BBM 413
Fundamentals of Image Processing

Erkut Erdem
Dept. of Computer Engineering
Hacettepe University

Point Operations
Histogram Processing
Today’s topics

• Point operations
• Histogram processing
Today’s topics

• Point operations
• Histogram processing
Digital images

- **Sample** the 2D space on a regular grid
- **Quantize** each sample (round to nearest integer)

- Image thus represented as a matrix of integer values.

Slide credit: K. Grauman, S. Seitz
Image Transformations

- $g(x,y)=T[f(x,y)]$

$g(x,y)$: output image

$f(x,y)$: input image

T: transformation function

1. Point operations: operations on single pixels
2. Spatial filtering: operations considering pixel neighborhoods
3. Global methods: operations considering whole image
Point Operations

- Smallest possible neighborhood is of size 1x1
- Process each point independently of the others
- Output image g depends only on the value of f at a single point (x,y)
- Map each pixel’s value to a new value
- Transformation function T remaps the sample’s value:

$$s = T(r)$$

where
- r is the value at the point in question
- s is the new value in the processed result
- T is an intensity transformation function
Point operations

• Is mapping one color space to another (e.g. RGB2HSV) a point operation?
• Is image arithmetic a point operation?
• Is performing geometric transformations a point operation?
 – Rotation
 – Translation
 – Scale change
 – etc.
Sample intensity transformation functions

- Image negatives
- Log transformations
 - Compresses the dynamic range of images
- Power-law transformations
 - Gamma correction
Point Processing Examples

produces an image of higher contrast than the original by darkening the intensity levels below k and brightening intensities above k

produces a binary (two-intensity level) image
Dynamic range

- Dynamic range \(R_d = \frac{I_{\text{max}}}{I_{\text{min}}} \), or \(\frac{(I_{\text{max}} + k)}{(I_{\text{min}} + k)} \)
 - determines the degree of image contrast that can be achieved
 - a major factor in image quality

- Ballpark values
 - Desktop display in typical conditions: 20:1
 - Photographic print: 30:1
 - High dynamic range display: 10,000:1

Slide credit: S. Marschner
Point Operations:
Contrast stretching and Thresholding

- **Contrast stretching:** produces an image of higher contrast than the original

- **Thresholding:** produces a binary (two-intensity level) image
Point Operations:
Contrast stretching and Thresholding

- **Contrast stretching**: produces an image of higher contrast than the original

- **Thresholding**: produces a binary (two-intensity level) image
Point Operations

• What can you say about the image having the following histogram?

[Histogram image showing a peak at around grey-level 140 and a low contrast]

• A low contrast image

• How we can process the image so that it has a better visual quality?
Point Operations

• How we can process the image so that it has a better visual quality?

• Answer is contrast stretching!
Point Operations

• Let us devise an appropriate point operation.

• Shift all values so that the observable pixel range starts at 0.
Point Operations

- Let us devise an appropriate point operation.

- Now, scale everything in the range 0-100 to 0-255.
Point Operations

• Let us devise an appropriate point operation.

![Graph showing number of pixels against grey-level.]

• What is the corresponding transformation function?
• \(T(r) = 2.55 \cdot (r-100) \)
Point Operations: Intensity-level Slicing

- highlights a certain range of intensities
Point Operations: Intensity-level Slicing

- highlights a certain range of intensities
Intensity encoding in images

• Recall that the pixel values determine how bright that pixel is.
• Bigger numbers are (usually) brighter
• Transfer function: function that maps input pixel value to luminance of displayed image

\[I = f(n) \quad f : [0, N] \rightarrow [I_{\text{min}}, I_{\text{max}}] \]

• What determines this function?
 – physical constraints of device or medium
 – desired visual characteristics

adapted from: S. Marschner
What this projector does?

- Something like this:

\[I(n) \]

\[n = 64 \]
\[n = 128 \]
\[n = 192 \]

\[I = 0.25 \]
\[I = 0.5 \]
\[I = 0.75 \]

adapted from: S. Marschner
Constraints on transfer function

• Maximum displayable intensity, I_{max}
 – how much power can be channeled into a pixel?
 • LCD: backlight intensity, transmission efficiency (<10%)
 • projector: lamp power, efficiency of imager and optics

• Minimum displayable intensity, I_{min}
 – light emitted by the display in its “off” state
 • e.g. stray electron flux in CRT, polarizer quality in LCD

• Viewing flare, k: light reflected by the display
 – very important factor determining image contrast in practice
 • 5% of I_{max} is typical in a normal office environment [sRGB spec]
 • much effort to make very black CRT and LCD screens
 • all-black decor in movie theaters
Transfer function shape

• Desirable property: the change from one pixel value to the next highest pixel value should not produce a visible contrast
 – otherwise smooth areas of images will show visible bands

• What contrasts are visible?
 – rule of thumb: under good conditions we can notice a 2% change in intensity
 – therefore we generally need smaller quantization steps in the darker tones than in the lighter tones
 – most efficient quantization is logarithmic

an image with severe banding

Slide credit: S. Marschner
How many levels are needed?

• Depends on dynamic range
 – 2% steps are most efficient:
 \[0 \leftrightarrow I_{\text{min}}; 1 \leftrightarrow 1.02I_{\text{min}}; 2 \leftrightarrow (1.02)^2I_{\text{min}}; \ldots \]
 – \(\log 1.02 \) is about 1/120, so 120 steps per decade of dynamic range
 • 240 for desktop display
 • 360 to print to film
 • 480 to drive HDR display

• If we want to use linear quantization (equal steps)
 – one step must be < 2% \((1/50)\) of \(I_{\text{min}} \)
 – need to get from \(\sim 0 \) to \(I_{\text{min}} \cdot R_d \) so need about 50 \(R_d \) levels
 • 1500 for a print; 5000 for desktop display; 500,000 for HDR display

• Moral: 8 bits is just barely enough for low-end applications
 – but only if we are careful about quantization
Intensity quantization in practice

- **Option 1: linear quantization** \(I(n) = \left(\frac{n}{N} \right) I_{\text{max}} \)
 - pro: simple, convenient, amenable to arithmetic
 - con: requires more steps (wastes memory)
 - need 12 bits for any useful purpose; more than 16 for HDR

- **Option 2: power-law quantization** \(I(n) = \left(\frac{n}{N} \right)^\gamma I_{\text{max}} \)
 - pro: fairly simple, approximates ideal exponential quantization
 - con: need to linearize before doing pixel arithmetic
 - con: need to agree on exponent
 - 8 bits are OK for many applications; 12 for more critical ones

- **Option 2: floating-point quantization** \(I(x) = \left(\frac{x}{w} \right) I_{\text{max}} \)
 - pro: close to exponential; no parameters; amenable to arithmetic
 - con: definitely takes more than 8 bits
 - 16-bit “half precision” format is becoming popular

Slide credit: S. Marschner
Why gamma?

• Power-law quantization, or *gamma correction* is most popular

• Original reason: CRTs are like that
 – intensity on screen is proportional to (roughly) voltage2

• Continuing reason: inertia + memory savings
 – inertia: gamma correction is close enough to logarithmic that there’s no sense in changing
 – memory: gamma correction makes 8 bits per pixel an acceptable option

Slide credit: S. Marschner
Gamma quantization

- Close enough to ideal perceptually uniform exponential

Slide credit: S. Marschner
Gamma correction

• Sometimes (often, in graphics) we have computed intensities a that we want to display linearly

• In the case of an ideal monitor with zero black level,

$$I(n) = \left(\frac{n}{N} \right)^\gamma$$

(where $N = 2^n - 1$ in n bits). Solving for n:

$$n = N a^{\frac{1}{\gamma}}$$

• This is the “gamma correction” recipe that has to be applied when computed values are converted to 8 bits for output
 – failing to do this (implicitly assuming gamma = 1) results in dark, oversaturated images

Slide credit: S. Marschner
Gamma correction

corrected for γ lower than display

OK

corrected for γ higher than display

Slide credit: S. Marschner
Instagram Filters

• How do they make those Instagram filters?

“It's really a combination of a bunch of different methods. In some cases we draw on top of images, in others we do pixel math. It really depends on the effect we're going for.” --- Kevin Systrom, co-founder of Instagram

Source: C. Dyer
Example Instagram Steps

1. Perform an independent RGB color point transformation on the original image to increase contrast or make a color cast.

Source: C. Dyer
Example Instagram Steps

2. Overlay a circle background image to create a vignette effect

Source: C. Dyer
Example Instagram Steps

3. Overlay a background image as decorative grain

Source: C. Dyer
Example Instagram Steps

4. Add a border or frame

Source: C. Dyer
Result

Javascript library for creating Instagram-like effects, see: http://alexmic.net/filtrr/

Source: C. Dyer
Today’s topics

- Point operations
- Histogram processing
Histogram

- Histogram: a discrete function $h(r)$ which counts the number of pixels in the image having intensity r
- If $h(r)$ is normalized, it measures the probability of occurrence of intensity level r in an image

- What histograms say about images?
- What they don’t?
 - No spatial information

A descriptor for visual information
Images and histograms

- How do histograms change when
 - we adjust brightness? shifts the histogram horizontally
 - we adjust contrast? stretches or shrinks the histogram horizontally
Histogram equalization

• A good quality image has a nearly uniform distribution of intensity levels. Why?

• Every intensity level is equally likely to occur in an image

• *Histogram equalization*: Transform an image so that it has a uniform distribution
 – create a lookup table defining the transformation
Histogram equalization examples
Histogram Equalization

Source: C. Dyer
Histogram as a probability density function

- Recall that a normalized histogram measures the probability of occurrence of an intensity level \(r \) in an image.
- We can normalize a histogram by dividing the intensity counts by the area:

\[
p(r) = \frac{h(r)}{\text{Area}}
\]
Histogram equalization: Continuous domain

- Define a transformation function of the form

\[s = T(r) = (L - 1) \int_{0}^{r} p(w) dw \]

where
- \(r \) is the input intensity level
- \(s \) is the output intensity level
- \(p \) is the normalized histogram of the input signal
- \(L \) is the desired number of intensity levels

(Continuous) output signal has a uniform distribution!
Histogram equalization: Discrete domain

- Define the following transformation function for an MxN image

\[s_k = T(r_k) = (L - 1) \sum_{j=0}^{k} \frac{n_j}{MN} = \frac{(L - 1)}{MN} \sum_{j=0}^{k} n_j \]

for \(k = 0, \ldots, L - 1 \)

where
- \(r_k \) is the input intensity level
- \(s_k \) is the output intensity level
- \(n_j \) is the number of pixels having intensity value \(j \) in the input image
- \(L \) is the number of intensity levels

(Discrete) output signal has a nearly uniform distribution!
Histogram Specification

• Given an input image \(f \) and a specific histogram \(p_2(r) \), transform the image so that it has the specified histogram

• How to perform histogram specification?

• Histogram equalization produces a (nearly) uniform output histogram

• Use histogram equalization as an intermediate step
Histogram Specification

1. Equalize the histogram of the input image

\[T_1(r) = (L - 1) \int_0^r p_1(w) \, dw \]

2. Histogram equalize the desired output histogram

\[T_2(r) = (L - 1) \int_0^r p_2(w) \, dw \]

3. Histogram specification can be carried out by the following point operation:

\[s = T(r) = T_2^{-1}(T_1(r)) \]
Next week

• Spatial filtering