BBM 413
Fundamentals of Image Processing

Erkut Erdem
Dept. of Computer Engineering
Hacettepe University

Frequency Domain Techniques – Part I

Review - Point Operations

- Smallest possible neighborhood is of size 1x1
- Process each point independently of the others
- Output image \(g \) depends only on the value of \(f \) at a single point \((x,y)\)
- Transformation function \(T \) remaps the sample's value:
 \[s = T(r) \]
 where
 - \(r \) is the value at the point in question
 - \(s \) is the new value in the processed result
 - \(T \) is an intensity transformation function

Review - Spatial Filtering

\[f[\cdot,\cdot] \]
\[g[\cdot,\cdot] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]

Slide credit: S. Seitz
\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]
Today

- Frequency domain techniques
- Images in terms of frequency
- Fourier Series
- Convolution Theorem

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Fill in the blanks:

a) \(_ = D \ast B \)
b) \(A = _ \ast _ \)
c) \(F = D \ast _ \)
d) \(_ = D \ast D \)

Slide credit: J. Hays

Slide credit: D. Hoiem
Why does a lower resolution image still make sense to us? What do we lose?

How is it that a 4MP image can be compressed to a few hundred KB without a noticeable change?

Answer to these questions?

- Thinking images in terms of frequency.
- Treat images as infinite-size, continuous periodic functions.

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.
Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):
Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

• Don’t believe it?
 – Neither did Lagrange, Laplace, Poisson and other big wigs
 – Not translated into English until 1878!

• But it’s (mostly) true!
 – called Fourier Series
 – there are some subtle restrictions

A sum of sines

Our building block:
\[A \sin(\omega x + \phi) \]

Add enough of them to get any signal \(f(x) \) you want!

Frequency Spectra

• example: \(g(t) = \sin(2\pi f t) + (1/3)\sin(2\pi(3f) t) \)
Frequency Spectra

Slide credit: A. Efros
Frequency Spectra

$$\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kt)$$

Image credit: Lucas V. Barbosa
Example: Music

We think of music in terms of frequencies at different magnitudes.

Other signals

We can also think of all kinds of other signals the same way.

Fourier Transform

We want to understand the frequency \(w \) of our signal. So, let’s reparametrize the signal by \(w \) instead of \(x \):

\[
 f(x) \longrightarrow \text{Fourier Transform} \longrightarrow F(w)
\]

For every \(w \) from 0 to inf, \(F(w) \) holds the amplitude \(A \) and phase \(f \) of the corresponding sine

\[
 A \sin(\omega x + \phi)
\]

- How can \(F \) hold both? Complex number trick!

\[
 F(\omega) = R(\omega) + iI(\omega)
\]

\[
 A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \quad \phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}
\]

We can always go back:

\[
 F(w) \longrightarrow \text{Inverse Fourier Transform} \longrightarrow f(x)
\]

Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
 - Magnitude encodes how much signal there is at a particular frequency
 - Phase encodes spatial information (indirectly)
 - For mathematical convenience, this is often notated in terms of real and complex numbers

Amplitude: \(A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \)

Phase: \(\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)} \)
Discrete Fourier transform

- **Forward transform**
 \[F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)} \]
 for \(u = 0,1,2,\ldots,M-1, v = 0,1,2,\ldots,N-1 \)

- **Inverse transform**
 \[f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)} \]
 for \(x = 0,1,2,\ldots,M-1, y = 0,1,2,\ldots,N-1 \)

\(u,v \) : the transform or frequency variables
\(x,y \) : the spatial or image variables

The Fourier Transform

- Represent function on a new basis
 - Think of functions as vectors, with many components
 - We now apply a linear transformation to transform the basis
 - dot product with each basis element

- In the expression, \(u \) and \(v \) select the basis element, so a function of \(x \) and \(y \) becomes a function of \(u \) and \(v \)

- basis elements have the form \(e^{-j2\pi(ux+vy)} \)

How to interpret 2D Fourier Spectrum

- **Vector** \((u,v) \)
 - **Magnitude** gives frequency
 - **Direction** gives orientation.

- **Fourier basis element**
 \(e^{-j2\pi(ux+vy)} \)

- **example, real part**
 \(F^a(x,y) \)

- **Log power spectrum**
 \(F^a(x,y) = \text{const. for } (ux+vy) = \text{const.} \)

- **Vector** \((u,v) \)
 - **Magnitude** gives frequency
 - **Direction** gives orientation.
Here \(u \) and \(v \) are larger than in the previous slide.

\[
e^{-\pi \left(\omega x + \omega y \right)}
\]

\[
e^{-\pi \left(\omega x + \omega y \right)}
\]

Slide credit: S. Thrun

And larger still...

\[
e^{-\pi \left(\omega x + \omega y \right)}
\]

\[
e^{-\pi \left(\omega x + \omega y \right)}
\]

Slide credit: S. Thrun

2D FFT

Sinusoid with frequency = 1 and its FFT

Slide credit: M. H. Yang

2D FFT

Sinusoid with frequency = 3 and its FFT

Slide credit: M. H. Yang
2D FFT

Sinusoid with frequency = 5 and its FFT
Slide credit: M. H. Yang

Sinusoid with frequency = 10 and its FFT
Slide credit: M. H. Yang

Sinusoid with frequency = 15 and its FFT
Slide credit: M. H. Yang

Sinusoid with varying frequency and their FFT
Slide credit: M. H. Yang
Rotation

Sinusoid rotated at 30 degrees and its FFT

Slide credit: M. H. Yang

2D FFT

Sinusoid rotated at 60 degrees and its FFT

Slide credit: M. H. Yang

2D FFT

$$F(u, v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j2\pi(ux/M + vy/N)}$$

Convolution masks for different frequencies

Slide credit: M. H. Yang

Fourier analysis in images

Intensity Image

Fourier Image

More: http://www.cs.unm.edu/~brayer/vision/fourier.html

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

Slide credit: A. Efros
Signals can be composed

$$\begin{align*}
\text{Image 1} & + \text{Image 2} = \text{Result Image} \\
\text{Magnitude FT Image 1} & + \text{Magnitude FT Image 2} = \text{Result Magnitude FT} \\
\text{Log(1+Magnitude FT Result Image)} & = \text{Result Log(1+Magnitude FT)}
\end{align*}$$

Some important Fourier Transforms

The Fourier Transform of some well-known images
Fourier Amplitude Spectrum

- Fourier Amplitude Spectrum images:
 - A
 - B
 - C

- Fourier transform magnitude images:
 - What in the image causes the dots?

The Convolution Theorem

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms:
 \[F[g * h] = F[g]F[h] \]
- The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms:
 \[F^{-1}[gh] = F^{-1}[g] * F^{-1}[h] \]
- **Convolution** in spatial domain is equivalent to **multiplication** in frequency domain!
Properties of Fourier Transforms

• Linearity \(\mathcal{F}[ax(t) + by(t)] = a\mathcal{F}[x(t)] + b\mathcal{F}[y(t)] \)

• Fourier transform of a real signal is symmetric about the origin

• The energy of the signal is the same as the energy of its Fourier transform

Filtering in spatial domain

\[
\begin{array}{c|c|c}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1 \\
\end{array}
\]

Filtering in frequency domain

\[
\begin{align*}
\mathcal{F}(s_x, s_y) & = |F(s_x, s_y)| \\
\mathcal{H}(s_x, s_y) & = |H(s_x, s_y)| \\
\mathcal{G}(s_x, s_y) & = |G(s_x, s_y)|
\end{align*}
\]

2D convolution theorem example

Slide credits: J. Hays, D. Hoiem, A. Efros
Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Filtering

Box Filter

Fourier Transform pairs

Spatial domain

\[F(s) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i sx}dx \]

Frequency domain

+box(x)

\[\text{gauss}(x; \sigma) \]

\[\text{sinc}(s) \]

Slide credit: A. Efros
Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:

FFT in Matlab

- Filtering with fft
 - Filtering with `fft`
    ```matlab
    im = ... % "im" should be a gray-scale floating point image
    [imh, imw] = size(im);
    fftsize = 1024; % should be order of 2 (for speed) and include padding
    im_fft = fft2(im, fftsize, fftsize); % 1) fft im with padding
    hs = 50; % filter half-size
    fil = fspecial('gaussian', hs*2+1, 10); % 2) fft fil, pad to same size as image
    im_fil_fft = im_fft .* fil_fft; % 3) multiply fft images
    im_fil = ifft2(im_fil_fft); % 4) inverse fft2
    im_fil = im_fil(1+hs:size(im,1)+hs, 1+hs:size(im, 2)+hs); % 5) remove padding
    ```

- Displaying with fft
  ```matlab
  figure(1), imagesc(log(abs(fftshift(im_fft)))), axis image, colormap jet
  ```

Edges in images

Phase and Magnitude

- Curious fact
 - all natural images have about the same magnitude transform
 - hence, phase seems to matter, but magnitude largely doesn’t

- Demonstration
 - Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?
This is the magnitude transform of the cheetah picture.

This is the magnitude transform of the zebra picture.
Clues from Human Perception

- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid-high frequencies dominate perception
- When we see an image from far away, we are effectively subsampling it

Campbell-Robson contrast sensitivity curve

The higher the frequency the less sensitive human visual system is...
Lossy Image Compression (JPEG)

\[X_{k_1,k_2} = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x_{n_1,n_2} \cos \left(\frac{\pi}{N_1} (n_1 + \frac{1}{2}) k_1 \right) \cos \left(\frac{\pi}{N_2} (n_2 + \frac{1}{2}) k_2 \right). \]

Using DCT in JPEG

- The first coefficient \(B(0,0) \) is the DC component, the average intensity
- The top-left coeffs represent low frequencies, the bottom right – high frequencies

Image compression using DCT

- DCT enables image compression by concentrating most image information in the low frequencies
- Loose unimportant image info (high frequencies) by cutting \(B(u,v) \) at bottom right
- The decoder computes the inverse DCT – IDCT

JPEG compression comparison

89k 12k
Things to Remember

• Sometimes it makes sense to think of images and filtering in the frequency domain
 – Fourier analysis

• Can be faster to filter using FFT for large images (N logN vs. N² for auto-correlation)

• Images are mostly smooth
 – Basis for compression

Practice question

1. Match the spatial domain image to the Fourier magnitude image

Summary

• Frequency domain techniques
• Images in terms of frequency
• Fourier Series
• Convolution Theorem

Next Week

• Sampling
• Gabor wavelets
• Steerable filters