Today’s topics

• Point operations
• Histogram processing

Digital images

• **Sample** the 2D space on a regular grid
• **Quantize** each sample (round to nearest integer)

• Image thus represented as a matrix of integer values.
Image Transformations

- \(g(x,y) = T[f(x,y)] \)

- \(g(x,y) \): output image
- \(f(x,y) \): input image
- \(T \): transformation function
 1. Point operations: operations on single pixels
 2. Spatial filtering: operations considering pixel neighborhoods
 3. Global methods: operations considering whole image

Point Operations

- Smallest possible neighborhood is of size 1x1
- Process each point independently of the others
- Output image \(g \) depends only on the value of \(f \) at a single point \((x,y)\)
- Map each pixel's value to a new value
- Transformation function \(T \) remaps the sample's value:
 \[s = T(r) \]
 where
 - \(r \) is the value at the point in question
 - \(s \) is the new value in the processed result
 - \(T \) is an intensity transformation function

Point operations

- Is mapping one color space to another (e.g. RGB2HSV) a point operation?
- Is image arithmetic a point operation?
- Is performing geometric transformations a point operation?
 - Rotation
 - Translation
 - Scale change
 - etc.

Sample intensity transformation functions

- Image negatives
- Log transformations
 - Compresses the dynamic range of images
- Power-law transformations
 - Gamma correction
Point Processing Examples

- Produces an image of higher contrast than the original by darkening the intensity levels below k and brightening intensities above k

Dynamic range

- Dynamic range $R_d = \frac{l_{\text{max}}}{l_{\text{min}}}$, or $\frac{(l_{\text{max}} + k)}{(l_{\text{min}} + k)}$
 - Determines the degree of image contrast that can be achieved
 - A major factor in image quality

- Ballpark values
 - Desktop display in typical conditions: 20:1
 - Photographic print: 30:1
 - High dynamic range display: 10,000:1

Point Operations:

Contrast stretching and Thresholding

- **Contrast stretching:** produces an image of higher contrast than the original

- **Thresholding:** produces a binary (two-intensity level) image

Slide credit: S. Marschner
Point Operations

• What can you say about the image having the following histogram?
• A low contrast image
• How we can process the image so that it has a better visual quality?

Point Operations

• How we can process the image so that it has a better visual quality?
• Answer is contrast stretching!

Point Operations

• Let us devise an appropriate point operation.
• Shift all values so that the observable pixel range starts at 0.

Point Operations

• Let us devise an appropriate point operation.
• Now, scale everything in the range 0-100 to 0-255.
Point Operations

• Let us devise an appropriate point operation.

• What is the corresponding transformation function?
 \[T(r) = 2.55 \times (r - 100) \]

Point Operations: Intensity-level Slicing

• highlights a certain range of intensities

Intensity encoding in images

• Recall that the pixel values determine how bright that pixel is.
 • Bigger numbers are (usually) brighter
 • Transfer function: function that maps input pixel value to luminance of displayed image
 \[I = f(n) \quad f : [0, N] \rightarrow [I_{\text{min}}, I_{\text{max}}] \]

• What determines this function?
 – physical constraints of device or medium
 – desired visual characteristics

adapted from S. Marschner
What this projector does?

- Something like this:

 \[
 I(n) = \begin{cases}
 n & \text{for } n = 0, 1, \ldots, 63 \\
 0 & \text{otherwise}
 \end{cases}
 \]

 \[
 n = 64, \quad n = 128, \quad n = 192
 \]

 \[
 I = 0.25, \quad I = 0.5, \quad I = 0.75
 \]

adapted from: S. Marschner

Constraints on transfer function

- **Maximum displayable intensity**, \(I_{\text{max}} \)
 - how much power can be channeled into a pixel?
 - LCD: backlight intensity, transmission efficiency (<10%)
 - projector: lamp power, efficiency of imager and optics

- **Minimum displayable intensity**, \(I_{\text{min}} \)
 - light emitted by the display in its “off” state
 - e.g. stray electron flux in CRT, polarizer quality in LCD

- **Viewing flare**, \(k \): light reflected by the display
 - very important factor determining image contrast in practice
 - 5% of \(I_{\text{max}} \) is typical in a normal office environment [sRGB spec]
 - much effort to make very black CRT and LCD screens
 - all-black decor in movie theaters

Transfer function shape

- Desirable property: the change from one pixel value to the next highest pixel value should not produce a visible contrast
 - otherwise smooth areas of images will show visible bands

- What contrasts are visible?
 - rule of thumb: under good conditions we can notice a 2% change in intensity
 - therefore we generally need smaller quantization steps in the darker tones than in the lighter tones
 - most efficient quantization is logarithmic

an image with severe banding

How many levels are needed?

- Depends on dynamic range
 - 2% steps are most efficient:
 - \(0 \mapsto I_{\text{min}}; 1 \mapsto 1.02I_{\text{min}}; 2 \mapsto (1.02)^2I_{\text{min}}; \ldots \)
 - \(\log 1.02 \) is about \(1/120 \), so 120 steps per decade of dynamic range
 - 240 for desktop display
 - 360 to print to film
 - 480 to drive HDR display

- If we want to use linear quantization (equal steps)
 - one step must be < 2% \((1/50)\) of \(I_{\text{min}} \)
 - need to get from \(\sim 0 \) to \(I_{\text{min}} \): \(R_d \) so need about 50 \(R_d \) levels
 - 1500 for a print; 5000 for desktop display; 500,000 for HDR display

- Moral: 8 bits is just barely enough for low-end applications
 - but only if we are careful about quantization

Slide credit: S. Marschner
Intensity quantization in practice

- **Option 1: linear quantization** \(I(n) = (n/N) I_{\text{max}} \)
 - **pro:** simple, convenient, amenable to arithmetic
 - **con:** requires more steps (wastes memory)
 - need 12 bits for any useful purpose; more than 16 for HDR

- **Option 2: power-law quantization** \(I(n) = (n/N)^\gamma I_{\text{max}} \)
 - **pro:** fairly simple, approximates ideal exponential quantization
 - **con:** need to linearize before doing pixel arithmetic
 - **con:** need to agree on exponent
 - 8 bits are OK for many applications; 12 for more critical ones

- **Option 2: floating-point quantization** \(I(x) = (x/w) I_{\text{max}} \)
 - **pro:** close to exponential; no parameters; amenable to arithmetic
 - **con:** definitely takes more than 8 bits
 - 16-bit “half precision” format is becoming popular

Why gamma?

- Power-law quantization, or *gamma correction* is most popular

- **Original reason:** CRTs are like that
 - intensity on screen is proportional to (roughly) voltage^2

- **Continuing reason:** inertia + memory savings
 - inertia: gamma correction is close enough to logarithmic that there’s no sense in changing
 - memory: gamma correction makes 8 bits per pixel an acceptable option

Gamma quantization

- Close enough to ideal perceptually uniform exponential

Gamma correction

- Sometimes (often, in graphics) we have computed intensities \(a \) that we want to display linearly

- In the case of an ideal monitor with zero black level,
 \[I(n) = (n/N)^\gamma \]

 (where \(N = 2^n - 1 \) in \(n \) bits). Solving for \(n \):
 \[n = \log_2 N \cdot \frac{1}{\gamma} \]

- This is the “gamma correction” recipe that has to be applied when computed values are converted to 8 bits for output
 - failing to do this (implicitly assuming gamma = 1) results in dark, oversaturated images
Gamma correction

- Corrected for γ lower than display
- OK
- Corrected for γ higher than display

Slide credit: S. Marschner

Example Instagram Steps

1. Perform an independent RGB color point transformation on the original image to increase contrast or make a color cast

![Graphs](source: C. Dyer)

2. Overlay a circle background image to create a vignette effect

![Image](source: C. Dyer)

Instagram Filters

- How do they make those Instagram filters?

“It’s really a combination of a bunch of different methods. In some cases we draw on top of images, in others we do pixel math. It really depends on the effect we’re going for.” — Kevin Systrom, co-founder of Instagram

Source: C. Dyer

Example Instagram Steps

2. Overlay a circle background image to create a vignette effect

Source: C. Dyer
Example Instagram Steps

3. Overlay a background image as decorative grain

Source: C. Dyer

Result

Javascript library for creating Instagram-like effects, see:
http://alexmic.net/filtrr/

Source: C. Dyer

Example Instagram Steps

4. Add a border or frame

Source: C. Dyer

Today’s topics

• Point operations
• Histogram processing
Histogram

- Histogram: a discrete function \(h(r) \) which counts the number of pixels in the image having intensity \(r \)
- If \(h(r) \) is normalized, it measures the probability of occurrence of intensity level \(r \) in an image

- What histograms say about images?
- What they don’t?
 - No spatial information

Histogram equalization

- A good quality image has a nearly uniform distribution of intensity levels. Why?
- Every intensity level is equally likely to occur in an image

 - **Histogram equalization**: Transform an image so that it has a uniform distribution

 - create a lookup table defining the transformation

Images and histograms

- How do histograms change when
 - we adjust brightness?
 - we adjust contrast?

 - shifts the histogram horizontally
 - stretches or shrinks the histogram horizontally

Histogram equalization examples

- A descriptor for visual information

1.
2.
3.
4.
Histogram Equalization

Histogram as a probability density function
- Recall that a normalized histogram measures the probability of occurrence of an intensity level \(r \) in an image.
- We can normalize a histogram by dividing the intensity counts by the area:

\[
p(r) = \frac{h(r)}{\text{Area}}
\]

Histogram equalization: Continuous domain
- Define a transformation function of the form

\[
s = T(r) = (L - 1) \int_0^r p(w) \, dw
\]

where
- \(r \) is the input intensity level
- \(s \) is the output intensity level
- \(p \) is the normalized histogram of the input signal
- \(L \) is the desired number of intensity levels

(Continuous) output signal has a uniform distribution!

Histogram equalization: Discrete domain
- Define the following transformation function for an \(M \times N \) image:

\[
s_k = T(r_k) = (L - 1) \sum_{j=0}^{L-1} \frac{n_j}{MN} = \frac{(L - 1)}{MN} \sum_{j=0}^{L-1} n_j
\]

for \(k = 0, \ldots, L - 1 \)

where
- \(r_k \) is the input intensity level
- \(s_k \) is the output intensity level
- \(n_j \) is the number of pixels having intensity value \(j \) in the input image
- \(L \) is the number of intensity levels

(Discrete) output signal has a nearly uniform distribution!
Histogram Specification

- Given an input image f and a specific histogram $p_2(r)$, transform the image so that it has the specified histogram.

- How to perform histogram specification?

- Histogram equalization produces a (nearly) uniform output histogram.

- Use histogram equalization as an intermediate step.

Next week

- Spatial filtering

Histogram Specification

1. Equalize the histogram of the input image
 \[T_1(r) = (L - 1) \int_0^r p_1(w) \, dw \]

2. Histogram equalize the desired output histogram
 \[T_2(r) = (L - 1) \int_0^r p_2(w) \, dw \]

3. Histogram specification can be carried out by the following point operation:
 \[s = T(r) = T_2^{-1}(T_1(r)) \]