BBM 413 Fundamentals of Image Processing

Erkut Erdem
Dept. of Computer Engineering
Hacettepe University

Image Pyramids

Review - Fourier Transform

We want to understand the frequency w of our signal. So, let's reparametrize the signal by w instead of x:

$$f(x)$$
 Fourier \longrightarrow F(w)

For every w from 0 to inf, F(w) holds the amplitude A and phase f of the corresponding sine $A\sin(\omega x + \phi)$

• How can Fhold both? Complex number trick!

$$F(\omega) = R(\omega) + iI(\omega)$$

$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \qquad \phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

We can always go back:

$$F(w)$$
 Inverse Fourier $f(x)$ Slide credit: A. Efros

Review – Frequency Domain Techniques

- The name "filter" is borrowed from frequency domain processing
- Accept or reject certain frequency components
- Fourier (1807):
 Periodic functions
 could be represented
 as a weighted sum of
 sines and cosines

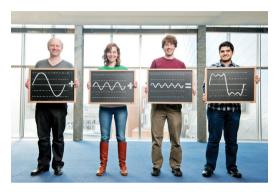


Image courtesy of Technology Review

Review - The Discrete Fourier transform

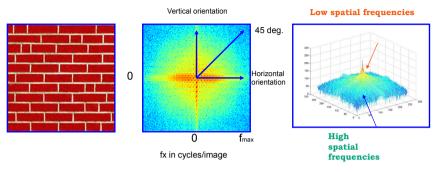
Forward transform

$$F[m,n] = \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f[k,l] e^{-\pi i \left(\frac{km}{M} + \frac{\ln n}{N}\right)}$$

Inverse transform

$$f[k,l] = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[m,n] e^{+\pi l \left(\frac{km}{M} + \frac{\ln n}{N}\right)}$$

Review - The Discrete Fourier transform



Log power spectrum

Slide credit: B. Freeman and A. Torralba

Review - The Convolution Theorem

• The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$F[g * h] = F[g]F[h]$$

• The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$F^{-1}[gh] = F^{-1}[g] * F^{-1}[h]$$

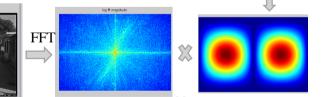
• Convolution in spatial domain is equivalent to multiplication in frequency domain!

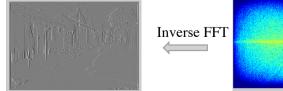
Slide credit: A. Efros

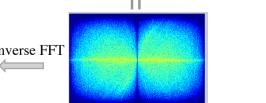
Review - Filtering in frequency domain

Slide credit: D. Hoiem

FFT



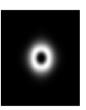




Review - Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:



Slide credit: A. Efros

Today - Image pyramids

- Gaussian pyramid
- Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

Slide credit: B. Freeman and A. Torralba

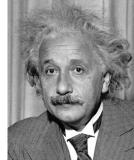
Matching with filters

- Goal: find in image
- Method 0: filter the image with eye patch

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$f = \text{image}$$

$$g = \text{filter}$$



response is stronger for higher intensity

What went wrong?

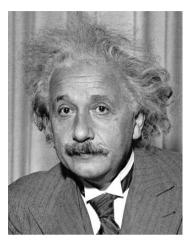
Input

Filtered Image

Slide: Hoiem

Template matching

- Goal: find on in image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized Cross Correlation

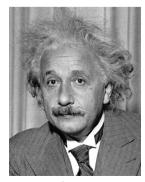


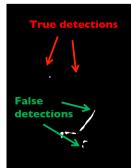
Slide: Hojem

Matching with filters

- Goal: find in image
- Method I: filter the image with zero-mean eye

$$h[m,n] = \sum_{k,l} (f[k,l] - \bar{f}) (g[m+k,n+l])$$
mean of f





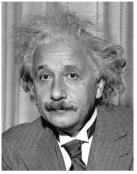
Input

Filtered Image (scaled) Thresholded Image

Matching with filters

- Goal: find in image
- Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$



Input

I-sqrt(SSD)

Thresholded Image

Matching with filters

- Goal: find 🗑 in image
- Method 3: Normalized cross-correlation

mean template mean image patch

$$h[m,n] = \frac{\sum_{k,l} (g[k,l] - \bar{g})(f[m-k,n-l] - \bar{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \bar{g})^2 \sum_{k,l} (f[m-k,n-l] - \bar{f}_{m,n})^2\right)^{0.5}}$$

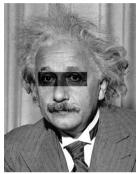
Matlab: normxcorr2 (template, im)

Slide: Hoiem

Matching with filters

- Goal: find on in image
- Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$



Input

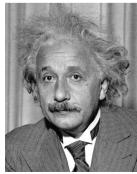
What's the potential downside of SSD?

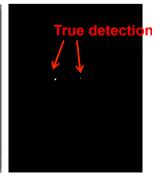
SSD sensitive to average intensity

I - sqrt(SSD)

Matching with filters

- Goal: find 🗑 in image
- Method 3: Normalized cross-correlation





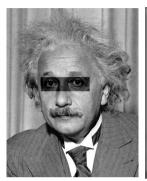
Slide: Hoiem

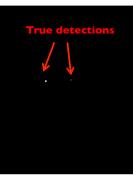
Input

Normalized X-Correlation Thresholded Image

Matching with filters

- Goal: find in image
- Method 3: Normalized cross-correlation





Slide: Hoiem

Input

Normalized X-Correlation Thresholded Image

Q: What if we want to find larger or smaller eyes?

A: Image Pyramid

Q: What is the best method to use?

A: Depends

- SSD: faster, sensitive to overall intensity
- Normalized cross-correlation: slower, invariant to local average intensity and contrast

Slide: R. Pless

Image pyramids

- · Gaussian pyramid
- · Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

Slide credit: B. Freeman and A. Torralba

Review of Sampling

Image pyramids

- · Gaussian pyramid
- · Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

Slide credit: B. Freeman and A. Torralba

The Gaussian pyramid

- Smooth with Gaussians, because
 - A Gaussian*Gaussian = another Gaussian
- Gaussians are low pass filters, so representation is redundant.
- Gaussian pyramid creates versions of the input image at multiple resolutions.
- This is useful for analysis across different spatial scales, but doesn't separate the image into different frequency bands.

Slide: Hoiem

Slide adapted from: B. Freeman and A. Torralba

The computational advantage of pyramids

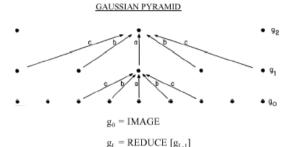
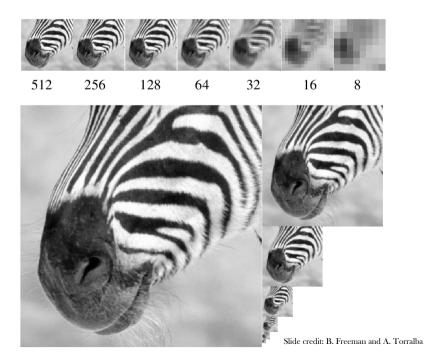


Fig 1. A one-dimensional graphic representation of the process which generates a Gaussian pyramid Each row of dots represents nodes within a level of the pyramid. The value of each node in the zero level is just the gray level of a corresponding image pixel. The value of each node in a high level is the weighted average of node values in the next lower level. Note that node spacing doubles from level to level, while the same weighting pattern or "generating kernel" is used to generate all levels.

[Burt and Adelson, 1983]

Slide credit: B. Freeman and A. Torralba



The Gaussian Pyramid

GAUSSIAN PYRAMID

Fig. 4. First six levels of the Gaussian pyramid for the "Lady" image The original image, level 0, meusures 257 by 257 pixels and each higher level array is roughly half the dimensions of its predecessor. Thus, level 5 measures just 9 by 9 pixels.

[Burt and Adelson, 1983]

Slide credit: B. Freeman and A. Torralba

Convolution and subsampling as a matrix multiply (ID case)

$$x_2 = G_1 x_1$$

$$G_1 =$$

 $\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{smallmatrix}$ 0 0 0 0 0 0 1 4 6 4 1 0 0 0 0 0 0 $0 \quad 0 \quad 1 \quad 4 \quad 6 \quad 4 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0$

Slide credit: B. Freeman and A. Torralba

(Normalization constant of 1/16 omitted for visual clarity.)

Next pyramid level

$$x_3 = G_2 x_2$$

$$G_2 = \\ 1 \quad 4 \quad 6 \quad 4 \quad 1 \quad 0 \quad 0 \quad 0 \\ 0 \quad 0 \quad 1 \quad 4 \quad 6 \quad 4 \quad 1 \quad 0 \\ 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 4 \quad 6 \quad 4 \\ 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 4 \\ \end{array}$$

Slide credit: B. Freeman and A. Torralba

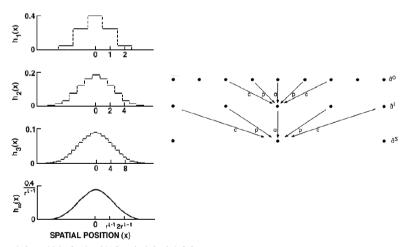


Fig. 2. The equivalent weighting functions h(x) for nodes in levels 1, 2, 3, and infinity of the Gaussian pyramid. Note that axis scales have been adjusted by factors of 2 to aid comparison Here the parameter a of the generating kernel is 0.4, and the resulting equivalent weighting functions closely resemble the Gaussian probability density functions.

Slide credit: B. Freeman and A. Torralba

The combined effect of the two pyramid levels

$$x_3 = G_2 G_1 x_1$$

$$G_2G_1 =$$

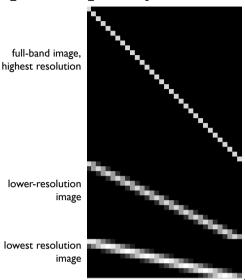
1	4	10	20	31	40	44	40	31	20	10	4	1	0	0	0	0	0	0	0
0	0	0	0	1	4	10	20	31	40	44	40	31	20	10	4	1	0	0	0
0	0	0	0	0	0	0	0	1	4	10	20	31	40	44	40	30	16	4	0
0	0	0	0	0	0	0	0	0	0	0	0	- 1	4	10	20	2.5	16	4	0

Slide credit: B. Freeman and A. Torralba

Gaussian pyramids used for

- up- or down- sampling images.
- Multi-resolution image analysis
 - Look for an object over various spatial scales
 - Coarse-to-fine image processing: form blur estimate or the motion analysis on very low-resolution image, upsample and repeat. Often a successful strategy for avoiding local minima in complicated estimation tasks.

ID Gaussian pyramid matrix, for [I 4 6 4 I] low-pass filter



Slide credit: B. Freeman and A. Torralba

Template Matching with Image Pyramids

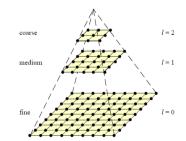
Input: Image, Template

- I. Match template at current scale
- 2. Downsample image
- 3. Repeat 1-2 until image is very small
- 4. Take responses above some threshold, perhaps with non-maxima suppression

Slide: Hoiem

Coarse-to-fine Image Registration

- I. Compute Gaussian pyramid
- 2. Align with coarse pyramid
- 3. Successively align with finer pyramids
 - Search smaller range



Slide: Hoiem

Why is this faster?

Are we guaranteed to get the same result?

Image pyramids

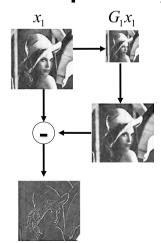
- Gaussian pyramid
- · Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

The Laplacian Pyramid

- Synthesis
 - Compute the difference between upsampled Gaussian pyramid level and Gaussian pyramid level.
 - band pass filter each level represents spatial frequencies (largely) unrepresented at other level.
- Laplacian pyramid provides an extra level of analysis as compared to Gaussian pyramid by breaking the image into different isotropic spatial frequency bands.

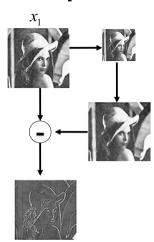
Slide adapted from: B. Freeman and A. Torralba

The Laplacian Pyramid



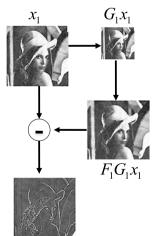
Slide credit: B. Freeman and A. Torralba

The Laplacian Pyramid

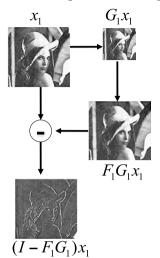


Slide credit: B. Freeman and A. Torralba

The Laplacian Pyramid

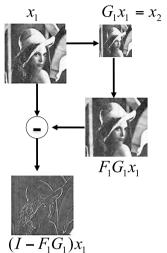


The Laplacian Pyramid



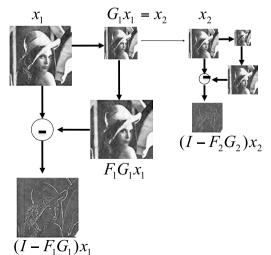
Slide credit: B. Freeman and A. Torralba

The Laplacian Pyramid



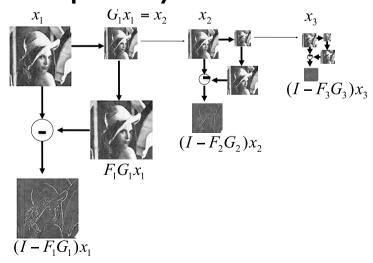
Slide credit: B. Freeman and A. Torralba

The Laplacian Pyramid



Slide credit: B. Freeman and A. Torralba

The Laplacian Pyramid



Upsampling

$$y_2 = F_3 x_3$$

Insert zeros between pixels, then apply a low-pass filter, [I 4 6 4 I]

Slide credit: B. Freeman and A. Torralba

Laplacian pyramid reconstruction algorithm: recover x_1 from L_1 , L_2 , L_3 and x_4

G# is the blur-and-downsample operator at pyramid level # F# is the blur-and-upsample operator at pyramid level #

Laplacian pyramid elements:

$$LI = (I - FI GI) \times I$$

$$L2 = (I - F2 G2) \times 2$$

$$L3 = (I - F3 G3) x3$$

$$x2 = GIxI$$

$$x3 = G2 x2$$

$$x4 = G3 x3$$

Reconstruction of original image $(x \, I)$ from Laplacian pyramid elements:

$$x3 = L3 + F3 x4$$

$$x2 = L2 + F2 x3$$

$$xI = LI + FI \times 2$$

Showing, at full resolution, the information captured at each level of a Gaussian (top) and Laplacian (bottom) pyramid.

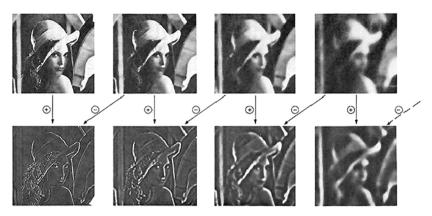
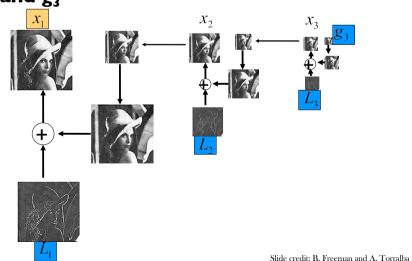
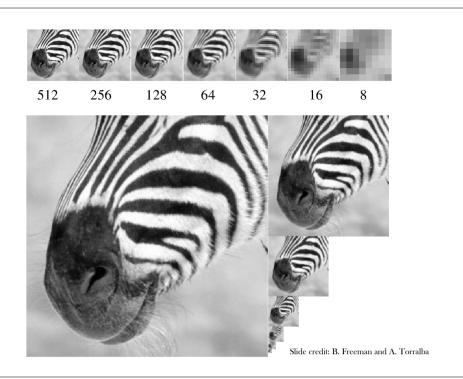


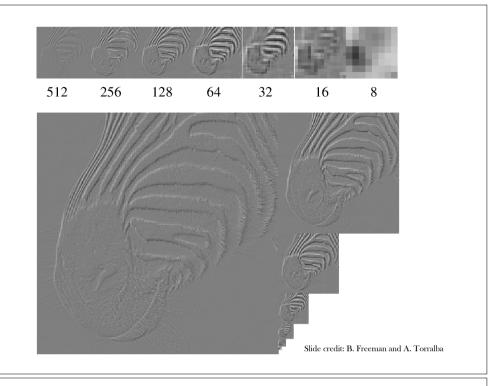
Fig. 5. First four levels of the Gaussian and Laplacian pyramid. Gaussian images, upper row, were obtained by exponding pyramid amoys (Fig. 4) through Gaussian interpolation. Each level of the Laplacian pyramid is the difference between the corresponding and next higher levels of the Gaussian pyramid.

Slide credit: B. Freeman and A. Torralba

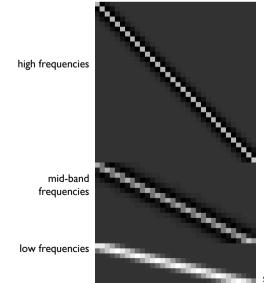
Laplacian pyramid reconstruction algorithm: recover x_1 from L_1 , L_2 , L_3 and g_3







ID Laplacian pyramid matrix, for [I 4 6 4 I] low-pass filter



Slide credit: B. Freeman and A. Torralba

Laplacian pyramid applications

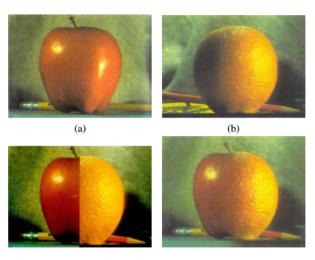
- Texture synthesis
- Image compression
- Noise removal

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31, NO. 4, APRIL 1983

The Laplacian Pyramid as a Compact Image Code

PETER J. BURT, MEMBER, IEEE, AND EDWARD H. ADELSON

Image blending



Slide credit: B. Freeman and A. Torralba

Image blending

- Build Laplacian pyramid for both images: LA, LB
- Build Gaussian pyramid for mask: G
- Build a combined Laplacian pyramid:
 L(j) = G(j) LA(j) + (I-G(j)) LB(j)
- · Collapse L to obtain the blended image

Slide credit: B. Freeman and A. Torralba

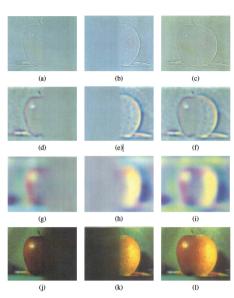


Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) ⊚ 1983 ACM. The first three rows show the high, medium, and low frequency parts of the Laplacian pyramid (taken from levels 0, 2, and 4). The left and middle columns show the original apple and orange images weighted by the smooth interpolation functions, while the right column shows the averaged contributions.

Slide credit: B. Freeman & A. Torralba

Eulerian Video Magnification

Video

Szeliski, Computer Vision, 2010

Image pyramids

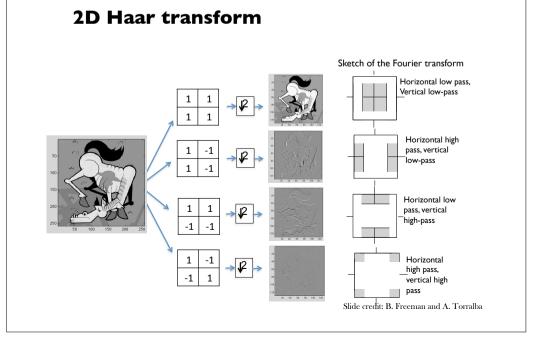
- Gaussian pyramid
- · Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

Slide credit: B. Freeman and A. Torralba

Wavelet/QMF pyramid

- · Subband coding
- Wavelet or QMF (quadrature mirror filter) pyramid provides some splitting of the spatial frequency bands according to orientation (although in a somewhat limited way).
- Image is decomposed into a set of band-limited components (subbands).
- Original image can be reconstructed without error by reassemblying these subbands.

Basic elements: 1</td



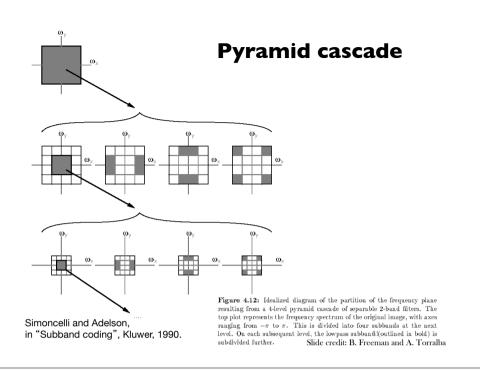


Image pyramids

- Gaussian pyramid
- Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

Wavelet/QMF representation

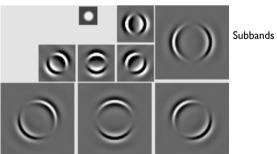
Same number of pixels!

Slide credit: B. Freeman and A. Torralba

Steerable Pyramid

Low pass residual

2 Level decomposition of white circle example:



• The Steerable pyramid provides a clean separation of the image into different scales and orientations.

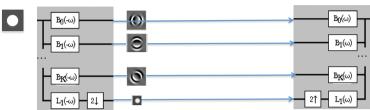
Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Slide credit: B. Freeman and A. Torralba

Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as shown below.

Decomposition Reconstruction



Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Slide credit: B. Freeman and A. Torralba

Steerable Pyramid

But we need to get rid of the corner regions before starting the recursive circular filtering

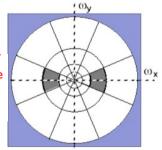


Figure 1. Idealized illustration of the spectral decomposition performed by a steerable pyramid with k = 4. Frequency axes range from $-\pi$ to π . The basis functions are related by translations, dilations and rotations (except for the initial highpass subband and the final lowpass subband). For example, the shaded region Simoncelli and Freeman, corresponds to the spectral support of a single (vertically-oriented) subband. Slide credit: B. Freeman and A. Torralba

ICIP 1995

Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as shown below

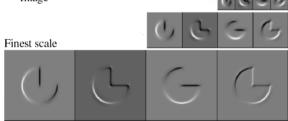
Decomposition Reconstruction

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Slide credit: B. Freeman and A. Torralba



Filter Kernels



Reprinted from "Shiftable MultiScale Transforms," by Simoncelli et al., IEEE Transactions on Information Theory, 1992, copyright 1992, IEEE

There is also a high pass residual...

Phase-based Video Magnification

Video

Image pyramids

Gaussian

Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms.

- Laplacian
- Wavelet/QMF
- Steerable pyramid

Slide credit: B. Freeman and A. Torralba

Image pyramids

- Gaussian
- Laplacian
- Wavelet/QMF
- · Steerable pyramid

Slide credit: B. Freeman and A. Torralba

Image pyramids

• Gaussian

Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms.

• Laplacian

Shows the information added in Gaussian pyramid at each spatial scale. Useful for noise reduction & coding.

- Wavelet/QMF
- · Steerable pyramid

Image pyramids

Gaussian

Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms.

Laplacian

Shows the information added in Gaussian pyramid at each spatial scale. Useful for noise reduction & coding.

Wavelet/OMF

Bandpassed representation, complete, but with aliasing and some non-oriented subbands.

Steerable pyramid

Slide credit: B. Freeman and A. Torralba

Schematic pictures of each matrix transform

Shown for I-d images

The matrices for 2-d images are the same idea, but more complicated, to account for vertical, as well as horizontal, neighbor relationships.

transformed image $\vec{F} = U\vec{f}$ Vectorized image Fourier transform, or Wavelet transform, or Steerable pyramid transform

Slide credit: B. Freeman and A. Torralba

Image pyramids

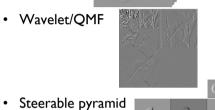
Gaussian

Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms.

Laplacian

Shows the information added in Gaussian pyramid at each spatial scale. Useful for noise reduction & coding.

Wavelet/OMF

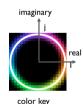


Bandpassed representation, complete, but with aliasing and some non-oriented subbands.

> Shows components at each scale and orientation separately. Nonaliased subbands. Good for texture and feature analysis. But overcomplete and with HF residual.

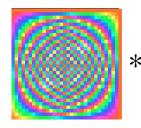
> > Slide credit: B. Freeman and A. Torralba

Fourier transform



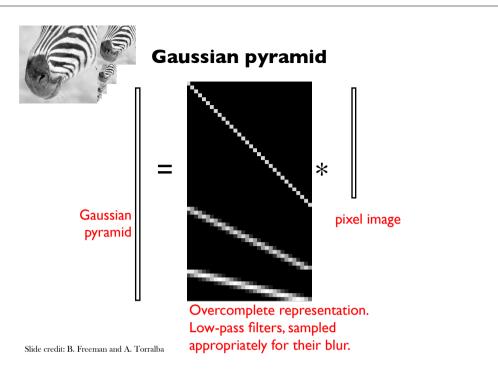
Fourier

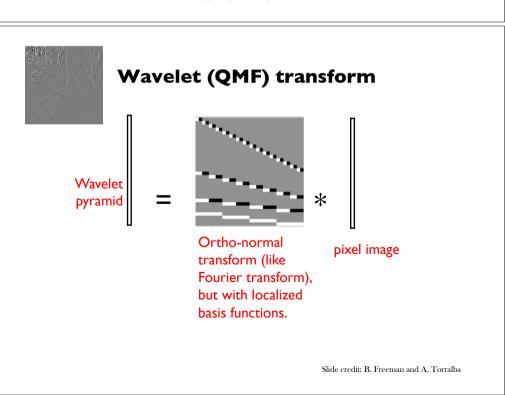
transform

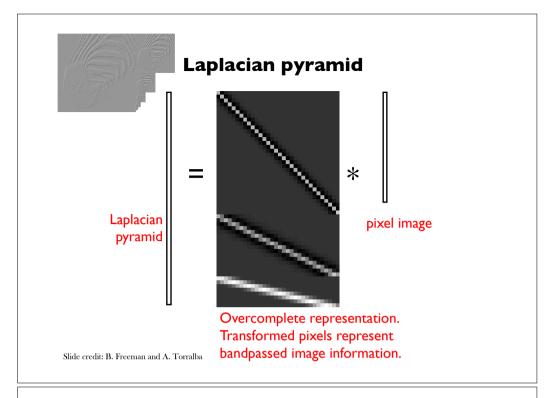


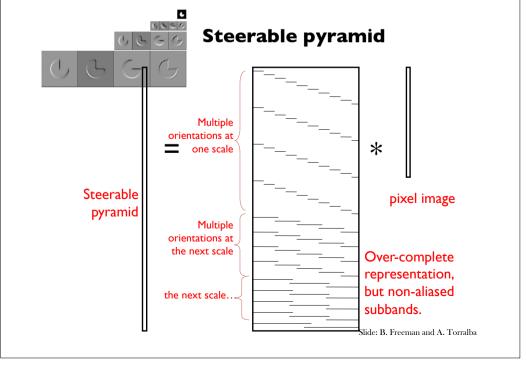
Fourier bases are global: each transform coefficient depends on all pixel locations.

pixel domain image









Why use image pyramids?

- Handle real-world size variations with a constant-size vision algorithm.
- Remove noise
- Analyze texture
- Recognize objects
- · Label image features
- Image priors can be specified naturally in terms of wavelet pyramids.

Slide credit: B. Freeman and A. Torralba

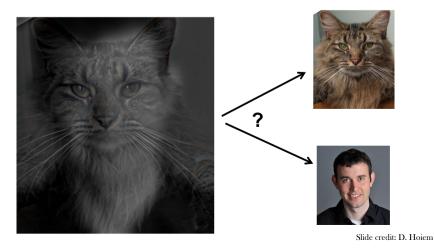
Slide credit; J. Hays

 A. Oliva, A. Torralba, P.G. Schyns (2006). Hybrid Images. ACM Transactions on Graphics, ACM SIGGRAPH, 25-3, 527-530.

Reading Assignment #3 - Hybrid Images

• Due on 27th of November

Why do we get different, distance-dependent interpretations of hybrid images?

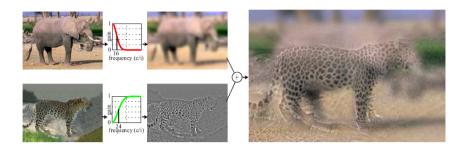


Salvador Dali invented Hybrid Images?

Salvador Dali

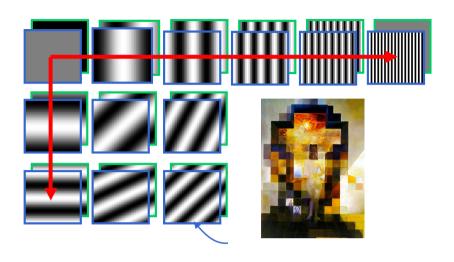
"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Hybrid Images



Slide credit: J. Hays

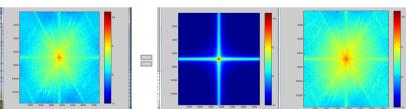
Fourier bases



Slide credit: M. H. Yang

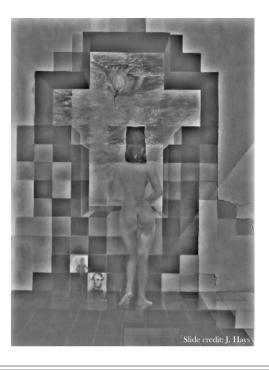
Hybrid Image in FFT

Hybrid Image Low-passed Image ♣ High-passed Image



Slide credit: J. Hays

Salvador Dali"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976



Salvador Dali"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Announcements

- There will be no classes next week!
- You will take your midterm exams on 20th of November.
- The exam will cover all the topics we covered in the class and the reading materials distributed.

Summary – Image pyramids

- · Gaussian pyramid
- · Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

Slide credit: B. Freeman and A. Torralba

After midterm exam

Edge detection