Spatial Filtering

Image Filtering
- Image filtering: computes a function of a local neighborhood at each pixel position.
- Called “Local operator,” “Neighborhood operator,” or “Window operator.”
- \(f: \text{image } \rightarrow \text{image} \)
- Uses:
 - Enhance images
 - Noise reduction, smooth, resize, increase contrast, recolor, artistic effects, etc.
 - Extract features from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching, e.g., eye template

Filtering
- The name “filter” is borrowed from frequency domain processing (next week’s topic).
- Accept or reject certain frequency components.
- Fourier (1807): Periodic functions could be represented as a weighted sum of sines and cosines.

Signals
- A signal is composed of low and high frequency components.
 - Low frequency components: smooth / piecewise smooth
 - Neighboring pixels have similar brightness values
 - You’re within a region
 - High frequency components: oscillatory
 - Neighboring pixels have different brightness values
 - You’re either at the edges or noise points
Low/high frequencies vs. fine/coarse-scale details

Motivation: noise reduction
- Assume image is degraded with an additive model.
- Then,

 \[
 \text{Observation} = \text{True signal} + \text{noise} \\
 \text{Observed image} = \text{Actual image} + \text{noise}
 \]

 low-pass filters \hspace{0.5cm} \text{high-pass filters}

 \[
 \downarrow
 \]

 \text{smooth the image}

Common types of noise
- **Salt and pepper noise:** random occurrences of black and white pixels
- **Impulse noise:** random occurrences of white pixels
- **Gaussian noise:** variations in intensity drawn from a Gaussian normal distribution

Signals – Examples

Slide credit: S. Seitz
Gaussian noise

Motivation: noise reduction

Image Filtering

What is the impact of the sigma?

Slide credit: M. Hebert

• Make multiple observations of the same static scene
• Take the average
• Even multiple images of the same static scene will not be identical.

• Make multiple observations of the same static scene
• Take the average
• Even multiple images of the same static scene will not be identical.

What if there's only one image?

Adapted from: K. Grauman

• Idea: Use the information coming from the neighboring pixels for processing
• Design a transformation function of the local neighborhood at each pixel in the image
 – Function specified by a “filter” or mask saying how to combine values from neighbors.
• Various uses of filtering:
 – Enhance an image (denoise, resize, etc)
 – Extract information (texture, edges, etc)
 – Detect patterns (template matching)

Adapted from: K. Grauman
Filtering

• Processing done on a function
 – can be executed in continuous form (e.g. analog circuit)
 – but can also be executed using sampled representation
• Simple example: smoothing by averaging

![Continuous and discrete smoothing filters](image)

Slide credit: S. Marschner

Linear filtering

• Filtered value is the linear combination of neighboring pixel values.
• Key properties
 – linearity: \(\text{filter}(f + g) = \text{filter}(f) + \text{filter}(g) \)
 – shift invariance: behavior invariant to shifting the input
 • delaying an audio signal
 • sliding an image around
• Can be modeled mathematically by convolution

![Convolution example](image)

Adapted from: S. Marschner

First attempt at a solution

• Let’s replace each pixel with an average of all the values in its neighborhood
• Assumptions:
 – Expect pixels to be like their neighbors (spatial regularity in images)
 – Expect noise processes to be independent from pixel to pixel

![Moving average example](image)

Slide credit: S. Marschner, K. Grauman

First attempt at a solution

• Let’s replace each pixel with an average of all the values in its neighborhood
• Moving average in 1D:
Convolution warm-up

• Same moving average operation, expressed mathematically:

\[b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j] \]

Slide credit: S. Marschner

Discrete convolution

• Simple averaging:

\[b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j] \]

– every sample gets the same weight

• Convolution: same idea but with weighted average

\[(a \ast b)[i] = \sum_j a[j]b[i - j] \]

– each sample gets its own weight (normally zero far away)

• This is all convolution is: it is a moving weighted average

Slide credit: S. Marschner

Filters

• Sequence of weights \(a[j] \) is called a filter

• Filter is nonzero over its region of support
 – usually centered on zero: support radius \(r \)

• Filter is normalized so that it sums to 1.0
 – this makes for a weighted average, not just any old weighted sum

• Most filters are symmetric about 0
 – since for images we usually want to treat left and right the same

Slide credit: S. Marschner

Convolution and filtering

• Can express sliding average as convolution with a box filter

• \(a_{\text{box}} = [..., 0, 1, 1, 1, 1, 0, ...] \)
Example: box and step

Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) \([... , 1, 4, 6, 4, 1, ...]/16\)

Key properties

- **Linearity:** \(\text{filter}(f_1 + f_2) = \text{filter}(f_1) + \text{filter}(f_2)\)
- **Shift invariance:** \(\text{filter(shift}(f)) = \text{shift(filter}(f))\)
 - same behavior regardless of pixel location, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

And in pseudocode...

```c
function convolve(sequence a, sequence b, int r, int i) {
    s = 0
    for j = -r to r {
        s = s + a[j]*b[i - j]
    }
    return s
}
```
Properties in more detail

- Commutative: \(a \ast b = b \ast a \)
 - Conceptually no difference between filter and signal

- Associative: \(a \ast (b \ast c) = (a \ast b) \ast c \)
 - Often apply several filters one after another: \(((a \ast b_1) \ast b_2) \ast b_3\)
 - This is equivalent to applying one filter: \(a \ast (b_1 \ast b_2 \ast b_3)\)

- Distributes over addition: \(a \ast (b + c) = (a \ast b) + (a \ast c) \)

- Scalars factor out: \(ka \ast b = a \ast kb = k(a \ast b)\)

- Identity: unit impulse \(e = [..., 0, 1, 0, 0, ...] \), \(a \ast e = a\)

A gallery of filters

- Box filter
 - Simple and cheap

- Tent filter
 - Linear interpolation

- Gaussian filter
 - Very smooth antialiasing filter

Box filter

\[
a_{\text{box}, r}[i] = \begin{cases} \frac{1}{2r+1} & |i| \leq r, \\ 0 & \text{otherwise}. \end{cases}
\]

\[
f_{\text{box}, r}(x) = \begin{cases} \frac{1}{2r} & -r \leq x < r, \\ 0 & \text{otherwise}. \end{cases}
\]

Tent filter

\[
f_{\text{tent}}(x) = \begin{cases} 1 - |x| & |x| < 1, \\ 0 & \text{otherwise}; \end{cases}
\]

\[
f_{\text{tent}, r}(x) = \frac{f_{\text{tent}}(x/r)}{r}.
\]
Gaussian filter

\[
f_g(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2},
\]

Discrete filtering in 2D

- Same equation, one more index
 \[
 (a * b)[i, j] = \sum_{i', j'} a[i', j'] b[i - i', j - j']
 \]
 - now the filter is a rectangle you slide around over a grid of numbers

- Usefulness of associativity
 - often apply several filters one after another: \(((a * b_1) * b_2) * b_3\)
 - this is equivalent to applying one filter: \(a * (b_1 * (b_2 * b_3))\)

And in pseudocode...

```python
function convolve2d(filter2d a, filter2d b, int i, int j)
    s = 0
    r = a.radius
    for i' = -r to r do
        for j' = -r to r do
            s = s + a[i'][j'] * b[i - i'][j - j']
        end
    end
    return s
end
```

Moving Average In 2D

<table>
<thead>
<tr>
<th>F[x, y]</th>
<th>G[x, y]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Moving Average In 2D

\[F[x, y] \quad G[x, y] \]

Slide credit: S. Seitz
Moving Average In 2D

\[F[x, y] \quad G[x, y] \]

- Sliding window of size \(2k+1 \times 2k+1\)
- Loop over all pixels
- Attribute uniform weight to each pixel
- Loop over all pixels in neighborhood around image pixel \(F[i,j] \)

\[
G[i, j] = \frac{1}{(2k + 1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i + u, j + v]
\]

Now generalize to allow different weights depending on neighboring pixel's relative position:

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

Image Correlation Filtering

- Center filter \(g\) at each pixel in image \(f\)
- Multiply weights by corresponding pixels
- Set resulting value in output image \(h\)
- \(g\) is called a filter, mask, kernel, or template
- Linear filtering is sum of dot product at each pixel position
- Filtering operation called cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

This is called cross-correlation, denoted \(G = H \otimes F\)

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter “kernel” or “mask” \(H[u,v]\) is the prescription for the weights in the linear combination.
Correlation filtering

Cross correlation example

Averaging filter

- What values belong in the kernel H for the moving average example?

$$G = H \otimes F$$

Slide credit: Fei-Fei Li

Slide credit: K. Grauman
Smoothing by averaging

What if the filter size was 5 x 5 instead of 3 x 3?

Boundary issues

- What is the size of the output?
- MATLAB: output size / “shape” options
 - shape = ‘full’: output size is sum of sizes of f and g
 - shape = ‘same’: output size is same as f
 - shape = ‘valid’: output size is difference of sizes of f and g

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (MATLAB):
 - clip filter (black): imfilter(f, g, 0)
 - wrap around: imfilter(f, g, ‘circular’)
 - copy edge: imfilter(f, g, ‘replicate’)
 - reflect across edge: imfilter(f, g, ‘symmetric’)

Slide credit: K. Grauman

Slide credit: S. Lazebnik

Slide credit: S. Marschner
Gaussian filter

- What if we want nearest neighboring pixels to have the most influence on the output?

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

This kernel is an approximation of a 2d Gaussian function:

\[
h(u, v) = \frac{1}{2\pi \sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}}
\]

- Removes high-frequency components from the image ("low-pass filter").

Smoothing with a Gaussian

Gaussian filters

- What parameters matter here?

 - **Size** of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

\[
\begin{bmatrix}
\sigma = 5 \text{ with } 10 \times 10 \text{ kernel} \\
\sigma = 5 \text{ with } 30 \times 30 \text{ kernel}
\end{bmatrix}
\]

- **Variance** of Gaussian: determines extent of smoothing

\[
\begin{bmatrix}
\sigma = 2 \text{ with } 30 \times 30 \text{ kernel} \\
\sigma = 5 \text{ with } 30 \times 30 \text{ kernel}
\end{bmatrix}
\]
Choosing kernel width

- Rule of thumb: set filter half-width to about 3σ

Matlab

```matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian', hsize, sigma);
>> mesh(h);
>> imagesc(h);
>> outim = imfilter(im, h); % correlation
>> imshow(outim);
```

Smoothing with a Gaussian

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and controls the amount of smoothing.

Gaussian Filters

For $\sigma = 1$ pixel, $\sigma = 5$ pixels, $\sigma = 10$ pixels, $\sigma = 30$ pixels
Spatial Resolution and Color

Blurring the G Component

Blurring the R Component

Blurring the B Component

Slide credit: C. Dyer
“Lab” Color Representation

A transformation of the colors into a color space that is more perceptually meaningful:
L: luminance,
a: red-green,
b: blue-yellow

Blurring L

Blurring a

Blurring b
Separability

• In some cases, filter is separable, and we can factor into two steps:
 – Convolve all rows
 – Convolve all columns

Separability of the Gaussian filter

\[
G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)
\]

\[
= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{y^2}{2\sigma^2}\right)\right)
\]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x\) and the other a function of \(y\).

In this case, the two functions are the (identical) 1D Gaussian.

Why is separability useful?

• What is the complexity of filtering an \(n \times n\) image with an \(m \times m\) kernel?
 – \(O(n^2 m^2)\)

• What if the kernel is separable?
 – \(O(n^2 m)\)
Properties of smoothing filters

- **Smoothing**
 - Values positive
 - Sum to 1 → constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove “high-frequency” components; “low-pass” filter

Filtering an impulse signal

What is the result of filtering the impulse signal (image) F with the arbitrary kernel H?

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
H[u, v]
\]

\[
F[x, y] \otimes H[u, v] = G[x, y]
\]

Convolution

- **Convolution:**
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]

Notation for convolution operator

Convolution vs. Correlation

- A **convolution** is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 - convolution is a filtering operation
- **Correlation** compares the similarity of two sets of data. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 - correlation is a measure of relatedness of two signals
Convolution vs. correlation

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v] \]

\[G = H \ast F \]

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v] \]

\[G = H \otimes F \]

For a Gaussian or box filter, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ?

Practice with linear filters

Original

```
0 0 0
0 1 0
0 0 0
```

Filtered (no change)

```
0 0 0
0 1 0
0 0 0
```

Predict the outputs using correlation filtering

```
* 0 0 0 = ?
 0 1 0
0 0 0
```

```
* 0 0 0 = ?
 0 0 1
0 0 0
```

```
* 0 0 0
 0 2 0
0 0 0
= \frac{1}{9} 1 1 1
1 1 1
1 1 1
```

Slide credit: K. Grauman

Slide credit: D. Lowe
Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{array}
\]

Shifted left by 1 pixel with correlation

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{array}
\]

Blur (with a box filter)

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]
Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

?

Slide credit: D. Lowe

Sharpening filter:

accentuates differences with local average

Slide credit: D. Lowe

Filtering examples: sharpening

before after

Slide credit: K. Grauman

Sharpening

- What does blurring take away?

Let's add it back:

original - smoothed + detail = sharpened

Slide credit: S. Lazebnik
Unsharp mask filter

\[f + \alpha(f - f * g) = (1 + \alpha)f - \alpha f * g = f * (1 + \alpha) - g \]

Unsharp Masking

Sharpening using Unsharp Mask Filter

Other filters

Slide credit: S. Lazebnik

Slide credit: C. Dyer

Slide credit: C. Dyer

Slide credit: J. Hays
Other filters

A **Median Filter** operates over a window by selecting the median intensity in the window.

- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Median filters

Median Filter

- **No new pixel values introduced**
- **Removes spikes**: good for impulse, salt & pepper noise
- **Non-linear filter**

\[
\begin{array}{ccc}
10 & 15 & 20 \\
23 & 90 & 27 \\
33 & 31 & 30 \\
\end{array}
\]

Median value

\[
\begin{array}{ccc}
10 & 15 & 20 \\
23 & 27 & 30 \\
33 & 31 & 30 \\
\end{array}
\]

Sort

\[
\begin{array}{ccc}
10 & 15 & 20 \\
23 & 27 & 27 \\
33 & 31 & 30 \\
\end{array}
\]

Replace

Salt and pepper noise

Median filtered

\[
\text{Matlab:} \text{output } im = \text{medfilt2} (im, \ [h \ w]);
\]

Plots of a row of the image

Slide credit: J. Hays

Slide credit: K. Grauman

Slide credit: S. Seitz

Slide credit: M. Hebert
Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers
 - Median filter is edge preserving

Next week

- Introduction to frequency domain techniques
- The Fourier Transform