BBM 413
Fundamentals of Image Processing

Erkut Erdem
Dept. of Computer Engineering
Hacettepe University

Point Operations
Histogram Processing
Today’s topics

• Point operations
• Histogram processing
Today’s topics

• Point operations
• Histogram processing
Digital images

- **Sample** the 2D space on a regular grid
- **Quantize** each sample (round to nearest integer)

- Image thus represented as a matrix of integer values.

![Image of 3D surface with vectors and matrix]

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>79</td>
<td>23</td>
<td>119</td>
<td>120</td>
<td>105</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>9</td>
<td>62</td>
<td>12</td>
<td>78</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>59</td>
<td>197</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>178</td>
<td>135</td>
<td>5</td>
<td>188</td>
<td>191</td>
<td>68</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>29</td>
<td>26</td>
<td>37</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>0</td>
<td>89</td>
<td>144</td>
<td>147</td>
<td>167</td>
<td>102</td>
<td>62</td>
<td>208</td>
</tr>
<tr>
<td>255</td>
<td>252</td>
<td>0</td>
<td>166</td>
<td>123</td>
<td>62</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>168</td>
<td>63</td>
<td>127</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>99</td>
<td>30</td>
</tr>
</tbody>
</table>

Slide credit: K. Grauman, S. Seitz
Image Transformations

- \(g(x,y) = T[f(x,y)] \)

\(g(x,y) \): output image \(f(x,y) \): input image \(M \): transformation function

1. Point operations: operations on single pixels
2. Spatial filtering: operations considering pixel neighborhoods
3. Global methods: operations considering whole image
Image Transformations

- $g(x,y) = T[f(x,y)]$

$g(x,y)$: output image
$f(x,y)$: input image
M: transformation function

1. **Point operations**: operations on single pixels
2. **Spatial filtering**: operations considering pixel neighborhoods
3. **Global methods**: operations considering whole image

$$g(x, y) = M(f(x, y))$$
Image Transformations

- $g(x,y) = M[f(x,y)]$

$g(x,y)$: output image \hspace{1em} $f(x,y)$: input image \hspace{1em} M: transformation function

1. **Point operations**: operations on single pixels
2. **Spatial filtering**: operations considering pixel neighborhoods
3. **Global methods**: operations considering whole image

\[
g(x, y) = M(\{f(i, j) | (i, j) \in N(x, y)\})
\]
Point operations

• Smallest possible neighborhood is of size 1x1
• Process each point independently of the others
• Output image g depends only on the value of f at a single point (x,y)
• Map each pixel’s value to a new value
• Transformation function T remaps the sample’s value:

$$s = T(r)$$

where

– r is the value at the point in question
– s is the new value in the processed result
– T is a intensity transformation function
Point operations

• Is mapping one color space to another (e.g. RGB2HSV) a point operation?
• Is image arithmetic a point operation?
• Is performing geometric transformations a point operation?
 – Rotation
 – Translation
 – Scale change
 – etc.
Sample intensity transformation functions

- Image negatives
- Log transformations
 - Compresses the dynamic range of images
- Power-law transformations
 - Gamma correction
Point Processing Examples

produces an image of higher contrast than the original by darkening the intensity levels below k and brightening intensities above k

produces a binary (two-intensity level) image
Image Mean

\[
I_{av} = \frac{\sum \sum I(i,j)}{\sum \sum 1}
\]

\[
I_{NEW}(x,y) = I(x,y) - b
\]

Slide credit: Y. Hel-Or
Image Mean

Changing the image mean

Slide credit: Y. Hel-Or
Image Negative

\[M(\nu) = 255 - \nu \]
Dynamic range

- Dynamic range $R_d = \frac{I_{\text{max}}}{I_{\text{min}}}$, or $(I_{\text{max}} + k) / (I_{\text{min}} + k)$
 - determines the degree of image contrast that can be achieved
 - a major factor in image quality

- Ballpark values
 - Desktop display in typical conditions: 20:1
 - Photographic print: 30:1
 - High dynamic range display: 10,000:1

low contrast medium contrast high contrast

Slide credit: S. Marschner
Point Operations: Contrast stretching and Thresholding

• **Contrast stretching:** produces an image of higher contrast than the original

• **Thresholding:** produces a binary (two-intensity level) image
Point Operations: Contrast stretching and Thresholding

- **Contrast stretching:** produces an image of higher contrast than the original.

- **Thresholding:** produces a binary (two-intensity level) image.

![Diagram showing contrast stretching and thresholding](image)
Point Operations

• What can you say about the image having the following histogram?

• A low contrast image

• How we can process the image so that it has a better visual quality?
Point Operations

- How we can process the image so that it has a better visual quality?

- Answer is contrast stretching!
Point Operations

- Let us devise an appropriate point operation.

- Shift all values so that the observable pixel range starts at 0.
Point Operations

• Let us devise an appropriate point operation.

• Now, scale everything in the range 0-100 to 0-255.
Point Operations

• Let us devise an appropriate point operation.

• What is the corresponding transformation function?
• \(T(r) = 2.55^*(r-100) \)
Point Operations: Intensity-level Slicing

- highlights a certain range of intensities
Point Operations: Intensity-level Slicing

- highlights a certain range of intensities

FIGURE 3.11 (a) This transformation highlights intensity range \([A, B]\) and reduces all other intensities to a lower level. (b) This transformation highlights range \([A, B]\) and preserves all other intensity levels.
Intensity encoding in images

- Recall that the pixel values determine how bright that pixel is.
- Bigger numbers are (usually) brighter
- *Transfer function*: function that maps input pixel value to luminance of displayed image

\[I = f(n) \quad f : [0, N] \rightarrow [I_{\text{min}}, I_{\text{max}}] \]

- What determines this function?
 - physical constraints of device or medium
 - desired visual characteristics

adapted from: S. Marschner
What this projector does?

- Something like this:

\[
I(n) = \begin{cases}
0 & n = 0 \\
0.25 & n = 64 \\
0.5 & n = 128 \\
0.75 & n = 192 \\
1 & N
\end{cases}
\]

adapted from: S. Marschner
Constraints on transfer function

• Maximum displayable intensity, I_{max}
 – how much power can be channeled into a pixel?
 • LCD: backlight intensity, transmission efficiency (<10%)
 • projector: lamp power, efficiency of imager and optics

• Minimum displayable intensity, I_{min}
 – light emitted by the display in its “off” state
 • e.g. stray electron flux in CRT, polarizer quality in LCD

• Viewing flare, k: light reflected by the display
 – very important factor determining image contrast in practice
 • 5% of I_{max} is typical in a normal office environment [sRGB spec]
 • much effort to make very black CRT and LCD screens
 • all-black decor in movie theaters
Transfer function shape

• Desirable property: the change from one pixel value to the next highest pixel value should not produce a visible contrast
 – otherwise smooth areas of images will show visible bands

• What contrasts are visible?
 – rule of thumb: under good conditions we can notice a 2% change in intensity
 – therefore we generally need smaller quantization steps in the darker tones than in the lighter tones
 – most efficient quantization is logarithmic
How many levels are needed?

- Depends on dynamic range
 - 2% steps are most efficient:
 \[0 \leftrightarrow I_{\text{min}}; 1 \leftrightarrow 1.02I_{\text{min}}; 2 \leftrightarrow (1.02)^2 I_{\text{min}}; \ldots \]
 - log 1.02 is about 1/120, so 120 steps per decade of dynamic range
 - 240 for desktop display
 - 360 to print to film
 - 480 to drive HDR display

- If we want to use linear quantization (equal steps)
 - one step must be < 2% (1/50) of \(I_{\text{min}} \)
 - need to get from \(~0\) to \(I_{\text{min}} \) \(R_d \) so need about 50 \(R_d \) levels
 - 1500 for a print; 5000 for desktop display; 500,000 for HDR display

- Moral: 8 bits is just barely enough for low-end applications
 - but only if we are careful about quantization

Slide credit: S. Marschner
Intensity quantization in practice

• Option 1: linear quantization $I(n) = \left(\frac{n}{N}\right) I_{\text{max}}$
 – pro: simple, convenient, amenable to arithmetic
 – con: requires more steps (wastes memory)
 – need 12 bits for any useful purpose; more than 16 for HDR

• Option 2: power-law quantization $I(n) = \left(\frac{n}{N}\right)\gamma I_{\text{max}}$
 – pro: fairly simple, approximates ideal exponential quantization
 – con: need to linearize before doing pixel arithmetic
 – con: need to agree on exponent
 – 8 bits are OK for many applications; 12 for more critical ones

• Option 2: floating-point quantization $I(x) = \left(\frac{x}{w}\right) I_{\text{max}}$
 – pro: close to exponential; no parameters; amenable to arithmetic
 – con: definitely takes more than 8 bits
 – 16-bit “half precision” format is becoming popular

Slide credit: S. Marschner
Why gamma?

• Power-law quantization, or *gamma correction* is most popular

• Original reason: CRTs are like that
 – intensity on screen is proportional to (roughly) voltage\(^2\)

• Continuing reason: inertia + memory savings
 – inertia: gamma correction is close enough to logarithmic that there’s no sense in changing
 – memory: gamma correction makes 8 bits per pixel an acceptable option

Slide credit: S. Marschner
Gamma quantization

- Close enough to ideal perceptually uniform exponential

Slide credit: S. Marschner
Gamma correction

- Sometimes (often, in graphics) we have computed intensities that we want to display linearly.
- In the case of an ideal monitor with zero black level,
 \[I(n) = \left(\frac{n}{N} \right) ^ \gamma \]
 (where \(N = 2^n - 1 \) in \(n \) bits). Solving for \(n \):
 \[n = N a ^ {\frac{1}{\gamma}} \]
- This is the “gamma correction” recipe that has to be applied when computed values are converted to 8 bits for output.
 - Failing to do this (implicitly assuming gamma = 1) results in dark, oversaturated images.

Slide credit: S. Marschner
Gamma correction

Corrected for γ lower than display

OK

Corrected for γ higher than display

Slide credit: S. Marschner
Instagram Filters

• How do they make those Instagram filters?

“It's really a combination of a bunch of different methods. In some cases we draw on top of images, in others we do pixel math. It really depends on the effect we're going for.” --- Kevin Systrom, co-founder of Instagram

Source: C. Dyer
Example Instagram Steps

1. Perform an independent RGB color point transformation on the original image to increase contrast or make a color cast
Example Instagram Steps

2. Overlay a circle background image to create a vignette effect

Source: C. Dyer
Example Instagram Steps

3. Overlay a background image as decorative grain

Source: C. Dyer
Example Instagram Steps

4. Add a border or frame
Result

Javascript library for creating Instagram-like effects, see: http://alexmic.net/filtrr/

Source: C. Dyer
Today’s topics

• Point operations

• Histogram processing
Histogram

- Histogram: a discrete function $h(r)$ which counts the number of pixels in the image having intensity r
- If $h(r)$ is normalized, it measures the probability of occurrence of intensity level r in an image

What histograms say about images?

- What they don’t?
 - No spatial information

A descriptor for visual information
Histogram

Normalized Histogram

Cumulative Histogram

Slide credit: Y. Hel-Or
Images and histograms

- How do histograms change when
 - we adjust brightness? shifts the histogram horizontally
 - we adjust contrast? stretches or shrinks the histogram horizontally
Image Representations: Histograms

Global histogram

- Represent distribution of features
 - Color, texture, depth, …
Image Representations: Histograms

Histogram: Probability or count of data in each bin

Joint histogram
- Requires lots of data
- Loss of resolution to avoid empty bins

Marginal histogram
- Requires independent features
- More data/bin than joint histogram

Image credit: D. Kauchak
Histograms: Implementation issues

• Quantization
 – Grids: fast but applicable only with few dimensions

 Few Bins
 Need less data
 Coarser representation

 Many Bins
 Need more data
 Finer representation

• Matching
 – Histogram intersection or Euclidean may be faster
 – Chi-squared often works better
 – Earth mover’s distance is good for when nearby bins represent similar values

Slide credit: J. Hays
What kind of things do we compute histograms of?

- Color

 L*\(a\)*b* color space

- Texture (filter banks over regions – later on)

Slide credit: J. Hays
What kind of things do we compute histograms of?

- Histograms of oriented gradients (later on)

SIFT – Lowe IJCV 2004
• The image histogram does not fully represent the image
Examples

Original image

Decreasing contrast

Increasing average

Slide credit: Y. Hel-Or
Image Statistics

- The image mean: \(E\{I\} = \frac{1}{N} \sum_{i,j} I(i, j) = \frac{1}{N} \sum_k k H(k) = \sum_k k P(k) \)

- Generally: \(E\{g(k)\} = \sum_k g(k) P(k) \)

- The image s.t.d.: \(\sigma(I) = \sqrt{E\{(I - E\{I\})^2\}} = \sqrt{E(I^2) - E^2(I)} \)

where \(E\{I^2\} = \sum_k k^2 P(k) \)

Slide credit: Y. Hel-Or
Image Entropy

\[Entropy(I) = -\sum_k P(k) \log P(k) \]

- The image entropy specifies the uncertainty in the image values.
- Measures the averaged amount of information required to encode the image values.

Slide credit: Y. Hel-Or
Image Entropy

- An infrequent event provides more information than a frequent event
- Entropy is a measure of histogram dispersion

![Graph showing entropy values](image)

- entropy=7.4635
- entropy=0

Slide credit: Y. Hel-Or
Adaptive Histogram

- In many cases histograms are needed for local areas in an image
- Examples:
 - Pattern detection
 - adaptive enhancement
 - adaptive thresholding
 - tracking
Histogram Usage

• Digitizing parameters

• Measuring image properties:
 – Average
 – Variance
 – Entropy
 – Contrast
 – Area (for a given gray-level range)

• Threshold selection

• Image distance

• Image Enhancement
 – Histogram equalization
 – Histogram stretching
 – Histogram matching

Slide credit: Y. Hel-Or
Example: Auto-Focus

• In some optical equipment (e.g. slide projectors) inappropriate lens position creates a blurred (“out-of-focus”) image.

• We would like to automatically adjust the lens.

• How can we measure the amount of blurring?

Slide credit: Y. Hel-Or
Example: Auto-Focus

- Image mean is not affected by blurring
- Image s.t.d. (entropy) is decreased by blurring
- **Algorithm**: Adjust lens according the changes in the histogram s.t.d.

Slide credit: Y. Hel-Or
Recall: Thresholding

\[F(k) \]

Threshold value

Slide credit: Y. Hel-Or
Threshold Selection

Original Image

Binary Image

Threshold too low

Threshold too high

Slide credit: Y. Hel-Or
Segmentation using Thresholding

Original

Histogram

Threshold = 50

Threshold = 75

Slide credit: Y. Hel-Or
Segmentation using Thresholding

Original

Histogram

Threshold = 21

Slide credit: Y. Hel-Or
Adaptive Thresholding

- Thresholding is space variant.
- How can we choose the local threshold values?
Histogram based image distance

- **Problem**: Given two images A and B whose (normalized) histogram are P_A and P_B, define the distance $D(A,B)$ between the images.

- **Example Usage**:
 - Tracking
 - Image retrieval
 - Registration
 - Detection
 - Many more ...

Porikli 05

Slide credit: Y. Hel-Or
Option 1: Minkowski Distance

\[D_p(A, B) = \left[\sum_k |P_A(k) - P_B(k)|^p \right]^{1/p} \]

• **Problem**: distance may not reflects the perceived dissimilarity:
Option 2: Kullback-Leibler (KL) Distance

\[D_{KL}(A \| B) = - \sum_k P_A(k) \log \frac{P_A(k)}{P_B(k)} \]

• Measures the amount of added information needed to encode image A based on the histogram of image B.

• Non-symmetric: \(D_{KL}(A,B) \neq D_{KL}(B,A) \)

• Suffers from the same drawback of the Minkowski distance.

Slide credit: Y. Hel-Or
Option 3: The Earth Mover Distance (EMD)

- Suggested by Rubner & Tomasi 98
- Defines as the minimum amount of “work” needed to transform histogram H_A towards H_B
- The term d_{ij} defines the “ground distance” between gray-levels i and j.
- The term $F=\{f_{ij}\}$ is an admissible flow from $H_A(i)$ to $H_B(j)$
Option 3: The Earth Mover Distance (EMD)

Slide credit: P. Barnum
Option 3: The Earth Mover Distance (EMD)
Option 3: The Earth Mover Distance (EMD)

Slide credit: P. Barnum
Option 3: The Earth Mover Distance (EMD)

(amount moved)

Slide credit: P. Barnum
Option 3: The Earth Mover Distance (EMD)

work = (amount moved) \times (distance moved)

Slide credit: P. Barnum
Option 3: The Earth Mover Distance (EMD)

\[D_{EMD}(A, B) = \min_F \sum_i \sum_j f_{ij} \cdot d_{ij} \]

\[s.t. \quad f_{ij} \geq 0 ; \quad P_B(k) = \sum_i f_{ik} ; \quad P_A(k) \geq \sum_i f_{ki} \]

- Constraints:
 - Move earth only from A to B
 - After move \(P_A \) will be equal to \(P_B \)
 - Cannot send more “earth” than there is

- Can be solved using Linear Programming
- Can be applied in high dim. histograms (color).

Slide credit: Y. Hel-Or
Special case: EMD in 1D

- Define C_A and C_B as the cumulative histograms of image A and B respectively:

$$D_{EMD}(A, B) = \sum_k |C_A(k) - C_B(k)|$$

Slide credit: Y. Hel-Or
Histogram equalization

• A good quality image has a nearly uniform distribution of intensity levels. Why?

• Every intensity level is equally likely to occur in an image

• *Histogram equalization:* Transform an image so that it has a uniform distribution
 – create a lookup table defining the transformation
Histogram as a probability density function

- Recall that a normalized histogram measures the probability of occurrence of an intensity level r in an image.
- We can normalize a histogram by dividing the intensity counts by the area

$$p(r) = \frac{h(r)}{\text{Area}}$$
Histogram equalization: Continuous domain

- Define a transformation function of the form

\[s = T(r) = (L - 1) \int_{0}^{r} p(w) \, dw \]

where
- \(r \) is the input intensity level
- \(s \) is the output intensity level
- \(p \) is the normalized histogram of the input signal
- \(L \) is the desired number of intensity levels

(Continuous) output signal has a uniform distribution!
Histogram equalization:
Discrete domain

- Define the following transformation function for an MxN image

\[s_k = T(r_k) = (L - 1) \sum_{j=0}^{k} \frac{n_j}{MN} = \frac{(L - 1)}{MN} \sum_{j=0}^{k} n_j \]

for \(k = 0, \ldots, L - 1 \)

where

- \(r_k \) is the input intensity level
- \(s_k \) is the output intensity level
- \(n_j \) is the number of pixels having intensity value \(j \) in the input image
- \(L \) is the number of intensity levels

(Discrete) output signal has a nearly uniform distribution!
Histogram equalization

- Define: \(C_b(v) = v \times \frac{\text{(# pixels)}}{\text{(# grayValues)}} \)

- Assign: \(v_b = C_b^{-1}(C_a(v_a)) = M(v_a) \)
Histogram equalization

Original

Goal

Slide credit: Y. Hel-Or
Histogram equalization

Original

Goal

Result

Slide credit: Y. Hel-Or
Histogram equalization examples

Slide credit: Y. Hel-Or
Histogram equalization examples

Original

Equalized

Slide credit: Y. Hel-Or
Histogram equalization examples

Original

Equalized

Slide credit: Y. Hel-Or
Histogram equalization examples
Histogram equalization examples

(1)

(2)

(3)

(4)
Histogram Specification

• Given an input image f and a specific histogram $p_2(r)$, transform the image so that it has the specified histogram.

• How to perform histogram specification?

• Histogram equalization produces a (nearly) uniform output histogram.

• Use histogram equalization as an intermediate step.
Histogram Specification

1. Equalize the histogram of the input image

\[T_1(r) = (L - 1) \int_0^r p_1(w) \, dw \]

2. Histogram equalize the desired output histogram

\[T_2(r) = (L - 1) \int_0^r p_2(w) \, dw \]

3. Histogram specification can be carried out by the following point operation:

\[s = T(r) = T_2^{-1}(T_1(r)) \]
Histogram Specification

- In cases where corresponding colors between images are not “consistent”, this mapping may fail:

Slide credit: Y. Hel-Or
Histogram Specification: Discussion

- Histogram matching produces the optimal **monotonic** mapping so that the resulting histogram will be as **close** as possible to the target histogram.

- This does not necessarily imply similar images.
Next week

• Spatial filtering