coding.

Laplacian

Bandpassed representation, complete, but with
Wavelet/ QMF andp P N, complete,
aliasing and some non-oriented subbands.
Shows components at each scale
and orientation separately. Non-

YIS*=

aliased subbands. Good for
texture and feature analysis. But
l overcomplete and with HF

residual.

Slide credit: B. Freeman and A. Torralba

Steerable pyramid

Schematic pictures of each matrix
transform

Shown for |-d images

The matrices for 2-d images are the same idea, but more
complicated, to account for vertical, as well as horizontal,
neighbor relationships.

transformed image

\F’ — (]_> «—— Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

Slide credit: B. Freeman and A. Torralba
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Fourier transform Gaussian pyramid

imaginary

i

real

A

color key Gaussian pixel image
Fourier Fourier bases pixel domain pyramid
transform are global: each  image
transform
coefficient |
depends on all Overcomplete representation.
pixel locations. Low-pass filters, sampled
Slide credit: B. Freeman and A. Torralba Slide credit: B. Freeman and A. Torralba appropriately for their blur.

Wavelet (QMF) transform

Wavelet
pyramid

e

Ortho-normal
transform (like
Fourier transform),
but with localized
basis functions.

Laplacian
pyramid

pixel image
pixel image

Overcomplete representation.
Transformed pixels represent
Slide credit: B. Freeman and A. Torralba bandPassed image information- Slide credit: B. Freeman and A. Torralba




rr—

Multiple T
orientations at / i
— onescle | [T — k
Steerable | T pixel image
pyramid e s
Multiple —_—

orientations at -

the next scale —_— Over—complete

. ——{ representation,
{ — but non-aliased

subbands.

Slide: B. Freeman and A. Torralba

the next scale..

Why use image pyramids?

¢ Handle real-world size variations with a constant-size vision

algorithm.
* Remove noise
* Analyze texture
* Recognize objects

* Label image features

* Image priors can be specified naturally in terms of wavelet

pyramids.

Slide credit: B. Freeman and A. Torralba

Reading Assignment #3 - Hybrid Images

* A. Oliva, A. Torralba, P.G. Schyns (2006). Hybrid
Images. ACM Transactions on Graphics, ACM
SIGGRAPH, 25-3, 527-530.

* Due on 20t of December

@© 2006 Aude Oliva and Antonio Torralba




