BBM 413
Fundamentals of Image Processing

Erkut Erdem
Dept. of Computer Engineering
Hacettepe University

Introduction
Today

• **Introduction**
 – About the class
 – Organization of this course

• **What is image processing?**
 – What does it mean, to see?
 – Vision as a computational problem
 – Sample image processing problems and applications
Today

• **Introduction**
 – About the class
 – Organization of this course

• **What is image processing?**
 – What does it mean, to see?
 – Vision as a computational problem
 – Sample image processing problems and applications
About this course

• This course is an advanced level undergraduate course about the fundamentals of image processing.

• **Requirements**
 – Programming skills (C/C++, Matlab)
 – Good math background (Calculus, Linear Algebra, Statistical Methods)
 – Little or no prior knowledge of image processing techniques

• **BBM 415 Introduction to Programming Practicum**
 – The students will gain hand-on experience via a set of programming assignments.
About this course (cont’d.)

• **Goals of the course:**
 – to provide an introduction to students who wish to specialize in interrelated disciplines like image processing, computer vision and computational photography

• **Skills to develop:**
 – a foundational understanding and knowledge of concepts that underlie image processing

• **What is image processing?**
 – What does image processing deal with?
 – Computational analysis of low and mid-level vision
BBM 413-415 Team

Instructor
Erkut ERDEM
erkut@cs.hacettepe.edu.tr
Office: 114

Office hours: to be announced!

TA
Levent KARACAN
karacan@cs.hacettepe.edu.tr
Office: Vision Lab
Textbooks and Reference Material

• Lecture notes and handouts
• Papers and journal articles
Communication

• The course webpage will be updated regularly throughout the semester with lecture notes, programming and reading assignments and important deadlines.

 http://web.cs.hacettepe.edu.tr/~erkut/bbm413.f14
Getting Help

• **Office hours**
 – See webpage for the schedule

• **BBM 415 Image Processing Practicum**
 – Course related recitations, practice with example codes, etc.

• **Communication**
 – Announcements and course related discussions through piazza
 https://piazza.com/hacettepe.edu.tr/fall2014/bbm413
Course work and grading

• **Reading assignments (12%)**
 – Reading research papers and preparing their summaries

• **Quizzes (16%)**
 – Pop-up quizzes during class

• **Midterm exam (32%)**
 – Closed book and notes
 – In class on November 29th

• **Final exam (40%)**
 – Closed book and notes
 – To be scheduled by Registrar
Course Overview

– Introduction (0.5 week)
– What is image processing? (0.5 week)
– Image formation and the digital camera (1 week)
– Color perception and color spaces (1 week)
– Point operations (1 week)
– Spatial filtering (1 week)
– Frequency Domain Techniques (2 weeks)
– Image pyramids and wavelets (1 week)
– Gradients, edges, contours (1 week)
– Image segmentation (2 weeks)
– Image smoothing (1 week)
– Advanced topics (1 week)

Midterm exam
BBM 415 Image Processing Practicum

• **Programming assignments (PAs)**
 – Five programming assignments throughout the semester.
 – Each assignment has a well-defined goal such as solving a specific problem.
 – You must work alone or a group of two on all assignments stated unless otherwise.

• **Important Dates (Tentative)**
 – PA 1: October 2\(^{nd}\)
 – PA 2: October 16\(^{th}\)
 – PA 3: October 30\(^{th}\)
 – PA 4: November 20\(^{th}\)
 – PA 5: December 11\(^{th}\)
Policies

• **Work groups**
 – You must work alone or a group of two on all assignments stated unless otherwise

• **Submission**
 – Assignments due at 23:59 on Friday evenings
 – Electronic submissions (no exceptions!)

• **Lateness penalties**
 – Get penalized *10% per day*
 – No late submission later than *3 days after due date*
Today

• **Introduction**
 – About the class
 – Organization of this course

• **What is image processing?**
 – What does it mean, to see?
 – Vision as a computational problem
 – Sample image processing problems
What does it mean, to see?

• “The plain man’s answer (and Aristotle’s, too) would be, to know what is where by looking. In other words, vision is the process of discovering from images what is present in the world, and where it is.” David Marr, Vision, 1982

• Our brain is able to use an image as an input, and interpret it in terms of objects and scene structures.
What does Salvador Dali’s Study for the Dream Sequence in Spellbound (1945) say about our visual perception?

We see a two dimensional image

But, we perceive depth information

light reflected on the retina

converging lines shadows of the eye
Why does vision appear easy to humans?

- Our brains are specialized to do vision.
- Nearly half of the cortex in a human brain is devoted to doing vision (cf. motor control ~20-30%, language ~10-20%)

“Vision has evolved to convert the ill-posed problems into solvable ones by adding premises: assumptions about how the world we evolved in is, on average, put together”

Steven Pinker, How the Mind Works, 1997

- Gestalt Theory (Laws of Visual Perception), Max Wertheimer, 1912

Figures: Steven Pinker, How the Mind Works, 1997
Why does vision appear easy to humans?

When a user takes a photo, the app should check whether they're in a national park...

Sure, easy GIS lookup. Gimme a few hours.

...and check whether the photo is of a bird.

I'll need a research team and five years.

In CS, it can be hard to explain the difference between the easy and the virtually impossible.

http://xkcd.com/1425/
Computer Vision

• “Vision is a process that produces from images of the external world a description that is useful to the viewer and not cluttered with irrelevant information” ~David Marr

• The goal of Computer Vision:
To develop artificial machine vision systems that make inferences related to the scene being viewed through the images acquired with digital cameras.

Things that are easy for us are difficult for computers and viceversa ~ Marvin Minsky
THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".
Origins of computer vision

Vision: a very difficult computational problem, at several levels of understanding

• Vision as an information processing task [David Marr, 1982]

• Three levels of understanding:
 1. Computational theory
 – What is computed? Why it is computed?
 2. Representation and Algorithm
 – How it is computed?
 – Input, Output, Transformation
 3. Physical Realization
 – Hardware
Reading Assignment #1

• Due on 10th of October.
• Submit a brief 1-2 pages summary (in English) electronically.
• \textbf{Use LaTeX} to prepare your reports in pdf file format.
Visual Modules and the Information Flow

- Visual perception as a data-driven, bottom-up process (traditional view since D. Marr)
- Unidirectional information flow
- Simple low-level cues \(\Rightarrow\) Complex abstract perceptual units
Vision modules can be categorized into three groups according to their functionality:

- Low-level vision: filtering out irrelevant image data
- Mid-level vision: grouping pixels or boundary fragments together
- High-level vision: complex cognitive processes
Fundamentals of Image Processing

- What is a digital image, how it is formed?
- How images are represented in computers?
- Why we process images?
- How we process images?
Image Formation

Three Dimensional World \rightarrow Two Dimensional Image Space

• What is measured in an image location?
 – brightness
 – color

viewpoint
illumination conditions
local geometry
local material properties

Figures: Francis Crick, The Astonishing Hypothesis, 1995
Image Formation

• Discretization
 – in image space - sampling
 – In image brightness - quantization

Image Representation

- **Digital image**: 2D discrete function f
- **Pixel**: Smallest element of an image $f(x,y)$
Image Representation

- **Digital image**: 2D discrete function f
- **Pixel**: Smallest element of an image $f(x,y)$

Figure: M. J. Black
Human Eye

- Two types of receptor cells in retina:
 - Cone Receptor cells: 6-7 million → function in bright light, color sensitive, fine detail
 - Rod receptor cells: 75-150 million → function in dim light, color insensitive, coarse detail
- A recent discovery: Photosensitive retinal ganglion cells → sensitive to blue light

Hierarchy of Visual Areas

- There are many different neural connections between different visual areas.

Figures: Nikos K. Logothetis, Vision: A Window on Consciousness, SciAm, Nov 1999F (on the left)
Felleman & van Essen, 1991 (on the right)
Visual Modules and the Information Flow

Filtering \(\rightarrow\) Edge Detection \(\rightarrow\) Boundary Forming (e.g. grouping) \(\rightarrow\) Object Recognition

Segmentation

Subject matter of this course

• Vision modules can be categorized into three groups according to their functionality:
 – Low-level vision: filtering out irrelevant image data
 – Mid-level vision: grouping pixels or boundary fragments together
 – High-level vision: complex cognitive processes
Image Filtering

- **Instagram**
 - A photo-sharing and social networking service
 - Built-in vintage filters

@Wikimedia Commons
Image Filtering

- Filtering out the irrelevant information

\[f(x) = u(x) + n(x) \]

- Image denoising, image sharpening, image smoothing, image deblurring, etc.
- Edge detection
- Required for many other image manipulation tasks
Edge Detection

- Edges: abrupt changes in the intensity
 - Uniformity of intensity or color
- Edges to object boundaries
Image Filtering

• **Difficulty:** Some of the irrelevant image information have characteristics similar to those of important image features
Image Smoothing - A Little Bit of History

• Gaussian Filtering / linear diffusion
 – the most widely used method

\[\frac{\partial u}{\partial t} = \nabla \cdot (\nabla u) = \nabla^2 u \]

• mid 80’s – unified formulations
 – methods that combine smoothing and edge detection
 – Geman & Geman’84, Blake & Zisserman’87,
 Mumford & Shah’89, Perona & Malik’90
Image Denoising

• Images are corrupted with 70% salt-and-pepper noise

R. H. Chan, C.-W. Ho, and M. Nikolova, Salt-and-Pepper Noise Removal by Median-Type Noise Detectors and Detail-Preserving Regularization. IEEE TIP 2005
Non-local Means Denoising

Figure 1. Scheme of NL-means strategy. Similar pixel neighborhoods give a large weight, $w(p,q1)$ and $w(p,q2)$, while much different neighborhoods give a small weight $w(p,q3)$.

Preserve fine image details and texture during denoising

A. Buades, B. Coll, J. M. Morel, A non-local algorithm for image denoising, CVPR, 2005
Context-Guided Smoothing

• Use local image context to steer filtering

Preserve main image structures during filtering

E. Erdem and S. Tari, Mumford-Shah Regularizer with Contextual Feedback, JMIV, 2009
Structure-Preserving Smoothing

L. Karacan, E. Erdem and A. Erdem, Structure Preserving Image Smoothing via Region Covariances, TOG, 2013
Structure-Preserving Smoothing

L. Karacan, E. Erdem and A. Erdem, Structure Preserving Image Smoothing via Region Covariances, TOG, 2013
L. Karacan, E. Erdem and A. Erdem, Structure Preserving Image Smoothing via Region Covariances, TOG, 2013
Detail Enhancement

L. Karacan, E. Erdem and A. Erdem, Structure Preserving Image Smoothing via Region Covariances, TOG, 2013
Artistic Stylizations

Image Segmentation

• Partition an image into meaningful regions that are likely to correspond to objects exist in the image

Grouping of pixels according to what criteria?

high-level object specific knowledge matters!

Figures: A. Erdem
Image Segmentation

- Boundary-based segmentation
- Region-based segmentation
- Unified formulations
Snakes

- Curve Evolution - parametric curve formulation

Fig. 3. Two edge snakes on a pear and potato. Upper-left: The user has pulled one of the snakes away from the edge of the pear. Others: After the user lets go, the snake snaps back to the edge of the pear.

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active Contour Models, IJCV, 1988
Snakes

• Curve Evolution - parametric curve formulation

Non-rigid, deformable objects can change their shape over time, e.g. lips, hands…

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active Contour Models, IJCV, 1988
Normalized Cuts

- A graph-theoretic formulation for segmentation

Normalized Cuts
From contours to regions

- **State-of-the-art:** gPb-owt-ucm segmentation algorithm

From contours to regions

- **State-of-the-art:** gPb-owt-ucm segmentation algorithm

Prior-Shape Guided Segmentation

- Incorporate prior shape information into the segmentation process

E. Erdem, S. Tari, and L. Vese, Segmentation Using The Edge Strength Function as a Shape Prior within a Local Deformation Model, ICIP 2009
Image Inpainting

- Reconstructing lost or deteriorated parts of images

What do these examples demonstrate?

M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester, Image Inpainting, SIGGRAPH, 2000
Image Resizing

- Resize an image to arbitrary aspect ratios
Image Retargetting

- automatically resize an image to arbitrary aspect ratios while preserving important image features

S. Avidan and A. Shamir, Seam Carving for Content-Aware Image Resizing, SIGGRAPH, 2007
Image Retargeting

S. Avidan and A. Shamir, Seam Carving for Content-Aware Image Resizing, SIGGRAPH, 2007
Image Retargeting

L. Karacan, E. Erdem and A. Erdem, Structure Preserving Image Smoothing via Region Covariances, TOG, 2013
Next week

- Image formation
- Digital camera and images