image segmentation

- Goal: identify groups of pixels that go together

The goals of segmentation

- Separate image into coherent “objects”

- Group together similar-looking pixels for efficiency of further processing

“superpixels”

Slide credits: S. Lazebnik
The goals of segmentation

- Separate image into coherent “objects”
- Group together similar-looking pixels for efficiency of further processing
 “superpixels”

What is segmentation?

- Clustering image elements that “belong together”
 - Partitioning
 - Divide into regions/sequences with coherent internal properties
 - Grouping
 - Identify sets of coherent tokens in image

Segmentation

- Compact representation for image data in terms of a set of components
- Components share “common” visual properties
- Properties can be defined at different level of abstractions

Segmentation is a global process

What are the occluded numbers?

Slide credits: Fei-Fei Li
Occlusion is an important cue in grouping.

What are the occluded numbers?

Segmentation is a global process

... but not too global

Groupings by Invisible Completions

* Images from Steve Lehar’s Gestalt papers
Perceptual organization

“...the processes by which the bits and pieces of visual information that are available in the retinal image are structured into the larger units of perceived objects and their interrelations”

Stephen E. Palmer, Vision Science, 1999

Gestalt Psychology

- German: Gestalt - "form" or "whole"
- Berlin School, early 20th century
 - Kurt Koffka, Max Wertheimer, and Wolfgang Köhler
- Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

“I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have “327”? No. I have sky, house, and trees.”

Max Wertheimer (1880-1943)
Gestalt Psychology

Paradigm examples:
- Parallelism
- Symmetry
- Continuity
- Closure
- Familiarity

Similarity:
- Not grouped
- Proximity
- Similarity
- Common Fate
- Common Region

Slide credit: B. Freeman and A. Torralba
Familiarity

Influences of grouping

Grouping influences other perceptual mechanisms such as lightness perception

Emergence

Gestalt cues

- Good intuition and basic principles for grouping
- Basis for many ideas in segmentation and occlusion reasoning
- Some (e.g., symmetry) are difficult to implement in practice

http://en.wikipedia.org/wiki/Gestalt_psychology
Segmentation methods

- Segment foreground from background
- Histogram-based segmentation
- Segmentation as clustering
 - K-means clustering
 - Mean-shift segmentation
- Graph-theoretic segmentation
 - Min cut
 - Normalized cuts
- Interactive segmentation

A simple segmentation technique:

Background Subtraction

- If we know what the background looks like, it is easy to identify “interesting bits”

- Applications
 - Person in an office
 - Tracking cars on a road
 - surveillance

- Approach:
 - use a moving average to estimate background image
 - subtract from current frame
 - large absolute values are interesting pixels
 - trick: use morphological operations to clean up pixels

Two different background removal models

- **Background estimate**
 - Average over frames

- **Foreground estimate**
 - EM background estimate
 - low thresh
 - high thresh

- **Foreground estimate**
 - EM
Segmentation methods
- Segment foreground from background
- Histogram-based segmentation
- Segmentation as clustering
 - K-means clustering
 - Mean-shift segmentation
- Graph-theoretic segmentation
 - Min cut
 - Normalized cuts
- Interactive segmentation

Image segmentation: toy example
- These intensities define the three groups.
- We could label every pixel in the image according to which of these primary intensities it is.
 - i.e., segment the image based on the intensity feature.
- What if the image isn’t quite so simple?

Now how to determine the three main intensities that define our groups?
- We need to **cluster**.
• Goal: choose three “centers” as the representative intensities, and label every pixel according to which of these centers it is nearest to.
• Best cluster centers are those that minimize SSD between all points and their nearest cluster center c_i:
\[
\sum_{\text{clusters } i} \sum_{\text{points } p \text{ in cluster } i} \left\| p - c_i \right\|^2
\]

Slide credit: K. Grauman

Segmentation methods
- Segment foreground from background
- Histogram-based segmentation
- Segmentation as clustering
 - K-means clustering
 - Mean-shift segmentation
- Graph-theoretic segmentation
 - Min cut
 - Normalized cuts
- Interactive segmentation

Slide credit: K. Grauman

Clustering
- With this objective, it is a “chicken and egg” problem:
 - If we knew the **cluster centers**, we could allocate points to groups by assigning each to its closest center.
 - If we knew the **group memberships**, we could get the centers by computing the mean per group.

Slide credit: K. Grauman

Segmentation as clustering
- Cluster together (pixels, tokens, etc.) that belong together...
- Agglomerative clustering
 - attach closest to cluster it is closest to – repeat
- Divisive clustering
 - split cluster along best boundary – repeat
- Dendrograms
 - yield a picture of output as clustering process continues

Slide credit: B. Freeman
Greedy Clustering Algorithms

Algorithm 15.3: Agglomerative clustering, or clustering by merging

1. Make each point a separate cluster
2. Until the clustering is satisfactory
 Merge the two clusters with the smallest inter-cluster distance
3. end

Algorithm 15.4: divisive clustering, or clustering by splitting

1. Construct a single cluster containing all points
2. Until the clustering is satisfactory
 Split the cluster that yields the two components with the largest inter-cluster distance
3. end

Agglomerative clustering

1. Say "Every point is its own cluster"
2. Find "most similar" pair of clusters

Agglomerative clustering

1. Say "Every point is its own cluster"
2. Find "most similar" pair of clusters
3. Merge it into a parent cluster
Agglomerative clustering

1. Say "Every point is its own cluster"
2. Find "most similar" pair of clusters
3. Merge it into a parent cluster
4. Repeat

Common similarity/distance measures

- **P-norms**
 - City Block (L1)
 - Euclidean (L2)
 - L-infinity

\[
\|\mathbf{x}\|_p := \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}
\]

\[
\|\mathbf{x}\|_1 := \sum_{i=1}^{n} |x_i|
\]

\[
\|\mathbf{x}\|_\infty := \max \{ |x_1|, \ldots, |x_n| \}
\]

- **Mahalanobis**
 - Scaled Euclidean

\[
d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{N} \frac{(x_i - \bar{y})^2}{\sigma_i^2}}
\]

- **Cosine distance**

\[
similarity = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}
\]

Dendograms

Dendogram formed by agglomerative clustering using single-link clustering.

Data set

1 2 3 4 5 6

distance

Slide credit: D. Hoiem

Slide credit: D. Hoiem
Agglomerative clustering

How to define cluster similarity?
- Average distance between points, maximum distance, minimum distance
- Distance between means or medoids

How many clusters?
- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or based on distance between merges

Segmentation methods

- Segment foreground from background
- Histogram-based segmentation
- Segmentation as clustering
 - K-means clustering
 - Mean-shift segmentation
- Graph-Theoretic Segmentation
 - Min cut
 - Normalized cuts

Agglomerative clustering

Good
- Simple to implement, widespread application
- Clusters have adaptive shapes
- Provides a hierarchy of clusters

Bad
- May have imbalanced clusters
- Still have to choose number of clusters or threshold
- Need to use an “ultrametric” to get a meaningful hierarchy

K-means clustering

Properties
- Will always converge to some solution
- Can be a “local minimum”
 - does not always find the global minimum of objective function:

\[
\sum_{i} \sum_{p \text{ in cluster } i} \|p - c_i\|^2
\]
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*

2. Randomly guess k cluster center locations

3. Each datapoint finds out which center it's closest to. (Thus each center "owns" a set of datapoints)

4. Each center finds the centroid of the points it owns
K-means
1. Ask user how many clusters they'd like. (e.g., k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns...
5. ...and jumps there
6. ...Repeat until terminated!

K-means clustering
- Java demo:
 http://kovan.ceng.metu.edu.tr/~maya/kmeans/index.html
 http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

K-means: pros and cons
Pros
- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

Cons/issues
- Setting k?
- Sensitive to initial centers
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed

An aside: Smoothing out cluster assignments
- Assigning a cluster label per pixel may yield outliers:
 - How to ensure they are spatially smooth?
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on intensity similarity

Feature space: intensity value (1-d)

Slide credit: K Grauman

Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on color similarity

Feature space: color value (3-d)

Slide credit: K Grauman

Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on intensity similarity

Clusters based on intensity similarity don’t have to be spatially coherent.

Slide credit: K Grauman
Segmentation as clustering

K-means clustering using intensity alone and color alone

Slide credit: B. Freeman

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on intensity+position similarity

Both regions are black, but if we also include position (x,y), then we could group the two into distinct segments; way to encode both similarity & proximity.

Slide credit: K Grauman
Segmentation as clustering

- Color, brightness, position alone are not enough to distinguish all regions…

Segmentation with texture features

- Find “textons” by clustering vectors of filter bank outputs
- Describe texture in a window based on texton histogram

Feature space: filter bank responses (e.g., 24-d)

Texture representation example

Windows with primarily horizontal edges
Windows with small gradient in both directions
Windows with primarily vertical edges
Both

Statistics to summarize patterns in small windows
Image segmentation example

- Texture-based regions
- Color-based regions

Pixel properties vs. neighborhood properties

These look very similar in terms of their color distributions (histograms).

How would their texture distributions compare?

Material classification example

For an image of a single texture, we can classify it according to its global (image-wide) texton histogram.

Material classification example

Nearest neighbor classification: label the input according to the nearest known example’s label.

\[
\chi^2(h_i, h_j) = \frac{1}{2} \sum_{k=1}^{K} \frac{[h_i(k) - h_j(k)]^2}{h_i(k) + h_j(k)}
\]

Figure from Varma & Zisserman, IJCV 2005

Material classification example

Manik Varma
http://www.robots.ox.ac.uk/~vgg/research/texclass/with.html
Reading Assignment #5

- E. Borenstein and S. Ullman, Class-specific, top-down segmentation, ECCV 2002
- Due on 3rd of January

Segmentation methods

- Segment foreground from background
- Histogram-based segmentation
- Segmentation as clustering
 - K-means clustering
 - Mean-shift segmentation
- Graph-theoretic segmentation
 - Min cut
 - Normalized cuts
- Interactive segmentation

Next week