Spatial Filtering

Image Filtering
- **Image filtering:** computes a function of a *local neighborhood* at each pixel position
- Called “Local operator,” “Neighborhood operator,” or “Window operator”
- \(f: \) image \(\rightarrow \) image
- Uses:
 - Enhance images
 - Noise reduction, smooth, resize, increase contrast, recolor, artistic effects, etc.
 - Extract features from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching, e.g., eye template

Filtering
- The name “filter” is borrowed from frequency domain processing (next week’s topic)
- Accept or reject certain frequency components
- Fourier (1807): Periodic functions could be represented as a weighted sum of sines and cosines

Signals
- A signal is composed of low and high frequency components
 - Low frequency components: smooth / piecewise smooth
 - Neighboring pixels have similar brightness values
 - You’re within a region
 - High frequency components: oscillatory
 - Neighboring pixels have different brightness values
 - You’re either at the edges or noise points
Motivation: noise reduction

- Assume image is degraded with an additive model.
- Then,

\[
\text{Observation} = \text{True signal} + \text{noise} \\
\text{Observed image} = \text{Actual image} + \text{noise}
\]

\[\begin{align*}
\text{low-pass filters} & \quad \text{high-pass filters} \\
\downarrow & \quad \downarrow \\
\text{smooth the image}
\end{align*}\]

Common types of noise

- **Salt and pepper noise:** random occurrences of black and white pixels
- **Impulse noise:** random occurrences of white pixels
- **Gaussian noise:** variations in intensity drawn from a Gaussian normal distribution

Slide credit: S. Seitz
Gaussian noise

\[j(x,y) = f(x,y) + n(x,y) \]

Ideal Image

Noise process

Gaussian i.i.d. ("white") noise:
\[n(x,y) \sim N(\mu, \sigma) \]

>> noise = randn(size(im)).*sigma;
>> output = im + noise;

What is the impact of the sigma?

Slide credit: M. Hebert

Motivation: noise reduction

• Make multiple observations of the same static scene
• Take the average
• Even multiple images of the same static scene will not be identical.

Adapted from: K. Grauman

Image Filtering

• Idea: Use the information coming from the neighboring pixels for processing
• Design a transformation function of the local neighborhood at each pixel in the image
 – Function specified by a “filter” or mask saying how to combine values from neighbors.
• Various uses of filtering:
 – Enhance an image (denoise, resize, etc)
 – Extract information (texture, edges, etc)
 – Detect patterns (template matching)

Adapted from: K. Grauman
Filtering

- Processing done on a function
 - can be executed in continuous form (e.g. analog circuit)
 - but can also be executed using sampled representation
- Simple example: smoothing by averaging

![Continuous and discrete smoothing filters](image)

Linear filtering

- Filtered value is the linear combination of neighboring pixel values.
- Key properties
 - linearity: $\text{filter}(f + g) = \text{filter}(f) + \text{filter}(g)$
 - shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around
- Can be modeled mathematically by convolution

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors (spatial regularity in images)
 - Expect noise processes to be independent from pixel to pixel

![Moving average in 1D](image)
Convolution warm-up

- Same moving average operation, expressed mathematically:
 \[
 b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=-r}^{i+r} b[j]
 \]

Discrete convolution

- Simple averaging:
 \[
 b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=-r}^{i+r} b[j]
 \]
 - every sample gets the same weight
- Convolution: same idea but with weighted average
 \[
 (a \ast b)[i] = \sum_j a[j]b[i-j]
 \]
 - each sample gets its own weight (normally zero far away)
- This is all convolution is: it is a moving weighted average

Filters

- Sequence of weights \(a[j]\) is called a filter
- Filter is nonzero over its region of support
 - usually centered on zero: support radius \(r\)
- Filter is normalized so that it sums to 1.0
 - this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0
 - since for images we usually want to treat left and right the same

Convolution and filtering

- Can express sliding average as convolution with a box filter
 \[
 a_{\text{box}} = [..., 0, 1, 1, 1, 1, 0, ...]
 \]
Example: box and step

![Box and step example](image)

Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) \([..., 1, 4, 6, 4, 1, ...]/16\)

And in pseudocode...

```python
function convolve(sequence a, sequence b, int r, int i)
    s = 0
    for j = -r to r
        s = s + a[j] * b[i - j]
    return s
```

Key properties

- **Linearity:** \(\text{filter}(f_1 + f_2) = \text{filter}(f_1) + \text{filter}(f_2)\)
- **Shift invariance:** \(\text{filter(shift(f))) = shift(filter(f))}\)
 - same behavior regardless of pixel location, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.
- Theoretical result: any linear shift-invariant operator can be represented as a convolution
Properties in more detail

- Commutative: $a * b = b * a$
 - Conceptually no difference between filter and signal
- Associative: $a * (b * c) = (a * b) * c$
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$
- Distributes over addition: $a * (b + c) = (a * b) + (a * c)$
- Scalars factor out: $ka * b = a * kb = k (a * b)$
- Identity: unit impulse $e = [..., 0, 0, 1, 0, 0, ...]$, $a * e = a$

A gallery of filters

- Box filter
 - Simple and cheap
- Tent filter
 - Linear interpolation
- Gaussian filter
 - Very smooth antialiasing filter

Box filter

$ a_{\text{box}, r}[i] = \begin{cases} \frac{1}{2r+1} & |i| \leq r, \\ 0 & \text{otherwise.} \end{cases}$

$ f_{\text{box}, r}(x) = \begin{cases} \frac{1}{2r} & -r \leq x < r, \\ 0 & \text{otherwise.} \end{cases}$

Tent filter

$f_{\text{tent}}(x) = \begin{cases} 1 - |x| & |x| < 1, \\ 0 & \text{otherwise;} \end{cases}$

$f_{\text{tent}, r}(x) = f_{\text{tent}}(x/r) / r$
Gaussian filter

\[f_g(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

Discrete filtering in 2D

- Same equation, one more index
 \[(a \ast b)[i, j] = \sum_{i', j'} a[i', j'] b[i - i', j - j'] \]
 - now the filter is a rectangle you slide around over a grid of numbers
- Usefulness of associativity
 - often apply several filters one after another: \(((a \ast b_1) \ast b_2) \ast b_3\)
 - this is equivalent to applying one filter: \(a \ast (b_1 \ast (b_2 \ast b_3))\)

And in pseudocode...

```
function convolve2d(filter2d a, filter2d b, int i, int j)
    s = 0
    r = a.radius
    for i' = -r to r do
        for j' = -r to r do
            s = s + a[i'][j'] b[i - i'][j - j']
    return s
```

Moving Average in 2D
Moving Average In 2D

\[
F[x, y] \quad G[x, y]
\]

Image Correlation Filtering

- Center filter \(g \) at each pixel in image \(f \)
- Multiply weights by corresponding pixels
- Set resulting value in output image \(h \)
- \(g \) is called a \textit{filter}, \textit{mask}, \textit{kernel}, or \textit{template}
- Linear filtering is sum of dot product at each pixel position
- Filtering operation called \textit{cross-correlation}

Correlation filtering

Say the averaging window size is \(2k+1 \times 2k+1 \):

\[
G[i, j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i + u, j + v]
\]

Attribute uniform weight to each pixel
Loop over all pixels in neighborhood around image pixel \(F[i, j] \)

Now generalize to allow different weights depending on neighboring pixel's relative position:

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

Non-uniform weights

This is called cross-correlation, denoted \(G = H \otimes F \)

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter “kernel” or “mask” \(H[u, v] \) is the prescription for the weights in the linear combination.
Correlation filtering

Cross correlation example

Averaging filter

- What values belong in the kernel H for the moving average example?

$$G = H \otimes F$$
Smoothing by averaging

depicts box filter:
white = high value, black = low value

What if the filter size was 5 x 5 instead of 3 x 3?

Boundary issues

- What is the size of the output?
- MATLAB: output size / “shape” options
 - shape = ‘full’: output size is sum of sizes of f and g
 - shape = ‘same’: output size is same as f
 - shape = ‘valid’: output size is difference of sizes of f and g

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (MATLAB):
 - clip filter (black): \texttt{imfilter(f, g, 0)}
 - wrap around: \texttt{imfilter(f, g, ‘circular’)}
 - copy edge: \texttt{imfilter(f, g, ‘replicate’)}
 - reflect across edge: \texttt{imfilter(f, g, ‘symmetric’)}
Gaussian filter

- What if we want nearest neighboring pixels to have the most influence on the output?

This kernel is an approximation of a 2d Gaussian function:

\[
h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}}
\]

\[
H[u, v]
\]

- Removes high-frequency components from the image ("low-pass filter").

Gaussian filters

- What parameters matter here?

 - **Size** of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

 - **Variance** of Gaussian: determines extent of smoothing

 - \(\sigma = 2\) with 30 x 30 kernel
 - \(\sigma = 5\) with 30 x 30 kernel
Choosing kernel width

- Rule of thumb: set filter half-width to about 3σ

Matlab

```matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian', hsize, sigma);

>> mesh(h);
>> imagesc(h);
>> outim = imfilter(im, h); % correlation
>> imshow(outim);
```

Smoothing with a Gaussian

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and controls the amount of smoothing.

Gaussian Filters

$\sigma = 1$ pixel
$\sigma = 5$ pixels
$\sigma = 10$ pixels
$\sigma = 30$ pixels
“Lab” Color Representation

A transformation of the colors into a color space that is more perceptually meaningful:
L: luminance,
a: red-green,
b: blue-yellow

Blurring L

Blurring a

Blurring b
Separability

- In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows
 - Convolve all columns

Separability of the Gaussian filter

\[
G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)
\]

\[
= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right)\right)
\]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x\) and the other a function of \(y\).

In this case, the two functions are the (identical) 1D Gaussian.

Why is separability useful?

- What is the complexity of filtering an \(n \times n\) image with an \(m \times m\) kernel?
 - \(O(n^2 m^2)\)
- What if the kernel is separable?
 - \(O(n^2 m)\)
Properties of smoothing filters

- **Smoothing**
 - Values positive
 - Sum to 1 → constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove “high-frequency” components; “low-pass” filter

Filtering an impulse signal

What is the result of filtering the impulse signal (image) F with the arbitrary kernel H?

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
a & b & c \\
d & e & f \\
g & h & i \\
\end{array}
\]

\[
F[x, y] \times H[u, v] \rightarrow G[x, y]
\]

Convolution

- **Convolution:**
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]

Convolution vs. Correlation

- **A convolution** is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 - convolution is a filtering operation

- **Correlation** compares the similarity of two sets of data. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 - correlation is a measure of relatedness of two signals
Convolution vs. correlation

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

Predict the outputs using correlation filtering

![Filtering examples](slide-credit: K. Grauman)

Practice with linear filters

![Original vs. filtered images](slide-credit: D. Lowe)

Practice with linear filters

![Original vs. filtered images](slide-credit: D. Lowe)
Practice with linear filters

Original

Practice with linear filters

Original

Shifted left by 1 pixel with correlation

Original

Blur (with a box filter)

Original
Practice with linear filters

Original

```
0 0 0
0 2 0
0 0 0
```

\[-\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}\]

?

Slide credit: D. Lowe

Sharpening filter: accentuates differences with local average

Original

```
0 0 0
0 2 0
0 0 0
```

\[-\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}\]

Slide credit: D. Lowe

Filtering examples: sharpening

before

after

Slide credit: K. Grauman

Sharpening

- What does blurring take away?

Let's add it back:

Original

```
original
``` 

Smoothed (5x5)

```
smoothed (5x5)
``` 

Detail

```
detail
``` 

Sharpening

```
+ 
``` 

Slide credit: S. Lazebnik
Unsharp mask filter

\[f + \alpha(f - f \ast g) = (1 + \alpha)f - \alpha f \ast g = f \ast ((1 + \alpha)e - g) \]

- Image
- Blurred image
- Unit impulse (identity)
- Gaussian
- Laplacian of Gaussian

Sharpening using Unsharp Mask Filter

Original

Filtered result

Unsharp Masking

Other filters

Sobel

Vertical Edge (absolute value)

Slide credit: J. Hays
Other filters

Sobel

Horizontal Edge (absolute value)

Median filters

• A Median Filter operates over a window by selecting the median intensity in the window.
• What advantage does a median filter have over a mean filter?
• Is a median filter a kind of convolution?

Median filter

• No new pixel values introduced
• Removes spikes: good for impulse, salt & pepper noise
• Non-linear filter

Median filter

Salt and pepper noise

Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);
Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers
 - Median filter is edge preserving

Nextweek

- Introduction to frequency domain techniques
- The Fourier Transform

Slide credit: K. Grauman