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Review – Signals and Images	



•  A signal is composed of low and high frequency 
components	



low frequency components: smooth /���
	

 	

 	

  piecewise smooth	



high frequency components: oscillatory	



Neighboring pixels have similar brightness values	



Neighboring pixels have different brightness values	



You’re within a region	



You’re either at the edges or noise points	





Review - Low-pass, Band-pass, High-
pass filters	



low-pass:	



High-pass / band-pass:	



Slide credit: A. Efros 



Edge detection	



•  Goal:  Identify sudden changes 
(discontinuities) in an image	


–  Intuitively, most semantic and 

shape information from the image 
can be encoded in the edges	



–  More compact than pixels���
	



•  Ideal: artist’s line drawing (but 
artist is also using object-level 
knowledge)	



Slide credit: D. Lowe 



Why do we care about edges?	



•  Extract information, recognize 
objects	



•  Recover geometry and viewpoint	



Vanishing	


 point	



Vanishing	


 line	



Vanishing	


 point	



 Vertical vanishing	


 point	



(at infinity)	



Source: J. Hays 



Closeup of edges	



Slide credit: D. Hoiem 



Closeup of edges	



Slide credit: D. Hoiem 



Closeup of edges	



Slide credit: D. Hoiem 



Closeup of edges	



Slide credit: D. Hoiem 



What causes an edge?	



Depth discontinuity: 
object boundary	



Change in surface 
orientation: shape	



Cast shadows	



Reflectance change: 
appearance 
information, texture	



Slide credit: K. Grauman 



Characterizing edges	



•  An edge is a place of rapid change in the image intensity 
function	



image	


intensity function���

(along horizontal scanline)	

 first derivative	



edges correspond to���
extrema of derivative	



Slide credit: K. Grauman 



Derivatives with convolution	



For 2D function f(x,y), the partial derivative is:	



	



	



	


	



For discrete data, we can approximate using finite differences:	



To implement above as convolution, what would be the 
associated filter?	
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Slide credit: K. Grauman 



Partial derivatives of an image	
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Which shows changes with respect to x?	


Slide credit: K. Grauman 



Assorted finite difference filters	



>> My = fspecial(‘sobel’); 
>> outim = imfilter(double(im), My);  
>> imagesc(outim); 
>> colormap gray; 

Slide credit: K. Grauman 



The gradient points in the direction of most rapid increase in 
intensity���
���
���
	



Image gradient	



•  The gradient of an image: 	



•   	



The gradient direction is given by	



Slide credit: S. Seitz 

The edge strength is given by the gradient magnitude	



•  How does this direction relate to the direction of the edge?	





Original Image	



Slide credit: K. Grauman 



Gradient magnitude image	



Slide credit: K. Grauman 



Thresholding gradient ���
with a lower threshold	



Slide credit: K. Grauman 



Thresholding gradient ���
with a higher threshold	



Slide credit: K. Grauman 



Intensity profile	



Slide credit: D. Hoiem 



With a little Gaussian noise	



Gradient	



Slide credit: D. Hoiem 



Effects of noise	


•  Consider a single row or column of the image	



–  Plotting intensity as a function of position gives a signal	



Where is the edge?	


Slide credit: S. Seitz 



Effects of noise	



•  Difference filters respond strongly to noise	


–  Image noise results in pixels that look very different from their neighbors	


–  Generally, the larger the noise the stronger the response	



•  What can we do about it?	



Slide credit: D. Forsyth 



Solution: smooth first	



•  To find edges, look for peaks in	
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Slide credit: S. Seitz 



Smoothing with a Gaussian	



Recall: parameter σ is the “scale” / “width” / “spread” of the 
Gaussian kernel, and controls the amount of smoothing.	



… 

Slide credit: K. Grauman 



Effect of σ on derivatives 	



The apparent structures differ depending on Gaussian’s 
scale parameter.	


	



Larger values: larger scale edges detected	


Smaller values: finer features detected	



σ = 1 pixel	

 σ = 3 pixels	



Slide credit: K. Grauman 



So, what scale to choose?	



It depends what we’re looking for.	



Slide credit: K. Grauman 



Smoothing and Edge Detection	



•  While eliminating noise via smoothing, we also lose some of the 
(important) image details.	


–  Fine details	


–  Image edges	


–  etc.	



•  What can we do to preserve such details?	


–  Use edge information during denoising!	


–  This requires a definition for image edges. 	


	


	



•  Edge preserving image smoothing (Next week’s topic!)	



Chicken-and-egg dilemma!	





•  Differentiation is convolution, and convolution is associative: ���
	



•  This saves us one operation:	

 g
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dfgf

dx
d ∗=∗ )(

Derivative theorem of convolution	
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Slide credit: S. Seitz 



Derivative of Gaussian filter	



x-direction	

 y-direction	



Slide credit: S. Lazebnik 

* [1 -1] =  



Derivative of Gaussian filter	



•  Which one finds horizontal/vertical edges?	



x-direction	

 y-direction	



Slide credit: S. Lazebnik 



Smoothing vs. derivative filters	



•  Smoothing filters	


–  Gaussian: remove “high-frequency” components; ���

“low-pass” filter	


–  Can the values of a smoothing filter be negative?	


–  What should the values sum to?	



•  One: constant regions are not affected by the filter	


	



���
	



•  Derivative filters	


–  Derivatives of Gaussian	


–  Can the values of a derivative filter be negative?	


–  What should the values sum to? 	



•  Zero: no response in constant regions	


–  High absolute value at points of high contrast	



	

 Slide credit: S. Lazebnik 



Reading Assignment #4 	



•  One of the 60 seminal articles appeared in the journal 
Philosophical Transactions, which is made available 
online due to the celebration of 350th birthday of the 
Royal Society in 2010. ���
[http://trailblazing.royalsociety.org]	



•  Due on 27th of December	



doi: 10.1098/rspb.1980.0020
, 187-217207 1980 Proc. R. Soc. Lond. B

 
D. Marr and E. Hildreth
 
Theory of Edge Detection
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http://rspb.royalsocietypublishing.org/content/207/1167/187#related-ur

 Article cited in:

Email alerting service  herethe box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in

 http://rspb.royalsocietypublishing.org/subscriptions
 go to: Proc. R. Soc. Lond. BTo subscribe to 
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Laplacian of Gaussian	


Consider  	



Laplacian of Gaussian 
operator 

Where is the edge?  	

 Zero-crossings of bottom graph	


Slide credit: K. Grauman 



2D edge detection filters	



•   The Laplacian operator:	



Laplacian of Gaussian	



Gaussian	

 derivative of Gaussian	



Slide credit: K. Grauman 



Laplacian of Gaussian	



 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

original image	



Source: D. Marr and E. Hildreth (1980) 



Laplacian of Gaussian	



 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

convolution with	



Source: D. Marr and E. Hildreth (1980) 



Laplacian of Gaussian	



 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

convolution with	



(pos. values – white, neg. values – black)	



Source: D. Marr and E. Hildreth (1980) 



Laplacian of Gaussian	



 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

zero-crossings	



Source: D. Marr and E. Hildreth (1980) 



Designing an edge detector	



•  Criteria for a good edge detector:	


–  Good detection: the optimal detector should find all real edges, 

ignoring noise or other artifacts	


–  Good localization	



•  the edges detected must be as close as possible to the true edges	


•  the detector must return one point only for each true edge point	



•  Cues of edge detection	


–  Differences in color, intensity, or texture across the boundary	


–  Continuity and closure	


–  High-level knowledge	



Slide credit: L. Fei-Fei 



The Canny edge detector	



original image (Lena)	



Slide credit: K. Grauman 



The Canny edge detector	



norm of the gradient	

thresholding	



Slide credit: K. Grauman 



The Canny edge detector	



thresholding	



How to turn 
these thick 
regions of the 
gradient into 
curves?	



Slide credit: K. Grauman 



Non-maximum suppression	



Check if pixel is local maximum along gradient direction, 	


select single max across width of the edge	



–  requires checking interpolated pixels p and r	



Slide credit: K. Grauman 



The Canny Edge Detector	



thinning	


(non-maximum suppression)	



Problem: pixels along 
this edge didn’t survive ���
the thresholding	



Slide credit: K. Grauman 



Hysteresis thresholding	



•  Threshold at low/high levels to get weak/strong edge pixels	



•  Do connected components, starting from strong edge pixels	



Slide credit: J. Hays 



Hysteresis thresholding	



•  Check that maximum value of gradient value is 
sufficiently large	


–  drop-outs?  use hysteresis	



•  use a high threshold to start edge curves and a low threshold to 
continue them.	



Slide credit: S. Seitz 



Hysteresis thresholding	



original image	



high threshold	


(strong edges)	



low threshold	


(weak edges)	



hysteresis threshold	



Slide credit: L. Fei-Fei 



original image 

high threshold	


(strong edges)	



low threshold	


(weak edges)	



hysteresis threshold	



Slide credit: L. Fei-Fei 

Hysteresis thresholding	





Recap: Canny edge detector	



1.  Filter image with derivative of Gaussian 	


2.  Find magnitude and orientation of gradient	


3.  Non-maximum suppression:	



–  Thin wide “ridges” down to single pixel width	


4.  Linking and thresholding (hysteresis):	



–  Define two thresholds: low and high	


–  Use the high threshold to start edge curves and the 

low threshold to continue them���
	



•  MATLAB:   edge(image, ‘canny’); 

Slide credit: D. Lowe, L. Fei-Fei 



Effect of σ (Gaussian kernel spread/size)	



Canny with 	

 Canny with 	

original 	



The choice of σ depends on desired behavior	


•  large σ detects large scale edges	



•  small σ detects fine features	



Slide credit: S. Seitz 



Background	

 Texture	

 Shadows	



Low-level edges vs. perceived contours	



Slide credit: K. Grauman 



Edge detection is just the 
beginning…	



•  Berkeley segmentation database: ���
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/	



image	

 human segmentation	

 gradient magnitude	



Source: S. Lazebnik	





[D. Martin et al. 
PAMI 2004]	



Human-marked segment boundaries	



Learn from 
humans which 
combination of 
features is most 
indicative of a 
“good” contour?	



Slide credit: K. Grauman 



Edges vs. Boundaries	



•  Edges	


–  abrupt changes in the intensity	


–  discontinuities in intensity values	


–  a local entity	



•  Edge detection may result in	


–  Breaks in the edges due to non-uniform illumination	


–  Spurious edges	



•   Boundaries	


–  related to regions	


–  a global entity	


–  assemble of meaningful edge points 	



•  Boundary detection requires grouping or fitting	





Fitting	



•  Want to associate a model with observed features	



[Fig from Marszalek & Schmid, 2007] 

 
 

For example, the model could be a line, a circle, or an arbitrary 
shape.	



Slide credit: K. Grauman 



Fitting: Main idea	



•  Choose a parametric model to represent a set of features	



•  Membership criterion is not local	


–  Can’t tell whether a point belongs to a given model just by looking 

at that point	



•  Three main questions:	


–  What model represents this set of features best?	


–  Which of several model instances gets which feature?	


–  How many model instances are there?	



•  Computational complexity is important	


–  It is infeasible to examine every possible set of parameters and 

every possible combination of features	



Slide credit: L. Lazebnik 



Example: Line fitting	



•  Why fit lines?  	


–  Many objects characterized by presence of straight lines	



Wait, why aren’t we done just by running edge detection?	



Slide credit: K. Grauman 



•  Extra edge points (clutter), 
multiple models:	



–  which points go with which line, 
if any?	



•  Only some parts of each line 
detected, and some parts are 
missing:	



–  how to find a line that bridges 
missing evidence?	



•  Noise in measured edge 
points, orientations:	



–  how to detect true underlying 
parameters?	



Difficulty of line fitting	



Slide credit: K. Grauman 



Voting	



•  It’s not feasible to check all combinations of features by fitting 
a model to each possible subset.	



•  Voting is a general technique where we let the features vote 
for all models that are compatible with it.	



–  Cycle through features, cast votes for model parameters.	



–  Look for model parameters that receive a lot of votes.	



•  Noise & clutter features will cast votes too, but typically their 
votes should be inconsistent with the majority of “good” 
features.	



Slide credit: K. Grauman 



Fitting lines: Hough transform	



•  Given points that belong to a line, what is 
the line?	



•  How many lines are there?	



•  Which points belong to which lines?	



•  Hough Transform is a voting 
technique that can be used to answer all of 
these questions.	


Main idea: 	


1.  Record vote for each possible line on 

which each edge point lies.	


2.  Look for lines that get many votes.	



Slide credit: K. Grauman 



Finding lines in an image: Hough space	



Connection between image (x,y) and Hough (m,b) spaces	


–  A line in the image corresponds to a point in Hough space	


–  To go from image space to Hough space:	



•  given a set of points (x,y), find all (m,b) such that y = mx + b	



x 

y 

m 

b 

m0 

b0 

image space	

 Hough (parameter) space	



Slide credit: S. Seitz 



Finding lines in an image: Hough space	



Connection between image (x,y) and Hough (m,b) spaces	


–  A line in the image corresponds to a point in Hough space	


–  To go from image space to Hough space:	



•  given a set of points (x,y), find all (m,b) such that y = mx + b	


–  What does a point (x0, y0) in the image space map to?	



x 

y 

m 

b 

–  Answer:  the solutions of b = -x0m + y0	



–  this is a line in Hough space	



x0 

y0 

image space	

 Hough (parameter) space	



Slide credit: S. Seitz 



Finding lines in an image: Hough space	



What are the line parameters for the line that contains both ���
(x0, y0) and (x1, y1)?	


–  It is the intersection of the lines b = –x0m + y0 and ���

b = –x1m + y1 	



	



x 

y 

m 

b 

x0 

y0 

b = –x1m + y1 

(x0, y0) 
(x1, y1) 

image space	

 Hough (parameter) space	



Slide credit: K. Grauman 



How can we use this to find the most likely parameters (m,b) for 
the most prominent line in the image space?	



•  Let each edge point in image space vote for a set of possible parameters in 
Hough space	



•  Accumulate votes in discrete set of bins; parameters with the most votes 
indicate line in image space.	



	



x 

y 

m 

b 

Finding lines in an image: Hough space	



image space	

 Hough (parameter) space	



Slide credit: K. Grauman 



Polar representation for lines	



    : perpendicular distance 
from line to origin	



   : angle the perpendicular 
makes with the x-axis	



	



	


Point in image space à sinusoid segment in Hough space	



dyx =− θθ sincos

d

θ

[0,0]	



d
θ

x

y

Issues with usual (m,b) parameter space: can take on infinite 
values, undefined for vertical lines.	



Image columns	



Im
ag

e 
ro

w
s	



Slide credit: K. Grauman 



Hough transform algorithm	


	



Using the polar parameterization:	



	



Basic Hough transform algorithm	


1.  Initialize H[d, Θ]=0	


2.  for each edge point I[x,y] in the image	



    for Θ = [Θmin  to  Θmax ]  // some quantization	



    H[d, Θ] += 1	


3.  Find the value(s) of (d, Θ) where H[d, Θ] is maximum	


4.  The detected line in the image is given by	



H: accumulator array (votes)	



d	



Θ	



Time complexity (in terms of number of votes per pt)?	



dyx =− θθ sincos

Slide credit: S. Seitz 

θθ sincos yxd −=

θθ sincos yxd −=



Original image	

 Canny edges	



Vote space and top peaks	



Slide credit: K. Grauman 

Hough transform algorithm	





Showing longest segments found	


Slide credit: K. Grauman 

Hough transform algorithm	





Impact of noise on Hough	



Image space	


edge coordinates	



Votes	


Θ	

x	



y	

 d	



What difficulty does this present for an implementation?	



Slide credit: K. Grauman 



Image space	


edge coordinates	



Votes	



Here, everything appears to be “noise”, or random edge points, 
but we still see peaks in the vote space.	



Impact of noise on Hough	



Slide credit: K. Grauman 



Hough transform for circles	



•  For a fixed radius r, unknown gradient direction	



•  Circle: center (a,b) and radius r	



	

 222 )()( rbyax ii =−+−

Image space	

 Hough space	

 a

b

Slide credit: K. Grauman 



Hough transform for circles	



•  For a fixed radius r, unknown gradient direction	



•  Circle: center (a,b) and radius r	



	

 222 )()( rbyax ii =−+−

Image space	

 Hough space	



Intersection: 
most votes 
for center 
occur here.	



Slide credit: K. Grauman 



Hough transform for circles	



•  For an unknown radius r, unknown gradient direction	



•  Circle: center (a,b) and radius r	



	

 222 )()( rbyax ii =−+−

Hough space	

Image space	



b	



a	



r	



?	



Slide credit: K. Grauman 



Hough transform for circles	



•  For an unknown radius r, unknown gradient direction	



•  Circle: center (a,b) and radius r	



	

 222 )()( rbyax ii =−+−

Hough space	

Image space	



b	



a	



r	



Slide credit: K. Grauman 



Hough transform for circles	



•  For an unknown radius r, known gradient direction	



•  Circle: center (a,b) and radius r	



	

 222 )()( rbyax ii =−+−

Hough space	

Image space	



θ	



x	



Slide credit: K. Grauman 



Hough transform for circles	



For every edge pixel (x,y) : 	


	

For each possible radius value r:	


	

    For each possible gradient direction θ: 	


	

 	

// or use estimated gradient at (x,y)	


	

    	

 	

a = x – r cos(θ) // column	


	

    	

 	

b = y + r sin(θ)  // row	


	

    	

 	

H[a,b,r] += 1	



	

end	


end	


	

 	

	


	



    Check out online demo : http://www.markschulze.net/java/hough/	


 	



Time complexity per edgel?	



Slide credit: K. Grauman 



Original	

 Edges	



Example: detecting circles with Hough	



Votes: Penny	



Note: a different Hough transform (with separate accumulators) ���
was used for each circle radius (quarters vs. penny).	


	



Slide credit: K. Grauman 



Original	

 Edges	



Example: detecting circles with Hough	



Votes: Quarter	

Combined detections	



Coin finding sample images from: Vivek Kwatra	



Slide credit: K. Grauman 



Example: iris detection	



Hemerson Pistori and Eduardo Rocha Costa http://rsbweb.nih.gov/ij/plugins/hough-circles.html	



Gradient+threshold	

 Hough space 
(fixed radius)	



Max detections	



Slide credit: K. Grauman 



Voting: practical tips	



•  Minimize irrelevant tokens first	



•  Choose a good grid / discretization	



	



•  Vote for neighbors, also (smoothing in accumulator array)	



•  Use direction of edge to reduce parameters by 1	



•  To read back which points voted for “winning” peaks, keep tags 
on the votes.	



Too coarse	

Too fine	

 ?	



Slide credit: K. Grauman 



Hough transform: pros and cons	



Pros	



•  All points are processed independently, so can cope with occlusion, gaps	



•  Some robustness to noise: noise points unlikely to contribute consistently 
to any single bin	



•  Can detect multiple instances of a model in a single pass	



Cons	



•  Complexity of search time increases exponentially with the number of 
model parameters 	



•  Non-target shapes can produce spurious peaks in parameter space	



•  Quantization: can be tricky to pick a good grid size	



	



Slide credit: K. Grauman 



Generalized Hough Transform	



Model image	

 Vote space	

Novel image	



x	

x	


x	



x	


x	



Now suppose those colors encode gradient directions…	



•  What if we want to detect arbitrary shapes?	



Intuition:	



Ref. point	



Displacement 
vectors	



Slide credit: K. Grauman 



•  Define a model shape by its boundary points and a 
reference point.	



[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]	



x

 	


	



a	



p1	



θ	


p2	



θ	



At each boundary point, 
compute displacement 
vector: r = a – pi.	


	


Store these vectors in a 
table indexed by gradient 
orientation θ.	



Offline procedure: 	



Model shape	



θ	



θ	



…

…	



…

Slide credit: K. Grauman 

Generalized Hough Transform	





 	


	



p1	



θ	

 θ	



For each edge point:	



•  Use its gradient orientation θ 
to index into stored table 	



•  Use retrieved r vectors to vote 
for reference point	



Detection procedure: 	



Assuming translation is the only transformation here, 
i.e., orientation and scale are fixed.	



x

θ	

 θ	



Novel image	



θ	



θ	



…

…	



…

θ	



xx

xx

Slide credit: K. Grauman 

Generalized Hough Transform	





Generalized Hough for object detection	



•  Instead of indexing displacements by gradient orientation, ���
index by matched local patterns.	



B. Leibe, A. Leonardis, and B. Schiele, 
Combined Object Categorization and Segmentation with an Implicit Shape Model, ���
ECCV Workshop on Statistical Learning in Computer Vision 2004	



training image	



“visual codeword” with���
displacement vectors	



Slide credit: S. Lazebnik 



•  Instead of indexing displacements by gradient orientation, index 
by “visual codeword”	



test image	



Slide credit: S. Lazebnik 

B. Leibe, A. Leonardis, and B. Schiele, 
Combined Object Categorization and Segmentation with an Implicit Shape Model, ���
ECCV Workshop on Statistical Learning in Computer Vision 2004	



Generalized Hough for object detection	




